JP4174087B2 - Photocatalyst complex and water purifier - Google Patents

Photocatalyst complex and water purifier Download PDF

Info

Publication number
JP4174087B2
JP4174087B2 JP18668197A JP18668197A JP4174087B2 JP 4174087 B2 JP4174087 B2 JP 4174087B2 JP 18668197 A JP18668197 A JP 18668197A JP 18668197 A JP18668197 A JP 18668197A JP 4174087 B2 JP4174087 B2 JP 4174087B2
Authority
JP
Japan
Prior art keywords
photocatalyst
film
light
complex
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18668197A
Other languages
Japanese (ja)
Other versions
JPH1128364A (en
Inventor
直也 小川
孝典 川地
幸夫 大橋
芳夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18668197A priority Critical patent/JP4174087B2/en
Publication of JPH1128364A publication Critical patent/JPH1128364A/en
Application granted granted Critical
Publication of JP4174087B2 publication Critical patent/JP4174087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水の浄化処理や脱色、脱臭等に利用される光触媒を有効に作用させる光触媒複合体及び該光触媒複合体を用いた浄水装置に関するものである。
【0002】
【従来の技術】
近年、無機化合物を光触媒として用いて光エネルギにより反応を進行させて水の浄化処理を行うことが試みられている。この浄化処理においては、支持体上に光触媒の膜を形成して浄化処理を施す水に投入し、光が照射される。光照射によって光触媒上に生じた正孔及び電子の対のうちの正孔によって水中の有機物の分解反応が進行する。
【0003】
しかし、このような構成においては、余剰の電子が光触媒上に残存して分解反応の進行を抑制する。このため、光触媒は効率よく作用しない。
【0004】
これを改善するものとして、支持体と光触媒の膜との間に金属膜を形成したものが提案されている。
【0005】
【発明が解決しようとする課題】
ところが、浄化処理を施す水の濁度が高い場合、照射する光が水中で減衰して光触媒に到達する光の強度が不足することにより十分に反応が進行しないという問題がある。又、浄化処理を長時間行った際に光触媒膜の表面に汚染物が蓄積すると、光が遮られるために分解反応の進行が遅延し、汚染物による光触媒の被覆が加速されて光触媒が機能しなくなる。
【0006】
本発明は上述のような問題点に鑑みてなされたもので、光触媒の機能を十分に活かし、長時間効率よく触媒反応を進行させることができる光触媒複合体を提供することを目的とする。
【0007】
又、光触媒を用いて効率よく水の浄化処理を行うことができる浄水装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の光触媒複合体は、光触媒を含有する光触媒膜と、該光触媒膜に隣接して設けられ該光触媒が機能する波長の光に対して透過性を有する導電性膜と、該光触媒膜及び該導電性膜間に分散して介在する金属部材とを有することを特徴とする。
【0009】
