JPH1128364A - Photocatalyst composite body and water purification device - Google Patents

Photocatalyst composite body and water purification device

Info

Publication number
JPH1128364A
JPH1128364A JP9186681A JP18668197A JPH1128364A JP H1128364 A JPH1128364 A JP H1128364A JP 9186681 A JP9186681 A JP 9186681A JP 18668197 A JP18668197 A JP 18668197A JP H1128364 A JPH1128364 A JP H1128364A
Authority
JP
Japan
Prior art keywords
photocatalyst
film
thickness
light
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9186681A
Other languages
Japanese (ja)
Other versions
JP4174087B2 (en
Inventor
Naoya Ogawa
直也 小川
Takanori Kawachi
孝典 川地
Yukio Ohashi
幸夫 大橋
Yoshio Nakayama
芳夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18668197A priority Critical patent/JP4174087B2/en
Publication of JPH1128364A publication Critical patent/JPH1128364A/en
Application granted granted Critical
Publication of JP4174087B2 publication Critical patent/JP4174087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst having a high photocatalytic activity and an abundance of adaptability and a water purification device using the photocatalyst. SOLUTION: A photocatalyst composite body 1 has a photocatalyst film 5 and an electrically-conductive film 3 provided in an adjacent relation with the photocatalyst and having transmissibility against light having wavelengths capable of activating the photocatalyst and is supported by a light-transmissive support 7. Thickness of the photocatalyst 5 is within a range of 50-500 nm. In this constitution, activity of the photocatalyst can be maintained at a high level for a long time and effective purification of water can be carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の浄化処理や脱
色、脱臭等に利用される光触媒を有効に作用させる光触
媒複合体及び該光触媒複合体を用いた浄水装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst complex for effectively using a photocatalyst used for water purification treatment, decolorization, deodorization, and the like, and to a water purification device using the photocatalyst complex.

【0002】[0002]

【従来の技術】近年、無機化合物を光触媒として用いて
光エネルギにより反応を進行させて水の浄化処理を行う
ことが試みられている。この浄化処理においては、支持
体上に光触媒の膜を形成して浄化処理を施す水に投入
し、光が照射される。光照射によって光触媒上に生じた
正孔及び電子の対のうちの正孔によって水中の有機物の
分解反応が進行する。
2. Description of the Related Art In recent years, an attempt has been made to purify water by using an inorganic compound as a photocatalyst to promote a reaction by light energy. In this purification process, a photocatalyst film is formed on a support, and the photocatalyst is put into water to be subjected to the purification process, and irradiated with light. The decomposition reaction of the organic matter in the water proceeds by the holes of the pairs of holes and electrons generated on the photocatalyst by the light irradiation.

【0003】しかし、このような構成においては、余剰
の電子が光触媒上に残存して分解反応の進行を抑制す
る。このため、光触媒は効率よく作用しない。
However, in such a configuration, surplus electrons remain on the photocatalyst to suppress the progress of the decomposition reaction. Therefore, the photocatalyst does not work efficiently.

【0004】これを改善するものとして、支持体と光触
媒の膜との間に金属膜を形成したものが提案されてい
る。
[0004] To improve this, a device in which a metal film is formed between a support and a photocatalyst film has been proposed.

【0005】[0005]

【発明が解決しようとする課題】ところが、浄化処理を
施す水の濁度が高い場合、照射する光が水中で減衰して
光触媒に到達する光の強度が不足することにより十分に
反応が進行しないという問題がある。又、浄化処理を長
時間行った際に光触媒膜の表面に汚染物が蓄積すると、
光が遮られるために分解反応の進行が遅延し、汚染物に
よる光触媒の被覆が加速されて光触媒が機能しなくな
る。
However, when the turbidity of the water to be purified is high, the reaction does not proceed sufficiently because the irradiation light is attenuated in the water and the intensity of the light reaching the photocatalyst is insufficient. There is a problem. Also, if contaminants accumulate on the surface of the photocatalyst film when the purification process is performed for a long time,
The blocking of the light delays the progress of the decomposition reaction, accelerates the coating of the photocatalyst with contaminants, and renders the photocatalyst non-functional.

【0006】本発明は上述のような問題点に鑑みてなさ
れたもので、光触媒の機能を十分に活かし、長時間効率
よく触媒反応を進行させることができる光触媒複合体を
提供することを目的とする。
[0006] The present invention has been made in view of the above problems, and has as its object to provide a photocatalyst complex that can make full use of the function of a photocatalyst and efficiently proceed a catalytic reaction for a long time. I do.

【0007】又、光触媒を用いて効率よく水の浄化処理
を行うことができる浄水装置を提供することを目的とす
る。
Another object of the present invention is to provide a water purification apparatus capable of efficiently performing water purification treatment using a photocatalyst.

【0008】[0008]

【課題を解決するための手段】本発明の光触媒複合体
は、光触媒を含有する光触媒膜と、該光触媒膜に隣接し
て設けられ該光触媒が機能する波長の光に対して透過性
を有する導電性膜とを有する。
The photocatalyst complex of the present invention comprises a photocatalyst film containing a photocatalyst, and a photocatalyst film which is provided adjacent to the photocatalyst film and has a property of transmitting light having a wavelength at which the photocatalyst functions. And a conductive film.

【0009】上記光触媒は酸化チタンであり、上記導電
性膜は酸化インジウムを含有し、更に光触媒膜及び導電
性膜間に介在する白金部材を有する。
The photocatalyst is titanium oxide, the conductive film contains indium oxide, and further has a platinum member interposed between the photocatalyst film and the conductive film.

【0010】上記光触媒複合体は、更に、上記光触媒膜
及び上記導電性膜を支持するための光透過性支持体を有
する。
The photocatalyst composite further has a light-transmitting support for supporting the photocatalyst film and the conductive film.

【0011】又、本発明の光触媒複合体は、光触媒を有
する光触媒複合体であって、該光触媒が機能する波長の
光に対して透過性を有する導電性層を有し、該光触媒は
該導電性層に接触して設けられる。
Further, the photocatalyst composite of the present invention is a photocatalyst composite having a photocatalyst, which has a conductive layer that is transparent to light having a wavelength at which the photocatalyst functions. Provided in contact with the conductive layer.

【0012】更に、本発明の光触媒複合体は、厚さが5
0〜500nmまでの光触媒膜と、該光触媒膜に隣接して
設けられる導電性膜とを有する。
Further, the photocatalyst composite of the present invention has a thickness of 5
It has a photocatalytic film of 0 to 500 nm and a conductive film provided adjacent to the photocatalytic film.

【0013】又、本発明の光触媒複合体は、光触媒膜と
該光触媒膜に隣接して設けられる導電性膜とを有するす
る光触媒複合体であって、該光触媒膜の厚さx及び該導
電性膜の厚さyが下記式(1)及至(3)を満たすよう
な値である。
Further, the photocatalyst composite of the present invention is a photocatalyst composite having a photocatalyst film and a conductive film provided adjacent to the photocatalyst film, wherein the thickness x of the photocatalyst film and the The thickness y of the film satisfies the following expressions (1) to (3).

【0014】 75 ≦ x ≦ 400 (1) y ≦ x/6 + 27.5 (2) y ≦ −7x/50 + 96.5 (3) 更に、本発明の光触媒複合体は、光触媒膜と該光触媒膜
に隣接して設けられる導電性膜とを有するする光触媒複
合体であって、該光触媒膜の厚さx及び該導電性膜の厚
さyが下記式(4)、(5)及び(6)を満たすような
値である。
75 ≦ x ≦ 400 (1) y ≦ x / 6 + 27.5 (2) y ≦ −7x / 50 + 96.5 (3) Further, the photocatalyst composite of the present invention comprises: A photocatalyst composite having a conductive film provided adjacent to a photocatalytic film, wherein the thickness x of the photocatalytic film and the thickness y of the conductive film are represented by the following formulas (4), (5), and (5). 6).

【0015】 50 ≦ x ≦ 500 (4) y ≦ 0.2x + 30 (5) y ≦ −0.1x + 90 (6) 本発明の浄水装置は、水を収容する水槽と、該水槽に付
設される請求項1〜7のいずれかに記載の光触媒複合体
と、該光触媒が機能する波長の光を該光触媒複合体の光
触媒膜に供給するための光源とを有する。
50 ≦ x ≦ 500 (4) y ≦ 0.2x + 30 (5) y ≦ −0.1x + 90 (6) The water purification device of the present invention is provided with a water tank for containing water and a water tank attached to the water tank. And a light source for supplying light having a wavelength at which the photocatalyst functions to the photocatalyst film of the photocatalyst composite.

【0016】[0016]

【発明の実施の形態】金属膜上に光触媒の層を設けた場
合、金属膜が光を遮弊することによって、光触媒への光
の供給は一方向側からのみに制限される。このことは光
触媒を用いた処理装置を構成する上で極めて不利とな
る。又、光触媒の反応効率は光触媒に到達する光量に左
右されるから、金属膜上に設けられた光触媒膜が厚い
と、膜の表面の光触媒のみが機能し内部の光触媒が全く
機能しないということも生じる。従って、光触媒の効率
的な使用においても問題がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case where a photocatalyst layer is provided on a metal film, the supply of light to the photocatalyst is restricted only from one side because the metal film blocks light. This is extremely disadvantageous in configuring a processing apparatus using a photocatalyst. In addition, since the reaction efficiency of the photocatalyst depends on the amount of light reaching the photocatalyst, if the photocatalyst film provided on the metal film is thick, only the photocatalyst on the surface of the film functions and the internal photocatalyst does not function at all. Occurs. Therefore, there is a problem in efficient use of the photocatalyst.

【0017】上述のような問題は、光透過性と電子伝導
性とを兼備する膜を用いることによって解決される。詳
細には、図1に示すように、本発明の光触媒複合体1
は、光透過性を有する導電性膜3とこの上に設けられる
光触媒膜5とを有し、これらは機械的強度を得るために
透明の支持体7上に形成されている。導電性膜3にはリ
ード線9が接続されており、リード線9はアースまたは
外部回路(図示せず)に接続される。導電性膜3及び支
持体7の光透過性によって、光触媒膜5には、図中矢印
Aで示される光触媒膜5側からの方向だけでなく矢印B
で示される導電性膜3側からの方向にも光照射が可能で
ある。光照射によって励起された光触媒から生じた正孔
は、汚染物の分解反応等のような処理反応の進行に用い
られる。従って、正孔を用いて処理を行う対象(例えば
浄化する水等)を光触媒膜5と接触させながら光を照射
して光触媒を励起させることによって処理反応が進行
し、一方、励起された光触媒から生じた電子は導電性膜
3へ移動し、リード線9を介して複合体1外部へ除去さ
れる。この結果、余剰電子が光触媒膜5に残存すること
による反応進行阻害は起こらない。又、濁度の高い水等
の浄化処理にも矢印A及びBの方向からの光照射により
汚染物の分解反応を促進することができる。
The above-mentioned problem is solved by using a film having both light transmittance and electron conductivity. More specifically, as shown in FIG.
Has a light-transmitting conductive film 3 and a photocatalytic film 5 provided thereon, and these are formed on a transparent support 7 in order to obtain mechanical strength. A lead wire 9 is connected to the conductive film 3, and the lead wire 9 is connected to ground or an external circuit (not shown). Due to the light transmittance of the conductive film 3 and the support 7, not only the direction from the photocatalyst film 5 side shown by the arrow A in the figure but also the arrow B
Light irradiation is also possible in the direction from the conductive film 3 side indicated by. The holes generated from the photocatalyst excited by the light irradiation are used for the progress of a processing reaction such as a decomposition reaction of contaminants. Therefore, the processing reaction proceeds by irradiating light to irradiate the photocatalyst with an object to be processed using holes (for example, water to be purified) in contact with the photocatalyst film 5, and The generated electrons move to the conductive film 3 and are removed to the outside of the composite 1 via the lead wire 9. As a result, the reaction progress is not hindered by the surplus electrons remaining in the photocatalyst film 5. Further, in the purification treatment of water or the like with high turbidity, the decomposition reaction of the contaminant can be promoted by light irradiation from the directions of arrows A and B.

【0018】図1の構成を有する光触媒複合体1を用い
た浄水装置の一例を図2に示す。この浄水装置11は、
処理を施す水を収容する水槽13と、水槽13内に設置
される光触媒複合体15と、光触媒を励起させるための
光源17とを備える。光触媒複合体15は、光源17を
囲むように円筒形に形成された透過性をもつ支持体19
と、支持体19の外周に積層された光透過性の導電性膜
21と、導電性膜21の外周に積層された光触媒膜23
とを有し、導電性膜21の上端にリード線25が接続さ
れている。処理が施される水は、水槽13に設けられた
給水管27から水槽13に供給され、処理後の水は排水
管29から排出される。水槽13の底部には沈澱物など
を水槽13から除去するための排出管31が接続されて
いる。
FIG. 2 shows an example of a water purification apparatus using the photocatalyst complex 1 having the structure shown in FIG. This water purification device 11
A water tank 13 containing water to be treated, a photocatalyst complex 15 installed in the water tank 13, and a light source 17 for exciting the photocatalyst are provided. The photocatalyst complex 15 has a transparent support 19 formed in a cylindrical shape so as to surround the light source 17.
A light-transmitting conductive film 21 laminated on the outer periphery of the support 19; and a photocatalytic film 23 laminated on the outer periphery of the conductive film 21.
And a lead wire 25 is connected to the upper end of the conductive film 21. The water to be treated is supplied to the water tank 13 from a water supply pipe 27 provided in the water tank 13, and the treated water is discharged from a drain pipe 29. The bottom of the water tank 13 is connected to a discharge pipe 31 for removing precipitates and the like from the water tank 13.

【0019】光源17を用いて光触媒複合体15の内側
から光を照射すると、光触媒の励起により、光触媒複合
体15周辺において、水槽13に供給された水中に含ま
れる汚染物の分解及び微生物の殺菌が進行する。
When light is irradiated from the inside of the photocatalyst complex 15 using the light source 17, the photocatalyst is excited to decompose contaminants contained in the water supplied to the water tank 13 and kill microorganisms around the photocatalyst complex 15. Progresses.

【0020】図2の浄水装置は、必要に応じて様々に変
形することができる。例えば、光触媒複合体15を光源
17上に載設してもよく、光源の外周部分を支持体とし
て光源上に直接光透過性の導電性膜及び光触媒膜を積層
してもよい。又、水槽13を透明な材料で製作し、水槽
13の外部にも光源を設けるようにしてもよい。あるい
は、透明な材料で製作した水槽13の内面上に光透過性
の導電性膜及び光触媒膜を積層して水槽の外部から光照
射を行うようにしてもよい。
The water purifier of FIG. 2 can be variously modified as required. For example, the photocatalyst complex 15 may be mounted on the light source 17, or a light-transmitting conductive film and a photocatalytic film may be directly laminated on the light source using the outer peripheral portion of the light source as a support. Further, the water tank 13 may be made of a transparent material, and a light source may be provided outside the water tank 13. Alternatively, a light-transmitting conductive film and a photocatalytic film may be laminated on the inner surface of the water tank 13 made of a transparent material, and light irradiation may be performed from outside the water tank.

【0021】上述のような構成の光触媒複合体は以下の
ような材料を用いて製作することができる。まず、光触
媒膜は、光触媒性を有する物質の層であればよく、例え
ば、酸化チタン、酸化錫、酸化ジルコニウム、酸化タン
グステン、酸化鉄、酸化亜鉛、チタン酸ストロンチウム
等の酸化物が挙げられる。特に酸化チタンは、紫外線の
照射によりフォトンのエネルギを吸収して強い酸化力を
発揮する優れた光触媒である。この様な材料による光触
媒膜の形成は、気相法及び液相法のいずれでも行うこと
ができ、気相法としては例えば真空蒸着法、CVD法等
が挙げられ、液相法としては例えばディップ法、イオン
コーティング法、液相析出法、ゾルゲル法等が挙げられ
る。酸化チタンにクロムイオンを打ち込んで太陽光を利
用可能な光触媒としたものも利用できる。
The photocatalyst composite having the above configuration can be manufactured using the following materials. First, the photocatalyst film may be a layer of a substance having photocatalytic properties, and examples thereof include oxides such as titanium oxide, tin oxide, zirconium oxide, tungsten oxide, iron oxide, zinc oxide, and strontium titanate. In particular, titanium oxide is an excellent photocatalyst that exhibits strong oxidizing power by absorbing the energy of photons by irradiation with ultraviolet rays. The formation of the photocatalytic film from such a material can be performed by either a gas phase method or a liquid phase method. Examples of the gas phase method include a vacuum deposition method and a CVD method. Method, ion coating method, liquid phase deposition method, sol-gel method and the like. A photocatalyst capable of utilizing sunlight by implanting chromium ions into titanium oxide can also be used.

【0022】光透過性の導電性膜は、光触媒を励起させ
る波長の光の透過を著しく妨げることがなく導電性を有
する物質の膜であればよく、酸化チタンのような紫外線
域において触媒能を有する光触媒を用いるときには紫外
線透過性の導電性材料を成膜する。光透過性の導電性材
料として、例えば、ITO(酸化インジウム及び酸化錫
の混合物)やATO(酸化アンチモン及び酸化錫の混合
物)等を挙げることができる。特にITOは透明性が高
く電子伝導性も良好である。このような材料からなる膜
は、真空蒸着法等の成膜方法を用いて支持体上に積層す
ることによって得られる。あるいは、この様な材料から
なる粉末をバインダを用いて支持体上に固着することも
できる。バインダには、焼成によりガラスのような透明
材料となるものが用いられる。硫酸バリウムのような光
透過性の材料にITO又はATOを被覆したものを導電
性膜として用いることもできる。
The light-transmitting conductive film may be a film of a substance having conductivity without significantly impeding the transmission of light having a wavelength for exciting the photocatalyst, and has a catalytic activity in an ultraviolet region such as titanium oxide. When a photocatalyst having the same is used, a conductive material which transmits ultraviolet light is formed. Examples of the light-transmitting conductive material include ITO (a mixture of indium oxide and tin oxide) and ATO (a mixture of antimony oxide and tin oxide). In particular, ITO has high transparency and good electron conductivity. A film made of such a material is obtained by laminating on a support using a film forming method such as a vacuum evaporation method. Alternatively, a powder made of such a material can be fixed on a support using a binder. As the binder, a material that becomes a transparent material such as glass by firing is used. A material in which a light transmitting material such as barium sulfate is coated with ITO or ATO can be used as the conductive film.

【0023】支持体は、光触媒を励起させる波長の光の
透過を著しく妨げることのない材料であればよい。例え
ば、酸化珪素、酸化ホウ素、酸化ナトリウム、酸化カリ
ウム、酸化アルミニウム、酸化ジルコニウム、炭酸カル
シウム等を構成成分とするものが挙げられる。但し、光
触媒膜を形成する工程において焼成処理を必要とし、支
持体も同時に加熱される場合には、焼成処理に耐え得る
耐熱性を有する材料でなければならない。光源が低圧水
銀灯の場合には、支持体の材料は石英ガラスを用いるこ
とが望ましく、光源が太陽光又はブラックライトの場合
には硬質ガラス等を好適に使用することができる。
The support may be any material that does not significantly hinder the transmission of light having a wavelength that excites the photocatalyst. For example, a material containing silicon oxide, boron oxide, sodium oxide, potassium oxide, aluminum oxide, zirconium oxide, calcium carbonate, or the like as a constituent component may be used. However, in the case where a baking treatment is required in the step of forming the photocatalyst film and the support is also heated at the same time, the material must have heat resistance enough to withstand the baking treatment. When the light source is a low-pressure mercury lamp, it is preferable to use quartz glass as the material of the support, and when the light source is sunlight or black light, hard glass or the like can be suitably used.