上記光触媒は酸化チタンであり、前記導電性膜は酸化インジウムを含有し、前記金属部材として、球状、ウィスカー状又は棒状の形状であり、白金、金、銀、銅、パラジウム、ルテニウム、ロジウム、ニッケル、マンガン及びコバルトからなる群より選択される金属の粒状物を有する。
【0010】
上記光触媒複合体は、更に、上記光触媒膜及び上記導電性膜を支持するための光透過性支持体を有する。
【0015】
発明の浄水装置は、水を収容する水槽と、該水槽に付設される上記の光触媒複合体と、該光触媒が機能する波長の光を該光触媒複合体の光触媒膜に供給するための光源とを有する。
【0016】
【発明の実施の形態】
金属膜上に光触媒の層を設けた場合、金属膜が光を遮弊することによって、光触媒への光の供給は一方向側からのみに制限される。このことは光触媒を用いた処理装置を構成する上で極めて不利となる。又、光触媒の反応効率は光触媒に到達する光量に左右されるから、金属膜上に設けられた光触媒膜が厚いと、膜の表面の光触媒のみが機能し内部の光触媒が全く機能しないということも生じる。従って、光触媒の効率的な使用においても問題がある。
【0017】
上述のような問題は、光透過性と電子伝導性とを兼備する膜を用いることによって解決される。詳細には、図1に示すように、本発明の光触媒複合体1は、光透過性を有する導電性膜3とこの上に設けられる光触媒膜5とを有し、これらは機械的強度を得るために透明の支持体7上に形成されている。導電性膜3にはリード線9が接続されており、リード線9はアースまたは外部回路(図示せず)に接続される。導電性膜3及び支持体7の光透過性によって、光触媒膜5には、図中矢印Aで示される光触媒膜5側からの方向だけでなく矢印Bで示される導電性膜3側からの方向にも光照射が可能である。光照射によって励起された光触媒から生じた正孔は、汚染物の分解反応等のような処理反応の進行に用いられる。従って、正孔を用いて処理を行う対象(例えば浄化する水等)を光触媒膜5と接触させながら光を照射して光触媒を励起させることによって処理反応が進行し、一方、励起された光触媒から生じた電子は導電性膜3へ移動し、リード線9を介して複合体1外部へ除去される。この結果、余剰電子が光触媒膜5に残存することによる反応進行阻害は起こらない。又、濁度の高い水等の浄化処理にも矢印A及びBの方向からの光照射により汚染物の分解反応を促進することができる。
【0018】
図1の構成を有する光触媒複合体1を用いた浄水装置の一例を図2に示す。この浄水装置11は、処理を施す水を収容する水槽13と、水槽13内に設置される光触媒複合体15と、光触媒を励起させるための光源17とを備える。光触媒複合体15は、光源17を囲むように円筒形に形成された透過性をもつ支持体19と、支持体19の外周に積層された光透過性の導電性膜21と、導電性膜21の外周に積層された光触媒膜23とを有し、導電性膜21の上端にリード線25が接続されている。処理が施される水は、水槽13に設けられた給水管27から水槽13に供給され、処理後の水は排水管29から排出される。水槽13の底部には沈澱物などを水槽13から除去するための排出管31が接続されている。
【0019】
光源17を用いて光触媒複合体15の内側から光を照射すると、光触媒の励起により、光触媒複合体15周辺において、水槽13に供給された水中に含まれる汚染物の分解及び微生物の殺菌が進行する。
【0020】
図2の浄水装置は、必要に応じて様々に変形することができる。例えば、光触媒複合体15を光源17上に載設してもよく、光源の外周部分を支持体として光源上に直接光透過性の導電性膜及び光触媒膜を積層してもよい。又、水槽13を透明な材料で製作し、水槽13の外部にも光源を設けるようにしてもよい。あるいは、透明な材料で製作した水槽13の内面上に光透過性の導電性膜及び光触媒膜を積層して水槽の外部から光照射を行うようにしてもよい。
【0021】
上述のような構成の光触媒複合体は以下のような材料を用いて製作することができる。まず、光触媒膜は、光触媒性を有する物質の層であればよく、例えば、酸化チタン、酸化錫、酸化ジルコニウム、酸化タングステン、酸化鉄、酸化亜鉛、チタン酸ストロンチウム等の酸化物が挙げられる。特に酸化チタンは、紫外線の照射によりフォトンのエネルギを吸収して強い酸化力を発揮する優れた光触媒である。この様な材料による光触媒膜の形成は、気相法及び液相法のいずれでも行うことができ、気相法としては例えば真空蒸着法、CVD法等が挙げられ、液相法としては例えばディップ法、イオンコーティング法、液相析出法、ゾルゲル法等が挙げられる。酸化チタンにクロムイオンを打ち込んで太陽光を利用可能な光触媒としたものも利用できる。
【0022】
光透過性の導電性膜は、光触媒を励起させる波長の光の透過を著しく妨げることがなく導電性を有する物質の膜であればよく、酸化チタンのような紫外線域において触媒能を有する光触媒を用いるときには紫外線透過性の導電性材料を成膜する。光透過性の導電性材料として、例えば、ITO(酸化インジウム及び酸化錫の混合物)やATO(酸化アンチモン及び酸化錫の混合物)等を挙げることができる。特にITOは透明性が高く電子伝導性も良好である。このような材料からなる膜は、真空蒸着法等の成膜方法を用いて支持体上に積層することによって得られる。あるいは、この様な材料からなる粉末をバインダを用いて支持体上に固着することもできる。バインダには、焼成によりガラスのような透明材料となるものが用いられる。硫酸バリウムのような光透過性の材料にITO又はATOを被覆したものを導電性膜として用いることもできる。
【0023】
支持体は、光触媒を励起させる波長の光の透過を著しく妨げることのない材料であればよい。例えば、酸化珪素、酸化ホウ素、酸化ナトリウム、酸化カリウム、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム等を構成成分とするものが挙げられる。但し、光触媒膜を形成する工程において焼成処理を必要とし、支持体も同時に加熱される場合には、焼成処理に耐え得る耐熱性を有する材料でなければならない。光源が低圧水銀灯の場合には、支持体の材料は石英ガラスを用いることが望ましく、光源が太陽光又はブラックライトの場合には硬質ガラス等を好適に使用することができる。
【0024】
図1の光触媒複合体1の光触媒膜5から導電性膜3への余剰電子の受渡しは、両膜に接するように金属材を配置することによって促進される。詳細には、図3に示す光触媒複合体33のように、導電性膜3及び光触媒膜5の間に両膜と接するように金属部材35が分散して設けられる。この金属部材35は、導電性膜3及び光触媒膜5間の導電性を向上させて電子を分離するためのものである。少なくとも金属部材35間を互いに連結して電子伝導経路を形成する必要はない。金属部材35の形状については、例えば球状やウィスカー状、棒状を用いることができる。金属部材35は、両膜との接触面積が大きく且つ光透過を妨害しないものが好ましく、このような形態として、例えば、両膜の接合界面に垂直に延びるように配置されたウィスカー状のもの等が挙げられる。金属部材として、白金、金、銀、銅、パラジウム、ルテニウム、ロジウム、ニッケル、マンガン、コバルト等の粒状物が挙げられる。中でも白金は電子分離機能に優れている。
【0025】
図3の光触媒複合体33を利用した浄水装置の一例を図4に示す。この浄水装置37は、光透過性の材料で形成した水槽39の底部に光触媒複合体33を設置したもので、水槽39の上方または下方から光を照射することによって、光は光触媒複合体33の支持体7及び導電性膜3を介して光触媒膜5に達し、光触媒複合体33上方の水に含まれる汚染物の分解反応が進行する。光触媒膜5中に生じた電子は金属部材35を通じて導電性膜3に移動する。導電性膜3は、リード線(図示省略)を介して浄水装置37外でアース又は回路に接続される。
【0026】
図4のような浄水装置37を用いて例えば蟻酸水溶液を処理すると、蟻酸の濃度は図5の線aで示されるように照射時間と共に減少する。導電性膜3を構成しない光触媒複合体を用いた場合には、余剰電子が光触媒膜5及び金属部材35から外部へ移動できないため、分解反応の進行が鈍化し、破線bで示すような結果を生じる(詳細については後述の実施例1及び比較例1を参照)。
【0027】