【0024】図1の光触媒複合体1の光触媒膜5から導
電性膜3への余剰電子の受渡しは、両膜に接するように
金属材を配置することによって促進される。詳細には、
図3に示す光触媒複合体33のように、導電性膜3及び
光触媒膜5の間に両膜と接するように金属部材35が分
散して設けられる。この金属部材35は、導電性膜3及
び光触媒膜5間の導電性を向上させて電子を分離するた
めのものである。少なくとも金属部材35間を互いに連
結して電子伝導経路を形成する必要はない。金属部材3
5の形状については、例えば球状やウィスカー状、棒状
を用いることができる。金属部材35は、両膜との接触
面積が大きく且つ光透過を妨害しないものが好ましく、
このような形態として、例えば、両膜の接合界面に垂直
に延びるように配置されたウィスカー状のもの等が挙げ
られる。金属部材として、白金、金、銀、銅、パラジウ
ム、ルテニウム、ロジウム、ニッケル、マンガン、コバ
ルト等の粒状物が挙げられる。中でも白金は電子分離機
能に優れている。
The transfer of surplus electrons from the photocatalyst film 5 of the photocatalyst composite 1 of FIG. 1 to the conductive film 3 is facilitated by disposing a metal material so as to be in contact with both films. For details,
As in the photocatalyst complex 33 shown in FIG. 3, metal members 35 are provided between the conductive film 3 and the photocatalyst film 5 so as to be in contact with both films. The metal member 35 is for separating electrons by improving the conductivity between the conductive film 3 and the photocatalytic film 5. It is not necessary to connect at least the metal members 35 to form an electron conduction path. Metal member 3
As the shape of 5, for example, a spherical shape, a whisker shape, or a rod shape can be used. The metal member 35 preferably has a large contact area with both films and does not hinder light transmission.
As such a configuration, for example, a whisker-like configuration arranged so as to extend perpendicular to the junction interface between the two films can be given. Examples of the metal member include granular materials such as platinum, gold, silver, copper, palladium, ruthenium, rhodium, nickel, manganese, and cobalt. Among them, platinum has an excellent electron separation function.

【0025】図3の光触媒複合体33を利用した浄水装
置の一例を図4に示す。この浄水装置37は、光透過性
の材料で形成した水槽39の底部に光触媒複合体33を
設置したもので、水槽39の上方または下方から光を照
射することによって、光は光触媒複合体33の支持体7
及び導電性膜3を介して光触媒膜5に達し、光触媒複合
体33上方の水に含まれる汚染物の分解反応が進行す
る。光触媒膜5中に生じた電子は金属部材35を通じて
導電性膜3に移動する。導電性膜3は、リード線(図示
省略)を介して浄水装置37外でアース又は回路に接続
される。
FIG. 4 shows an example of a water purification device using the photocatalyst complex 33 of FIG. The water purifier 37 is provided with a photocatalyst complex 33 at the bottom of a water tank 39 formed of a light-transmitting material. By irradiating light from above or below the water tank 39, light is emitted from the photocatalyst complex 33. Support 7
Then, the reaction reaches the photocatalyst film 5 via the conductive film 3 and the decomposition reaction of the contaminants contained in the water above the photocatalyst complex 33 proceeds. The electrons generated in the photocatalytic film 5 move to the conductive film 3 through the metal member 35. The conductive film 3 is connected to ground or a circuit outside the water purification device 37 via a lead wire (not shown).

【0026】図4のような浄水装置37を用いて例えば
蟻酸水溶液を処理すると、蟻酸の濃度は図5の線aで示
されるように照射時間と共に減少する。導電性膜3を構
成しない光触媒複合体を用いた場合には、余剰電子が光
触媒膜5及び金属部材35から外部へ移動できないた
め、分解反応の進行が鈍化し、破線bで示すような結果
を生じる(詳細については後述の実施例1及び比較例1
を参照)。
When, for example, an aqueous formic acid solution is treated using the water purifier 37 as shown in FIG. 4, the concentration of formic acid decreases with the irradiation time as shown by the line a in FIG. When a photocatalyst composite that does not constitute the conductive film 3 is used, excess electrons cannot move from the photocatalyst film 5 and the metal member 35 to the outside. (For details, see Example 1 and Comparative Example 1
See).

【0027】光触媒複合体における光触媒膜及び導電性
膜の境界は厳格なものである必要はない。換言すれば、
光触媒及び導電性材料間において積層方向に連続的に濃
度が変化するような濃度勾配がある層であってもよい。
例えば、図6の光触媒複合体41のように、光透過性の
支持体43近辺において光透過性の導電性材料粒子45
の量が多く、支持体43から離れるに従って光触媒粒子
47の量が増加するような濃度勾配のある層49が支持
体43上に形成されたものであってもよい。照射される
光による反応が層49の表面において光触媒粒子47に
よって進行し、余剰電子は光触媒粒子47から導電性材
料粒子45に受け渡され、層49下部の導電性材料粒子
45を移動してリード線(図示省略)から層49外に除
去される。従って、このような濃度勾配によって、層4
9は、実質的に前述の光触媒膜及び導電性膜と同様に作
用する。
The boundary between the photocatalyst film and the conductive film in the photocatalyst composite does not need to be strict. In other words,
A layer having a concentration gradient such that the concentration continuously changes in the laminating direction between the photocatalyst and the conductive material may be used.
For example, as in the photocatalyst complex 41 of FIG. 6, light-transmissive conductive material particles 45 near the light-transmissive support 43.
A layer 49 having a concentration gradient such that the amount of the photocatalyst particles 47 increases with increasing distance from the support 43 may be formed on the support 43. The reaction by the irradiated light proceeds on the surface of the layer 49 by the photocatalyst particles 47, and the surplus electrons are transferred from the photocatalyst particles 47 to the conductive material particles 45, and move through the conductive material particles 45 below the layer 49 to lead. The line (not shown) is removed out of the layer 49. Therefore, by such a concentration gradient, the layer 4
9 acts substantially the same as the photocatalytic film and the conductive film described above.

【0028】更に変形すれば、導電性材料粒子間の電子
の受渡しが可能な層である限り、光触媒粒子と導電性材
料粒子が任意に混合された層であってもよい。導電性材
料粒子が光透過性であることによって、光触媒粒子は支
持体の両側からの照射光を受光できる。
In a further modification, a layer in which photocatalyst particles and conductive material particles are arbitrarily mixed may be used as long as the layer can transfer electrons between the conductive material particles. Since the conductive material particles are light-transmitting, the photocatalyst particles can receive irradiation light from both sides of the support.

【0029】図7は、導電性材料粒子がウィスカー状で
ある一例を示す。この光触媒複合体51は、光透過性の
支持体53上にウィスカー状の透明の導電性材料粒子5
5及び光触媒粒子57を含んだ層59が積層されてい
る。ウィスカー状の導電性材料粒子を用いた場合、粒子
間の伝導性が得られるように層を形成したときの層の光
透過性の低下が球状粒子を用いる場合よりも少なくて済
む。従って、光触媒粒子57を光励起し易く、光触媒粒
子57を多く積層することができる。ウィスカー状粒子
に代えて、光透過性の導電性材料を網状の長繊維に形成
し、これに光触媒を積層してもよい。
FIG. 7 shows an example in which the conductive material particles are whisker-shaped. The photocatalyst composite 51 is made of whisker-shaped transparent conductive material particles 5 on a light-transmitting support 53.
5 and a layer 59 containing photocatalyst particles 57 are stacked. When the whisker-shaped conductive material particles are used, the reduction in the light transmittance of the layer when the layer is formed so as to obtain the conductivity between the particles can be smaller than when the spherical particles are used. Therefore, the photocatalyst particles 57 are easily photoexcited, and many photocatalyst particles 57 can be stacked. Instead of the whisker-like particles, a light-transmissive conductive material may be formed into a net-like long fiber, and a photocatalyst may be laminated thereon.

【0030】図8は、導電性材料を通る電子の抵抗を減
少させる応用の一例を示す。図において(a)は層を形
成する粒子を微視的に表した図であり、(b)は層を概
念的に表した図である。
FIG. 8 shows an example of an application for reducing the resistance of electrons through a conductive material. In the figure, (a) is a diagram microscopically illustrating particles forming a layer, and (b) is a diagram conceptually illustrating a layer.

【0031】この実施形態において、光触媒複合体61
の支持体63上の導電性材料粒子65及び光触媒粒子6
7を含有する層69は、導電性材料粒子65を多く含む
部分65’の厚さが、接続されるリード線71から離れ
るに従って減少し、光触媒粒子67を多く含む部分6
7’が支持体63に対して傾斜している。このように導
電性材料と光触媒との実質的境界(図(b)中に点線で
表示)が傾斜し導電性膜の厚さが異なることによって、
光触媒からリード線への電子の移動が円滑になり、抵抗
が減少する。
In this embodiment, the photocatalyst composite 61
Material particles 65 and photocatalyst particles 6 on a support 63
In the layer 69 containing 7, the thickness of the portion 65 ′ containing a large amount of the conductive material particles 65 decreases as the distance from the lead 71 to be connected decreases, and the portion 6 containing a large amount of the photocatalyst particles 67 decreases
7 'is inclined with respect to the support 63. As described above, the substantial boundary between the conductive material and the photocatalyst (indicated by a dotted line in FIG. 2B) is inclined, and the thickness of the conductive film is different.
The movement of the electrons from the photocatalyst to the lead wire becomes smooth, and the resistance decreases.

【0032】上記に示す実施形態を必要に応じて適宜組
み合わせることによって、光触媒の機能を相乗的に向上
させることができる。図3に示すような金属部材を図8
の層69内に埋設してもよい。
The functions of the photocatalyst can be synergistically improved by appropriately combining the above-described embodiments as needed. The metal member as shown in FIG.
May be buried in the layer 69.

【0033】導電性膜上に設けられた光触媒膜に光を照
射したときに、例えば光触媒膜が極端に厚い場合には、
照射光が光触媒膜の奥深くまで到達せず光触媒膜の表面
のみしか作用しないことが考えられる。このような場
合、光触媒膜の表面近くで生じる電子は厚い膜を横断し
て導電性膜に達しなければ導電性膜の電子除去能は有効
に作用しない。つまり、光触媒膜の厚さによって電子の
伝達抵抗の問題が生じることが考えられる。又、光触媒
膜全体に光が作用していても、光励起によって反応が進
行する部分と余剰電子が導電性膜に受け渡される部分と
の距離が大きいことは同様に電子の伝達抵抗の問題を生
じることになる。従って、光触媒膜の厚さは、光触媒複
合体全体としての触媒能を左右する要素となることが予
想される。以下に、光触媒膜の厚さについて説明する。
When the photocatalytic film provided on the conductive film is irradiated with light, for example, when the photocatalytic film is extremely thick,
It is conceivable that the irradiation light does not reach deep inside the photocatalytic film and acts only on the surface of the photocatalytic film. In such a case, if the electrons generated near the surface of the photocatalytic film do not cross the thick film and reach the conductive film, the electron removing ability of the conductive film does not work effectively. That is, it is conceivable that a problem of electron transmission resistance occurs depending on the thickness of the photocatalytic film. Also, even if light is acting on the entire photocatalytic film, a large distance between a portion where the reaction proceeds by photoexcitation and a portion where surplus electrons are transferred to the conductive film also causes a problem of electron transfer resistance. Will be. Therefore, it is expected that the thickness of the photocatalyst film is a factor that affects the catalytic ability of the entire photocatalyst composite. Hereinafter, the thickness of the photocatalyst film will be described.

【0034】図9に示すような光触媒複合体73につい
て考える。この光触媒複合体73は、透明の支持体75
上に金属膜77及び紫外線における触媒機能を有する光
触媒膜79を形成したものである。金属膜77は、下方
からの紫外線を完全に遮断するに十分な厚さを有し、リ
ード線(図示省略)によりアース接続されている。この
光触媒複合体73を酒石酸水溶液に投入して、酒石酸水
溶液を矢印C方向にフローさせながら紫外線を矢印Aの
方向から一定時間照射した後に酒石酸水溶液の濃度を測
定し、酒石酸の分解率を算出する(詳細については後述
の実施例2及び比較例2を参照)。この操作を光触媒膜
79の厚さの異なるものについて繰り返し行い、光触媒
膜の厚さと分解率との関係を求めると、図10のグラフ
における線cのようになる。同様の操作を、金属膜77
のない光触媒複合体について行った場合は、図10のグ
ラフの線dのようになる。
Consider a photocatalyst complex 73 as shown in FIG. The photocatalyst composite 73 is made of a transparent support 75.
A metal film 77 and a photocatalytic film 79 having a catalytic function for ultraviolet rays are formed thereon. The metal film 77 has a thickness sufficient to completely block ultraviolet rays from below, and is grounded by a lead wire (not shown). The photocatalyst complex 73 is put into an aqueous tartaric acid solution, and while the tartaric acid aqueous solution is allowed to flow in the direction of arrow C, ultraviolet light is irradiated for a certain time from the direction of arrow A, and then the concentration of the aqueous tartaric acid is measured to calculate the decomposition rate of tartaric acid. (For details, see Example 2 and Comparative Example 2 described later). This operation is repeated for the photocatalyst films 79 having different thicknesses, and the relationship between the photocatalyst film thickness and the decomposition rate is obtained, as shown by the line c in the graph of FIG. The same operation is performed by using the metal film 77.
When the photocatalyst composite without the above was used, the result is as shown by the line d in the graph of FIG.

【0035】金属膜がない場合(線d)、光触媒膜の厚
さの増加に従って分解率は増大するが、極大値(N1)
に達した約500nm以上では殆ど増加しない。これに対
し、金属膜を有する場合(線c)、光触媒膜の厚さの増
加に従って分解率は急激に増加するが、200nm付近を
越えると穏やかに減少し、500nm付近でN1に漸近す
る。金属膜がない場合(線d)との差は、金属膜によっ
て余剰電子が除去され残存電子による反応の進行阻害が
防止される効果によるものである。図10のグラフから
理解されるように、一方向からの光照射について、光触
媒膜に接設した導電性膜での余剰電子除去による効果が
得られるのは、光触媒膜の厚さが約500nm以下の時に
限られることがわかる。この時、触媒膜のみによる分解
率の極大値N1を越えるのは、光触媒膜の厚さが約50
〜500nmの時である。
When there is no metal film (line d), the decomposition rate increases as the thickness of the photocatalytic film increases, but the maximum value (N1)
When it reaches about 500 nm or more, it hardly increases. On the other hand, in the case of having a metal film (line c), the decomposition rate sharply increases with an increase in the thickness of the photocatalytic film, but gradually decreases at around 200 nm, and gradually approaches N1 at around 500 nm. The difference from the case without the metal film (line d) is due to the effect that excess electrons are removed by the metal film and the progress of the reaction is not inhibited by the remaining electrons. As can be understood from the graph of FIG. 10, for light irradiation from one direction, the effect of removing surplus electrons in the conductive film in contact with the photocatalytic film is obtained only when the thickness of the photocatalytic film is about 500 nm or less. It can be seen that the time is limited. At this time, the reason why the decomposition rate exceeding the maximum value N1 due to the catalyst film alone is exceeded when the thickness of the photocatalytic film is about 50%.
It is a time of 500500 nm.

【0036】図10のような相関関係は、例えば、図1
1の(a)(b)に示すような複数の光触媒複合体から
なる繊維集合体81を用いた場合に近似的に適用するこ
とができると考えられる。繊維集合体81は複数の光触
媒複合体83からなり、各光触媒複合体83は金属製の
コア繊維85とこれを被覆する光触媒膜87とを有す
る。周囲から照射された光によって光触媒膜87に生じ
た電子は、コア繊維85を通じて末端へ到る。コア繊維
85の末端はリード線等によりアース又は回路に接続さ
れる。コア繊維85が光透過性の導電性材料によるもの
であっても、触媒膜の裏面(内側)からの透過光による
効果は小さいと予想されるので、近似的に上述のような
相関関係を適用できると考えられる。
The correlation as shown in FIG.
It is considered that the present invention can be approximately applied to a case where a fiber aggregate 81 composed of a plurality of photocatalyst composites as shown in 1 (a) and (b) is used. The fiber assembly 81 is composed of a plurality of photocatalyst composites 83, and each photocatalyst composite 83 has a metal core fiber 85 and a photocatalyst film 87 covering the core fiber 85. The electrons generated in the photocatalytic film 87 by the light irradiated from the surroundings reach the terminal through the core fiber 85. The end of the core fiber 85 is connected to ground or a circuit by a lead wire or the like. Even if the core fiber 85 is made of a light-transmitting conductive material, the effect of light transmitted from the back surface (inside) of the catalyst film is expected to be small. It is considered possible.

【0037】図9に示す光触媒複合体73に、図12の
ように矢印Bの方向つまり支持体75側から紫外線を照
射した場合について考える。但し、この場合、金属膜7
7は紫外線がある程度透過可能な厚さであるものとす
る。図2のような条件で光触媒複合体73を用いて前述
と同様の酒石酸水溶液の処理を行い、酒石酸の分解率を
算出すると、図13のグラフにおける線eのようにな
る。同様の操作を金属膜77のない光触媒複合体につい
て行った場合は、図13のグラフの線fのようになる
(詳細については後述の実施例3−1及び比較例3を参
照)。
Consider a case where the photocatalyst composite 73 shown in FIG. 9 is irradiated with ultraviolet rays from the direction of arrow B, that is, from the support 75 side, as shown in FIG. However, in this case, the metal film 7
Reference numeral 7 denotes a thickness through which ultraviolet rays can be transmitted to some extent. The tartaric acid aqueous solution is treated in the same manner as described above using the photocatalyst complex 73 under the conditions shown in FIG. 2, and the decomposition rate of tartaric acid is calculated, as shown by the line e in the graph of FIG. When the same operation is performed on the photocatalyst composite without the metal film 77, the result is as shown by the line f in the graph of FIG. 13 (for details, see Example 3-1 and Comparative Example 3 described later).