光触媒複合体における光触媒膜及び導電性膜の境界は厳格なものである必要はない。換言すれば、光触媒及び導電性材料間において積層方向に連続的に濃度が変化するような濃度勾配がある層であってもよい。例えば、図6の光触媒複合体41のように、光透過性の支持体43近辺において光透過性の導電性材料粒子45の量が多く、支持体43から離れるに従って光触媒粒子47の量が増加するような濃度勾配のある層49が支持体43上に形成されたものであってもよい。照射される光による反応が層49の表面において光触媒粒子47によって進行し、余剰電子は光触媒粒子47から導電性材料粒子45に受け渡され、層49下部の導電性材料粒子45を移動してリード線(図示省略)から層49外に除去される。従って、このような濃度勾配によって、層49は、実質的に前述の光触媒膜及び導電性膜と同様に作用する。
【0028】
更に変形すれば、導電性材料粒子間の電子の受渡しが可能な層である限り、光触媒粒子と導電性材料粒子が任意に混合された層であってもよい。導電性材料粒子が光透過性であることによって、光触媒粒子は支持体の両側からの照射光を受光できる。
【0029】
図7は、導電性材料粒子がウィスカー状である一例を示す。この光触媒複合体51は、光透過性の支持体53上にウィスカー状の透明の導電性材料粒子55及び光触媒粒子57を含んだ層59が積層されている。ウィスカー状の導電性材料粒子を用いた場合、粒子間の伝導性が得られるように層を形成したときの層の光透過性の低下が球状粒子を用いる場合よりも少なくて済む。従って、光触媒粒子57を光励起し易く、光触媒粒子57を多く積層することができる。ウィスカー状粒子に代えて、光透過性の導電性材料を網状の長繊維に形成し、これに光触媒を積層してもよい。
【0030】
図8は、導電性材料を通る電子の抵抗を減少させる応用の一例を示す。図において(a)は層を形成する粒子を微視的に表した図であり、(b)は層を概念的に表した図である。
【0031】
この実施形態において、光触媒複合体61の支持体63上の導電性材料粒子65及び光触媒粒子67を含有する層69は、導電性材料粒子65を多く含む部分65’の厚さが、接続されるリード線71から離れるに従って減少し、光触媒粒子67を多く含む部分67’が支持体63に対して傾斜している。このように導電性材料と光触媒との実質的境界(図(b)中に点線で表示)が傾斜し導電性膜の厚さが異なることによって、光触媒からリード線への電子の移動が円滑になり、抵抗が減少する。
【0032】
上記に示す実施形態を必要に応じて適宜組み合わせることによって、光触媒の機能を相乗的に向上させることができる。図3に示すような金属部材を図8の層69内に埋設してもよい。
【0033】
導電性膜上に設けられた光触媒膜に光を照射したときに、例えば光触媒膜が極端に厚い場合には、照射光が光触媒膜の奥深くまで到達せず光触媒膜の表面のみしか作用しないことが考えられる。このような場合、光触媒膜の表面近くで生じる電子は厚い膜を横断して導電性膜に達しなければ導電性膜の電子除去能は有効に作用しない。つまり、光触媒膜の厚さによって電子の伝達抵抗の問題が生じることが考えられる。又、光触媒膜全体に光が作用していても、光励起によって反応が進行する部分と余剰電子が導電性膜に受け渡される部分との距離が大きいことは同様に電子の伝達抵抗の問題を生じることになる。従って、光触媒膜の厚さは、光触媒複合体全体としての触媒能を左右する要素となることが予想される。以下に、光触媒膜の厚さについて説明する。
【0034】
図9に示すような光触媒複合体73について考える。この光触媒複合体73は、透明の支持体75上に金属膜77及び紫外線における触媒機能を有する光触媒膜79を形成したものである。金属膜77は、下方からの紫外線を完全に遮断するに十分な厚さを有し、リード線(図示省略)によりアース接続されている。この光触媒複合体73を酒石酸水溶液に投入して、酒石酸水溶液を矢印C方向にフローさせながら紫外線を矢印Aの方向から一定時間照射した後に酒石酸水溶液の濃度を測定し、酒石酸の分解率を算出する(詳細については後述の参考例1及び比較例2を参照)。この操作を光触媒膜79の厚さの異なるものについて繰り返し行い、光触媒膜の厚さと分解率との関係を求めると、図10のグラフにおける線cのようになる。同様の操作を、金属膜77のない光触媒複合体について行った場合は、図10のグラフの線dのようになる。