【0038】図12及び13のような条件において、金
属膜77がない場合(線f)、酒石酸の分解率は光触媒
膜の厚さの増加と共に増大するが、約250nm付近にお
いて極大値(N2)に達した後減少し、光触媒膜の厚さ
が500nmになると分解能力は殆どなくなる。この理由
としては、光触媒膜79が厚いために、分解反応が進行
する光触媒膜の表面(支持体75と反対の側)まで紫外
線が到達しないこと、分解反応が進行する光触媒の表面
と紫外線が到達する部分との距離が長いために、光励起
によって生じる正孔及び電子の移動の際の抵抗が大きい
ために金属膜に電子を放出し難いこと等が挙げられる。
金属膜7がある場合(線e)についても、分解率は光触
媒膜の厚さが約200nm付近で最大となり、約500nm
付近では分解能力は殆どなくなる。光触媒膜が約500
nm以下の薄いときには残存電子の除去による分解率の向
上が見られるが、光触媒膜が厚くなると残存電子の除去
による効果が発揮されなくなる。この結果、金属膜を有
する場合において分解率がN2を越えるのは、図13に
おいては約75〜400nmまでの範囲内の時となる。
Under the conditions as shown in FIGS. 12 and 13, when the metal film 77 is not provided (line f), the decomposition rate of tartaric acid increases with an increase in the thickness of the photocatalytic film, but reaches a local maximum value (N2) at about 250 nm. , And when the thickness of the photocatalytic film reaches 500 nm, the decomposition ability is almost eliminated. This is because, because the photocatalyst film 79 is thick, the ultraviolet light does not reach the surface of the photocatalyst film where the decomposition reaction proceeds (the side opposite to the support 75), and the ultraviolet light reaches the surface of the photocatalyst where the decomposition reaction proceeds. For example, it is difficult to emit electrons to the metal film due to a large resistance to the movement of holes and electrons generated by photoexcitation due to a long distance from a portion to be exposed.
Also in the case where the metal film 7 is present (line e), the decomposition rate is maximum when the thickness of the photocatalytic film is about 200 nm, and is about 500 nm.
Nearly there is almost no decomposition capacity. About 500 photocatalyst films
When the thickness is less than nm, the decomposition rate is improved by removing the residual electrons. However, when the photocatalytic film is thick, the effect of removing the residual electrons is not exhibited. As a result, when the metal film is provided, the decomposition rate exceeds N2 when it is in the range of about 75 to 400 nm in FIG.

【0039】図12の光触媒複合体の金属膜の厚さを変
化させて上記と同様の操作を繰り返し、分解率がN2と
なる時の光触媒膜の厚さ(x(nm))及び金属膜の厚さ
(y(nm))を求める(詳細については後述の実施例3−
2を参照)と、図14のプロットのようになり、分解率
がN2以上になるのはこのプロットで囲まれた範囲にな
る。この範囲を近似的に表すと、以下の式(1)及至
(3)を満たすx及びy(図中、斜線で示す)とするこ
とができる。
The same operation as described above was repeated while changing the thickness of the metal film of the photocatalyst composite of FIG. 12, and the thickness (x (nm)) of the photocatalyst film when the decomposition rate became N2 and the thickness of the metal film The thickness (y (nm)) is determined (for details, see Example 3 below).
2), the plot is as shown in FIG. 14, and the decomposition rate becomes N2 or more in the range surrounded by this plot. When this range is approximately expressed, x and y satisfying the following expressions (1) to (3) can be expressed as hatched in the figure.

【0040】[0040]

【数1】 75 ≦ x ≦ 400 (1) y ≦ x/6 + 27.5 (2) y ≦ −7x/50 + 96.5 (3) 金属膜の厚さyが約40nm以下で、且つ光触媒膜の厚さ
xが約75〜400nmまでの範囲では、明らかに分解率
がN2以上であることが理解される。金属膜の厚さが4
0nmを越えると光の透過率が低下し、電子の移動による
効果も向上しないため、N2以上の分解率を示す範囲は
限られてくる。
(1) y ≦ x / 6 + 27.5 (2) y ≦ −7x / 50 + 96.5 (3) The thickness y of the metal film is about 40 nm or less and It is understood that the decomposition rate is clearly N2 or more when the thickness x of the photocatalytic film is in the range of about 75 to 400 nm. Metal film thickness is 4
If the thickness exceeds 0 nm, the transmittance of light decreases, and the effect of electron transfer does not improve. Therefore, the range showing the decomposition rate of N2 or more is limited.

【0041】光触媒複合体73について、図15に示す
ように矢印A及びBの両方向から紫外線を照射した場合
について考える。この場合についても、金属膜77は紫
外線が透過可能な厚さを有するものとする。前述と同様
に酒石酸水溶液の処理を行い、酒石酸の分解率を算出す
ると、図16のグラフにおける線gのようになる。同様
の操作を金属膜77のない光触媒複合体について行った
場合は、図16のグラフの線hのようになる(詳細につ
いては後述の実施例4−1及び比較例4を参照)。
Consider a case where the photocatalyst composite 73 is irradiated with ultraviolet rays from both directions of arrows A and B as shown in FIG. Also in this case, the metal film 77 has a thickness through which ultraviolet rays can pass. When the tartaric acid aqueous solution is treated in the same manner as described above, and the decomposition rate of tartaric acid is calculated, a curve g in the graph of FIG. When the same operation is performed on the photocatalyst composite without the metal film 77, the result is as shown by the line h in the graph of FIG. 16 (for details, see Example 4-1 and Comparative Example 4 described later).

【0042】図15及び16のような条件において、金
属膜77がない場合(線h)、酒石酸の分解率は、触媒
膜の厚さの増加に従って増大し、増加の勾配は図10の
場合より大きいが、分解率が極大値(N3)に達した後
は増加しない。金属膜77がある場合(線g)、分解率
は、光触媒膜の厚さの増加に従って著しく増加し、約2
00nm付近を越えると緩やかに減少して500nm近辺で
N3に漸近する。分解率がN3を越えるのは、図16に
おいては約50〜500nmまでの範囲内となる。これら
の結果は、一方向からの光照射による図10及び図13
の各々の結果を考え合わせて予想されるものと概ね合致
する。
Under the conditions as shown in FIGS. 15 and 16, when there is no metal film 77 (line h), the decomposition rate of tartaric acid increases as the thickness of the catalyst film increases, and the gradient of the increase is higher than that in FIG. Although large, it does not increase after the decomposition rate reaches the maximum value (N3). With the metal film 77 (line g), the decomposition rate increases significantly with increasing photocatalytic film thickness, about 2
When it exceeds about 00 nm, it gradually decreases and gradually approaches N3 around 500 nm. The decomposition rate exceeding N3 is in the range from about 50 to 500 nm in FIG. These results are shown in FIGS. 10 and 13 by light irradiation from one direction.
Is generally consistent with what is expected when considering the results of

【0043】前述と同様に図15の光触媒複合体の金属
膜の厚さを変化させて上記と同様の操作を繰り返し、分
解率がN3となる時の光触媒膜の厚さ(x(nm))及び金
属膜の厚さ(y(nm))を求める(詳細については後述の
実施例4−2を参照)と、図17のプロットのようにな
り、分解率がN3以上になるのはこのプロットで囲まれ
た範囲になる。この範囲を近似的に表すと、以下の式
(4)及至(6)を満たすx及びy(図中、斜線で示
す)とすることができる。
As described above, the same operation as above was repeated while changing the thickness of the metal film of the photocatalyst composite of FIG. 15, and the thickness of the photocatalyst film when the decomposition rate became N3 (x (nm)) When the thickness (y (nm)) of the metal film is determined (for details, see Example 4-2 described later), the plot becomes as shown in FIG. 17 and the decomposition rate becomes N3 or more. The area is enclosed by. When this range is approximately expressed, x and y satisfying the following equations (4) to (6) can be obtained (shown by oblique lines in the drawing).

【0044】[0044]

【数2】 50 ≦ x ≦ 500 (4) y ≦ 0.2x + 30 (5) y ≦ −0.1x + 90 (6) 金属膜の厚さyが約40nm以下で、且つ光触媒膜の厚さ
xが約50〜500nmの範囲では、明らかに分解率がN
3以上であることが理解される。金属膜の厚さが50nm
を越えると透過光が不足し、電子の移動による効果も向
上しないため、N3以上の分解率を示す範囲は限られて
くる。
(2) y ≦ 0.2x + 30 (5) y ≦ −0.1x + 90 (6) The thickness y of the metal film is about 40 nm or less, and the thickness of the photocatalyst film In the range of about 50 to 500 nm, the decomposition rate is clearly N
It is understood that there are three or more. Metal film thickness 50nm
When N exceeds 3, the transmitted light is insufficient, and the effect due to the movement of electrons is not improved, so that the range showing the decomposition rate of N3 or more is limited.

【0045】上述の光触媒膜及び金属膜の厚さに関する
数値は、使用する材料を変えても同様の傾向を示し、若
干の補正を加えることによって好適に適用することがで
きる。又、前述の金属膜以外の光透過性を有する導電性
膜(例えばITO膜)を用いた光触媒複合体について
は、光透過性が高いため、導電性膜の厚みの影響を受け
にくいので、図12〜17から容易に考えられるよう
に、光触媒膜の厚さを適切な範囲に設定するのが好まし
い。約50〜500nmまでの範囲内、より好ましくは約
75〜400nmまでの範囲内に設定する。
The above numerical values relating to the thickness of the photocatalytic film and the metal film show the same tendency even when the material used is changed, and can be suitably applied by making some corrections. In addition, a photocatalyst composite using a light-transmitting conductive film (for example, an ITO film) other than the above-described metal film has a high light-transmitting property and is not easily affected by the thickness of the conductive film. It is preferable to set the thickness of the photocatalyst film in an appropriate range as easily considered from 12 to 17. It is set in the range of about 50 to 500 nm, more preferably in the range of about 75 to 400 nm.

【0046】上記で説明した光触媒複合体は、前述した
ような浄水処理だけでなく、光触媒を用いて行う各種反
応処理に利用することができ、図2のような構成を適宜
変形して光反応による合成・分解、及びこれらに基づい
た脱臭、脱色、殺菌、精製処理等を実施することができ
る。
The photocatalyst complex described above can be used not only for the water purification treatment as described above, but also for various reaction treatments using a photocatalyst. Synthesis, decomposition, and deodorization, decolorization, sterilization, purification, etc. based on these.

【0047】[0047]

【実施例】以下、実施例を参照して本発明を更に詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0048】(実施例1)寸法が100mm×100mm×
2mmの石英板の片面に、真空蒸着法によって厚さ100
nmのITO(酸化錫含有量5モル%)膜を形成し、IT
O膜の末端にリード線を接続した。
(Embodiment 1) The dimensions are 100 mm × 100 mm ×
On one side of a 2 mm quartz plate, 100 mm thick by vacuum evaporation
nm of ITO (tin oxide content 5 mol%) film
A lead wire was connected to the end of the O film.

【0049】次いで、ITO膜上をメッシュでマスキン
グし白金を蒸着させ、メッシュをはずすことによって、
粒径10〜100μmまでの白金粒体約10万個をIT
O膜上に形成した。
Next, by masking the ITO film with a mesh, depositing platinum, and removing the mesh,
Approximately 100,000 platinum particles with a particle size of 10-100 μm
It was formed on an O film.

【0050】この上に、二酸化チタンゾル(石原産業社
製、ST−K01)を100倍に希釈したものを10ml
塗布して室温で乾燥させ、更に200℃の空気中で1時
間焼成して図3に示すような光触媒複合体を得た。光触
媒複合体の二酸化チタン層の厚さは100nmであった。
On this, 10 ml of a 100-fold diluted titanium dioxide sol (ST-K01, manufactured by Ishihara Sangyo Co., Ltd.) was added.
It was applied, dried at room temperature, and fired in air at 200 ° C. for 1 hour to obtain a photocatalyst composite as shown in FIG. The thickness of the titanium dioxide layer of the photocatalyst composite was 100 nm.

【0051】上記光触媒複合体を硬質ガラス製の水槽に
取り付けて図4のような浄水装置を作製した。この水槽
に濃度が100ppm の蟻酸水溶液1000mlを投入し、
水槽の下方からブラックライトを用いて光を照射しなが
ら蟻酸水溶液の蟻酸濃度を測定した。測定結果から、光
照射時間と蟻酸水溶液の蟻酸濃度との関係を調べた。こ
れを図5のグラフに線aで示す。
The photocatalyst composite was attached to a hard glass water tank to produce a water purification device as shown in FIG. 1000 ml of a 100 ppm formic acid aqueous solution is put into this water tank,
The formic acid concentration in the formic acid aqueous solution was measured while irradiating light from below the water tank using a black light. From the measurement results, the relationship between the light irradiation time and the formic acid concentration of the formic acid aqueous solution was examined. This is shown by the line a in the graph of FIG.

【0052】他方、白金粒体を形成しなかったこと以外
は上記と同様の操作を繰り返して光触媒複合体を形成し
て図1のような浄水装置を作製し、同様に光照射による
蟻酸水溶液の蟻酸濃度の変化を測定した。この結果を図
5のグラフに一点鎖線a’で示す。
On the other hand, the same operation as described above was repeated except that no platinum particles were formed to form a photocatalyst complex, and a water purification device as shown in FIG. 1 was produced. The change in formic acid concentration was measured. This result is indicated by a dashed line a ′ in the graph of FIG.

【0053】図5から理解されるように、図1のような
光触媒膜5においては光励起により光触媒反応の進行の
妨げとなる余剰電子が生成し、この余剰電子を光触媒複
合体の外部へ除去することを目的として導電性膜3が設
けられている。ここで、余剰電子は光触媒膜5から導電
性膜3へ両膜の界面を介して受け渡される。この受渡
し、換言すれば光触媒膜5からの電子分離を促進させれ
ば、余剰電子はより速やかに導電性膜3へ移動できるよ
うになるため、結果として光触媒複合体の触媒性能が向
上する。
As can be understood from FIG. 5, in the photocatalyst film 5 as shown in FIG. 1, surplus electrons which hinder the progress of the photocatalytic reaction are generated by photoexcitation, and the surplus electrons are removed to the outside of the photocatalyst complex. For this purpose, the conductive film 3 is provided. Here, surplus electrons are transferred from the photocatalytic film 5 to the conductive film 3 via the interface between the two films. If the transfer, in other words, the separation of electrons from the photocatalyst film 5 is promoted, surplus electrons can move to the conductive film 3 more quickly, and as a result, the catalytic performance of the photocatalyst composite is improved.

【0054】(比較例1)ITO膜及び白金粒体を形成
しなかったこと以外は実施例1と同様の操作を繰り返し
て光触媒複合体を形成して浄水装置を作製し、同様に光
照射による蟻酸水溶液の蟻酸濃度の変化を測定した。こ
の結果を図5のグラフに破線bで示す。
(Comparative Example 1) The same operation as in Example 1 was repeated except that the ITO film and the platinum particles were not formed to form a photocatalyst complex, thereby producing a water purification device. The change in formic acid concentration in the formic acid aqueous solution was measured. This result is shown by the broken line b in the graph of FIG.

【0055】(実施例2)寸法が100mm×100mm×
2mmの硬質ガラス製の透明の支持体上に真空蒸着法によ
って金属膜として厚さ40nmの金膜及び触媒膜として厚
さ25nmの酸化チタン膜を形成して図9のような光触媒
複合体を得た。この光触媒複合体を濃度が25ppm の酒
石酸水溶液1000mlに投入して、酒石酸水溶液が矢印
C方向に流れるように攪拌しながらUVランプ(消費電
力6W)を用いて紫外線を矢印A方向から3時間照射し
た後に酒石酸水溶液の濃度を測定し、酒石酸の分解率
(%)[=100×(25ppm −照射後酒石酸濃度)/
25ppm ]を算出した。
(Embodiment 2) The dimensions are 100 mm × 100 mm ×
A gold film having a thickness of 40 nm as a metal film and a titanium oxide film having a thickness of 25 nm as a catalyst film are formed on a transparent support made of hard glass having a thickness of 2 mm by vacuum evaporation to obtain a photocatalyst composite as shown in FIG. Was. This photocatalyst complex was put into 1000 ml of a 25 ppm aqueous tartaric acid solution, and irradiated with ultraviolet rays from a direction of an arrow A for 3 hours using a UV lamp (power consumption: 6 W) while stirring so that the aqueous solution of tartaric acid flowed in a direction of an arrow C. Thereafter, the concentration of the aqueous tartaric acid solution was measured, and the decomposition rate of tartaric acid (%) [= 100 × (25 ppm-tartaric acid concentration after irradiation) /
25 ppm] was calculated.

【0056】光触媒膜の厚さを20〜550nmまでの範
囲で変更した点以外は上記と同様の操作を繰り返して光
触媒複合体を作製し、酒石酸水溶液を用いて酒石酸の分
解率を調べた。
The same operation as described above was repeated except that the thickness of the photocatalyst film was changed in the range of 20 to 550 nm to produce a photocatalyst complex, and the decomposition rate of tartaric acid was examined using a tartaric acid aqueous solution.

【0057】上述の操作の結果から、光触媒膜の厚さと
酒石酸の分解率との関係を図10のグラフに線cで示
す。
From the results of the above operation, the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid is shown by the line c in the graph of FIG.

【0058】(比較例2)金属膜を形成しなかったこと
以外は実施例2と同様の操作を繰り返して光触媒複合体
を形成し、酒石酸の分解率を調べた。得られた結果か
ら、光触媒膜の厚さと酒石酸の分解率との関係を図10
のグラフに線dで示す。
Comparative Example 2 A photocatalyst complex was formed by repeating the same operation as in Example 2 except that no metal film was formed, and the decomposition rate of tartaric acid was examined. From the obtained results, the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid is shown in FIG.
Is indicated by a line d in the graph.

【0059】(実施例3−1)寸法が100mm×100
mm×2mmの硬質ガラス製の透明の支持体上に真空蒸着法
によって金属膜として厚さ5nmの金膜及び触媒膜として
厚さ25nmの酸化チタン膜を形成して図12のような光
触媒複合体を得た。この光触媒複合体を濃度が25ppm
の酒石酸水溶液1000mlに投入して、酒石酸水溶液が
矢印C方向に流れるように攪拌しながらUVランプ(消
費電力6W)を用いて紫外線を矢印B方向から3時間照
射した後に酒石酸水溶液の濃度を測定し、酒石酸の分解
率(%)[=(25ppm −照射後酒石酸濃度)/25pp
m ]を算出した。
(Example 3-1) The dimensions were 100 mm × 100.
A 5 nm-thick gold film as a metal film and a 25 nm-thick titanium oxide film as a catalyst film were formed on a transparent support made of a hard glass of mm × 2 mm by a vacuum evaporation method to form a photocatalyst composite as shown in FIG. I got This photocatalyst complex has a concentration of 25 ppm
The tartaric acid aqueous solution was measured by irradiating the tartaric acid aqueous solution with a UV lamp (power consumption: 6 W) for 3 hours using a UV lamp (power consumption: 6 W) for 3 hours while stirring so that the tartaric acid aqueous solution flows in the arrow C direction. , Tartaric acid decomposition rate (%) [= (25 ppm-tartaric acid concentration after irradiation) / 25 pp
m] was calculated.

【0060】光触媒膜の厚さを20〜550nmまでの範
囲で変更した点以外は上記と同様の操作を繰り返して光
触媒複合体を作製し、酒石酸水溶液を用いて酒石酸の分
解率を調べた。
The same operation as described above was repeated except that the thickness of the photocatalyst film was changed in the range of 20 to 550 nm, to produce a photocatalyst composite, and the decomposition rate of tartaric acid was examined using a tartaric acid aqueous solution.

【0061】上述の操作の結果から、光触媒膜の厚さと
酒石酸の分解率との関係を図13のグラフに線eで示
す。
From the result of the above-mentioned operation, the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid is shown by a line e in the graph of FIG.