【0035】
金属膜がない場合(線d)、光触媒膜の厚さの増加に従って分解率は増大するが、極大値(N1)に達した約500nm以上では殆ど増加しない。これに対し、金属膜を有する場合(線c)、光触媒膜の厚さの増加に従って分解率は急激に増加するが、200nm付近を越えると穏やかに減少し、500nm付近でN1に漸近する。金属膜がない場合(線d)との差は、金属膜によって余剰電子が除去され残存電子による反応の進行阻害が防止される効果によるものである。図10のグラフから理解されるように、一方向からの光照射について、光触媒膜に接設した導電性膜での余剰電子除去による効果が得られるのは、光触媒膜の厚さが約500nm以下の時に限られることがわかる。この時、触媒膜のみによる分解率の極大値N1を越えるのは、光触媒膜の厚さが約50〜500nmの時である。
【0036】
図10のような相関関係は、例えば、図11の(a)(b)に示すような複数の光触媒複合体からなる繊維集合体81を用いた場合に近似的に適用することができると考えられる。繊維集合体81は複数の光触媒複合体83からなり、各光触媒複合体83は金属製のコア繊維85とこれを被覆する光触媒膜87とを有する。周囲から照射された光によって光触媒膜87に生じた電子は、コア繊維85を通じて末端へ到る。コア繊維85の末端はリード線等によりアース又は回路に接続される。コア繊維85が光透過性の導電性材料によるものであっても、触媒膜の裏面(内側)からの透過光による効果は小さいと予想されるので、近似的に上述のような相関関係を適用できると考えられる。
【0037】
図9に示す光触媒複合体73に、図12のように矢印Bの方向つまり支持体75側から紫外線を照射した場合について考える。但し、この場合、金属膜77は紫外線がある程度透過可能な厚さであるものとする。図2のような条件で光触媒複合体73を用いて前述と同様の酒石酸水溶液の処理を行い、酒石酸の分解率を算出すると、図13のグラフにおける線eのようになる。同様の操作を金属膜77のない光触媒複合体について行った場合は、図13のグラフの線fのようになる(詳細については後述の参考例2−1及び比較例3を参照)。
【0038】
図12及び13のような条件において、金属膜77がない場合(線f)、酒石酸の分解率は光触媒膜の厚さの増加と共に増大するが、約250nm付近において極大値(N2)に達した後減少し、光触媒膜の厚さが500nmになると分解能力は殆どなくなる。この理由としては、光触媒膜79が厚いために、分解反応が進行する光触媒膜の表面(支持体75と反対の側)まで紫外線が到達しないこと、分解反応が進行する光触媒の表面と紫外線が到達する部分との距離が長いために、光励起によって生じる正孔及び電子の移動の際の抵抗が大きいために金属膜に電子を放出し難いこと等が挙げられる。金属膜7がある場合(線e)についても、分解率は光触媒膜の厚さが約200nm付近で最大となり、約500nm付近では分解能力は殆どなくなる。光触媒膜が約500nm以下の薄いときには残存電子の除去による分解率の向上が見られるが、光触媒膜が厚くなると残存電子の除去による効果が発揮されなくなる。この結果、金属膜を有する場合において分解率がN2を越えるのは、図13においては約75〜400nmまでの範囲内の時となる。
【0039】
図12の光触媒複合体の金属膜の厚さを変化させて上記と同様の操作を繰り返し、分解率がN2となる時の光触媒膜の厚さ(x(nm))及び金属膜の厚さ(y(nm))を求める(詳細については後述の参考例2−2を参照)と、図14のプロットのようになり、分解率がN2以上になるのはこのプロットで囲まれた範囲になる。この範囲を近似的に表すと、以下の式(1)及至(3)を満たすx及びy(図中、斜線で示す)とすることができる。
【0040】
【数1】
75 ≦ x ≦ 400 (1)
y ≦ x/6 + 27.5 (2)
y ≦ −7x/50 + 96.5 (3)
金属膜の厚さyが約40nm以下で、且つ光触媒膜の厚さxが約75〜400nmまでの範囲では、明らかに分解率がN2以上であることが理解される。金属膜の厚さが40nmを越えると光の透過率が低下し、電子