【0062】(比較例3)金属膜を形成しなかったこと
以外は実施例3−1と同様の操作を繰り返して光触媒複
合体を形成し、酒石酸の分解率を調べた。得られた結果
から、光触媒膜の厚さと酒石酸の分解率との関係を図1
3のグラフに線fで示す。
Comparative Example 3 A photocatalyst complex was formed by repeating the same operation as in Example 3-1 except that no metal film was formed, and the decomposition rate of tartaric acid was examined. From the results obtained, the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid is shown in FIG.
3 is indicated by a line f in the graph.

【0063】(実施例3−2)金属膜の厚さを10〜7
0nmまでの範囲で変更した点以外は実施例3−1と同様
の操作を繰り返して光触媒複合体を作製し、各厚さの金
属膜を有する光触媒複合体について、酒石酸水溶液を用
いて酒石酸の分解率を調べた。結果を用いて、図13と
同様の光触媒膜の厚さと酒石酸の分解率との関係のグラ
フを作成した。
(Embodiment 3-2) The thickness of the metal film was set to 10 to 7
A photocatalyst composite was prepared by repeating the same operation as in Example 3-1 except that the range was changed to 0 nm, and decomposition of tartaric acid using a tartaric acid aqueous solution was performed on the photocatalyst composite having a metal film of each thickness. The rate was checked. Using the results, a graph similar to that of FIG. 13 of the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid was created.

【0064】比較例3の結果から分解率の最大値N2を
求め、上記で得られたグラフ及び図13のグラフにおい
て分解率がN2となる時の光触媒膜の厚さを求めた。こ
れらの結果から、光触媒膜の厚さと金属膜の厚さとの関
係を図14に示す。
The maximum value N2 of the decomposition rate was obtained from the result of Comparative Example 3, and the thickness of the photocatalytic film when the decomposition rate was N2 was obtained in the graph obtained above and the graph of FIG. From these results, the relationship between the thickness of the photocatalyst film and the thickness of the metal film is shown in FIG.

【0065】(実施例4−1)寸法が100mm×100
mm×2mmの硬質ガラス製の透明の支持体上に真空蒸着法
によって金属膜として厚さ5nmの金膜及び触媒膜として
厚さ25nmの酸化チタン膜を形成して図15のような光
触媒複合体を得た。この光触媒複合体を濃度が25ppm
の酒石酸水溶液1000mlに投入して、酒石酸水溶液が
矢印C方向に流れるように攪拌しながらUVランプ(消
費電力6W)を用いて紫外線を矢印A及びBの両方向か
ら3時間照射した後に酒石酸水溶液の濃度を測定し、酒
石酸の分解率(%)[=(25ppm −照射後酒石酸濃
度)/25ppm ]を算出した。
(Example 4-1) The dimensions were 100 mm × 100
A 5 nm-thick gold film as a metal film and a 25 nm-thick titanium oxide film as a catalyst film are formed on a transparent support made of a hard glass of mm × 2 mm by a vacuum evaporation method to form a photocatalyst composite as shown in FIG. I got This photocatalyst complex has a concentration of 25 ppm
Of tartaric acid aqueous solution, and while irradiating ultraviolet rays from both directions of arrows A and B for 3 hours using a UV lamp (power consumption 6 W) while stirring so that the tartaric acid aqueous solution flows in the direction of arrow C, the concentration of the tartaric acid aqueous solution Was measured to calculate the decomposition rate (%) of tartaric acid [= (25 ppm-tartaric acid concentration after irradiation) / 25 ppm].

【0066】光触媒膜の厚さを20〜550nmまでの範
囲で変更した点以外は上記と同様の操作を繰り返して光
触媒複合体を作製し、酒石酸水溶液を用いて酒石酸の分
解率を調べた。
A photocatalyst composite was prepared by repeating the same operation as described above except that the thickness of the photocatalyst film was changed in the range of 20 to 550 nm, and the decomposition rate of tartaric acid was examined using a tartaric acid aqueous solution.

【0067】上述の操作の結果から、光触媒膜の厚さと
酒石酸の分解率との関係を図16のグラフに線gで示
す。
From the results of the above-described operation, the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid is shown by a line g in the graph of FIG.

【0068】(比較例4)金属膜を形成しなかったこと
以外は実施例4−1と同様の操作を繰り返して光触媒複
合体を形成し、酒石酸の分解率を調べた。得られた結果
から、光触媒膜の厚さと酒石酸の分解率との関係を図1
6のグラフに線hで示す。
Comparative Example 4 A photocatalyst complex was formed by repeating the same operation as in Example 4-1 except that no metal film was formed, and the decomposition rate of tartaric acid was examined. From the results obtained, the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid is shown in FIG.
The graph h is indicated by a line h.

【0069】(実施例4−2)金属膜の厚さを10〜7
0nmまでの範囲で変更した点以外は実施例4−1と同様
の操作を繰り返して光触媒複合体を作製し、各厚さの金
属膜を有する光触媒複合体について、酒石酸水溶液を用
いて酒石酸の分解率を調べた。結果を用いて、図16と
同様の光触媒膜の厚さと酒石酸の分解率との関係のグラ
フを作成した。
(Example 4-2) The thickness of the metal film was set to 10 to 7
A photocatalyst composite was prepared by repeating the same operation as in Example 4-1 except for changing the range up to 0 nm. For the photocatalyst composite having a metal film of each thickness, the decomposition of tartaric acid using a tartaric acid aqueous solution was performed. The rate was checked. Using the results, a graph of the relationship between the thickness of the photocatalytic film and the decomposition rate of tartaric acid as in FIG. 16 was created.

【0070】比較例4の結果から分解率の最大値N3を
求め、上記で得られたグラフ及び図13のグラフにおい
て分解率がN3となる時の光触媒膜の厚さを求めた。こ
れらの結果から、光触媒膜の厚さと金属膜の厚さとの関
係を図17に示す。
The maximum value N3 of the decomposition rate was obtained from the result of Comparative Example 4, and the thickness of the photocatalytic film when the decomposition rate was N3 was obtained in the graph obtained above and the graph of FIG. From these results, FIG. 17 shows the relationship between the thickness of the photocatalytic film and the thickness of the metal film.

【0071】[0071]

【発明の効果】以上、本発明によれば、光触媒の活性を
長時間に亘って高く維持し、水の浄化、脱色、脱臭等の
処理を効率よく進行させることができる。
As described above, according to the present invention, the activity of the photocatalyst can be maintained at a high level for a long time, and the processes such as water purification, decolorization, and deodorization can be efficiently advanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光触媒複合体の第1の実施形態を
示す概略構成図。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a photocatalyst composite according to the present invention.

【図2】本発明に係る浄水装置の第1の実施形態の構成
を示す斜視図。
FIG. 2 is a perspective view showing a configuration of a first embodiment of the water purification device according to the present invention.

【図3】本発明に係る光触媒複合体の第2の実施形態を
示す概略構成図。
FIG. 3 is a schematic configuration diagram showing a second embodiment of the photocatalyst composite according to the present invention.

【図4】本発明に係る浄水装置の第2の実施形態を示す
概略構成図。
FIG. 4 is a schematic configuration diagram showing a second embodiment of the water purification device according to the present invention.

【図5】浄水装置を用いた蟻酸の分解処理結果を示すグ
ラフで、線aは図4の浄水装置を用いた場合であり、線
a’は図4の浄水装置から金属部材を省いたものを用い
た場合、線bは図4の浄水装置から導電性膜及び金属部
材を省いたものを用いた場合を示す。
FIG. 5 is a graph showing the results of formic acid decomposition treatment using a water purifier, in which a line a is a case where the water purifier of FIG. 4 is used, and a line a ′ is a line in which a metal member is omitted from the water purifier of FIG. , The line b indicates the case where the water purification device of FIG. 4 from which the conductive film and the metal member are omitted is used.

【図6】本発明に係る光触媒複合体の第3の実施形態を
示す概略構成図。
FIG. 6 is a schematic configuration diagram showing a third embodiment of the photocatalyst complex according to the present invention.

【図7】本発明に係る光触媒複合体の第4の実施形態を
示す概略構成図。
FIG. 7 is a schematic configuration diagram showing a fourth embodiment of the photocatalyst composite according to the present invention.

【図8】本発明に係る光触媒複合体の第5の実施形態を
示す概略構成図で、(a)は層を形成する粒子を微視的
に表した図であり、(b)は層を概念的に表した図。
FIGS. 8A and 8B are schematic diagrams showing a fifth embodiment of the photocatalyst composite according to the present invention, wherein FIG. 8A is a diagram microscopically showing particles forming a layer, and FIG. Diagram conceptually represented.

【図9】本発明に係る光触媒複合体の第6の実施形態を
示す概略構成図。
FIG. 9 is a schematic configuration diagram showing a sixth embodiment of the photocatalyst composite according to the present invention.

【図10】分解反応に図9の光触媒複合体を用いた場合
の光触媒膜の厚さと分解率との関係を示すグラフ。
FIG. 10 is a graph showing the relationship between the photocatalytic film thickness and the decomposition rate when the photocatalyst composite of FIG. 9 is used for the decomposition reaction.

【図11】本発明に係る光触媒複合体の第7の実施形態
を用いた繊維集合体の概略構成図(a)及び光触媒複合
体のX−X線断面図(b)。
FIG. 11 is a schematic configuration diagram of a fiber aggregate using a photocatalyst composite according to a seventh embodiment of the present invention (a) and a cross-sectional view of the photocatalyst composite taken along line XX (b).

【図12】図9の光触媒複合体において光照射方向の変
更を示す説明図。
FIG. 12 is an explanatory view showing a change in a light irradiation direction in the photocatalyst composite of FIG. 9;

【図13】図12の光触媒複合体における光触媒膜の厚
さと分解率との関係を示すグラフ。
FIG. 13 is a graph showing the relationship between the thickness of the photocatalyst film and the decomposition rate in the photocatalyst composite of FIG.

【図14】図12の光触媒複合体において分解率がN2
値以上となる場合の光触媒膜の厚さと金属膜の厚さとの
関係を示すグラフ。
FIG. 14 shows that the photocatalytic composite of FIG.
4 is a graph showing the relationship between the thickness of the photocatalytic film and the thickness of the metal film when the value is equal to or more than the value.

【図15】図9の光触媒複合体において光照射方向の変
更を示す説明図。
FIG. 15 is an explanatory diagram showing a change in a light irradiation direction in the photocatalyst composite of FIG. 9;

【図16】図15の光触媒複合体における光触媒膜の厚
さと分解率との関係を示すグラフ。
FIG. 16 is a graph showing the relationship between the thickness of the photocatalyst film and the decomposition rate in the photocatalyst composite of FIG.

【図17】図15の光触媒複合体において分解率がN3
値以上となる場合の光触媒膜の厚さと金属膜の厚さとの
関係を示すグラフ。
FIG. 17 shows that the photocatalytic composite of FIG.
4 is a graph showing the relationship between the thickness of the photocatalytic film and the thickness of the metal film when the value is equal to or more than the value.

【符号の説明】[Explanation of symbols]

1、15、33、41、51、61、73 光触媒複合
体 3、21 導電性膜 5、23、79 光触媒膜 7、19、43、53、63、75 支持体 9、25、71 リード線 11、37 浄水装置 13、39 水槽 17 光源 27 給水管 29 排水管 31 排出管 35 金属部材 45、55、65 電子伝導性材料粒子 47、57、67 光触媒粒子 49、59、69 層
1, 15, 33, 41, 51, 61, 73 Photocatalyst complex 3, 21 Conductive film 5, 23, 79 Photocatalyst film 7, 19, 43, 53, 63, 75 Support 9, 25, 71 Lead wire 11 , 37 Water purifier 13, 39 Water tank 17 Light source 27 Water supply pipe 29 Drain pipe 31 Drain pipe 35 Metal member 45, 55, 65 Electron conductive material particles 47, 57, 67 Photocatalytic particles 49, 59, 69 layers

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 芳夫 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshio Nakayama 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu Plant

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光触媒を含有する光触媒膜と、該光触媒
膜に隣接して設けられ該光触媒が機能する波長の光に対
して透過性を有する導電性膜とを有することを特徴とす
る光触媒複合体。
1. A photocatalyst composite comprising: a photocatalyst film containing a photocatalyst; and a conductive film provided adjacent to the photocatalyst film and having a transmittance to light having a wavelength at which the photocatalyst functions. body.
【請求項2】 前記光触媒は酸化チタンであり、前記導
電性膜は酸化インジウムを含有し、更に該光触媒膜及び
該導電性膜間に介在する白金部材を有する請求項1記載
の光触媒複合体。
2. The photocatalyst composite according to claim 1, wherein the photocatalyst is titanium oxide, the conductive film contains indium oxide, and further includes a platinum member interposed between the photocatalyst film and the conductive film.
【請求項3】 更に、前記光触媒膜及び前記導電性膜を
支持するための光透過性支持体を有する請求項1又は2
に記載の光触媒複合体。
3. The method according to claim 1, further comprising a light-transmitting support for supporting the photocatalyst film and the conductive film.
3. The photocatalyst composite according to item 1.
【請求項4】 光触媒を有する光触媒複合体であって、
該光触媒が機能する波長の光に対して透過性を有する導
電性層を有し、該光触媒は該導電性層に接触して設けら
れることを特徴とする光触媒複合体。
4. A photocatalyst complex having a photocatalyst,
A photocatalyst composite, comprising: a conductive layer having transparency to light having a wavelength at which the photocatalyst functions, wherein the photocatalyst is provided in contact with the conductive layer.
【請求項5】 厚さが50〜500nmまでの光触媒膜
と、該光触媒膜に隣接して設けられる導電性膜とを有す
ることを特徴とする光触媒複合体。
5. A photocatalyst composite comprising: a photocatalyst film having a thickness of 50 to 500 nm; and a conductive film provided adjacent to the photocatalyst film.
【請求項6】 光触媒膜と該光触媒膜に隣接して設けら
れる導電性膜とを有する光触媒複合体であって、該光触
媒膜の厚さx及び該導電性膜の厚さyが下記式(1)及
至(3)を満たすような値であることを特徴とする光触
媒複合体: 75 ≦ x ≦ 400 (1) y ≦ x/6 + 27.5 (2) y ≦ −7x/50 + 96.5 (3)。
6. A photocatalyst composite comprising a photocatalyst film and a conductive film provided adjacent to the photocatalyst film, wherein the thickness x of the photocatalyst film and the thickness y of the conductive film are represented by the following formula: 1) A photocatalyst complex characterized by satisfying (3): 75 ≦ x ≦ 400 (1) y ≦ x / 6 + 27.5 (2) y ≦ −7x / 50 + 96 .5 (3).
【請求項7】 光触媒膜と該光触媒膜に隣接して設けら
れる導電性膜とを有する光触媒複合体であって、該光触
媒膜の厚さx及び該導電性膜の厚さyが下記式(4)、
(5)及び(6)を満たすような値であることを特徴と
する光触媒複合体: 50 ≦ x ≦ 500 (4) y ≦ 0.2x + 30 (5) y ≦ −0.1x + 90 (6)。
7. A photocatalyst composite comprising a photocatalyst film and a conductive film provided adjacent to the photocatalyst film, wherein the thickness x of the photocatalyst film and the thickness y of the conductive film are represented by the following formula ( 4),
Photocatalyst complex characterized by satisfying (5) and (6): 50 ≦ x ≦ 500 (4) y ≦ 0.2x + 30 (5) y ≦ −0.1x + 90 ( 6).
【請求項8】 水を収容する水槽と、該水槽に付設され
る請求項1〜7のいずれかに記載の光触媒複合体と、該
光触媒が機能する波長の光を該光触媒複合体の光触媒膜
に供給するための光源とを有することを特徴とする浄水
装置。
8. The photocatalyst composite according to claim 1, wherein the photocatalyst composite is provided in the water tank, and the photocatalyst film of the photocatalyst composite is provided with light having a wavelength at which the photocatalyst functions. And a light source for supplying water to the water purifier.
JP18668197A 1997-07-11 1997-07-11 Photocatalyst complex and water purifier Expired - Fee Related JP4174087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18668197A JP4174087B2 (en) 1997-07-11 1997-07-11 Photocatalyst complex and water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18668197A JP4174087B2 (en) 1997-07-11 1997-07-11 Photocatalyst complex and water purifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007060927A Division JP4799450B2 (en) 2007-03-09 2007-03-09 Photocatalyst complex and water purifier

Publications (2)

Publication Number Publication Date
JPH1128364A true JPH1128364A (en) 1999-02-02
JP4174087B2 JP4174087B2 (en) 2008-10-29

Family

ID=16192786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18668197A Expired - Fee Related JP4174087B2 (en) 1997-07-11 1997-07-11 Photocatalyst complex and water purifier

Country Status (1)

Country Link
JP (1) JP4174087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (en) * 2005-11-29 2007-06-14 Shinshu Univ Photocatalyst fiber and liquid cleaning apparatus using the same
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
CN104874298A (en) * 2015-05-25 2015-09-02 天津理工大学 Method for preparing nanometer ZnS/cellulose complex film with photocatalytic activity
JP2016144804A (en) * 2016-02-26 2016-08-12 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (en) * 2005-11-29 2007-06-14 Shinshu Univ Photocatalyst fiber and liquid cleaning apparatus using the same
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
CN104874298A (en) * 2015-05-25 2015-09-02 天津理工大学 Method for preparing nanometer ZnS/cellulose complex film with photocatalytic activity
JP2016144804A (en) * 2016-02-26 2016-08-12 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst

Also Published As

Publication number Publication date
JP4174087B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
Qin et al. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO
Sun et al. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light
Liu et al. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly
US4892712A (en) Fluid purification
US4966759A (en) Fluid purification
Zhuang et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
Andersson et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol
Anpo et al. The preparation and characterization of highly efficient titanium oxide–based photofunctional materials
US5032241A (en) Fluid purification
CN1422176A (en) Photolytic and photocatalytic reaction enhancement device
Zhang et al. Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide
Hadei et al. A comprehensive systematic review of photocatalytic degradation of pesticides using nano TiO 2
Rockafellow et al. Selenium-modified TiO2 and its impact on photocatalysis
EP1843401A1 (en) Surface emitting device
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
An et al. Decolourization and COD removal from reactive dye‐containing wastewater using sonophotocatalytic technology
JP6009254B2 (en) Photocatalyst, method for producing the same, and purification device
Sheydaei et al. Continuous flow photoelectrocatalysis/reverse osmosis hybrid reactor for degradation of a pesticide using nano N-TiO2/Ag/Ti electrode under visible light
Zamani et al. Spinning disc photoreactor based visible-light-driven Ag/Ag2O/TiO2 heterojunction photocatalyst film toward the degradation of amoxicillin
Tran et al. Novel of TiO2/Ag3PO4/bentonite composite photocatalyst: preparation, characterization, and application for degradation of methylene blue in aqueous solution
Yu et al. Removal of ammonia nitrogen in aquaculture wastewater by composite photocatalyst TiO2/carbon fibre
US20230234032A1 (en) Filter medium for air and water purification and disinfection
CN107469822A (en) Efficent electronic transfer Cu modifications C/TiO2The preparation method of photo catalytic reduction material
JPH1128364A (en) Photocatalyst composite body and water purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees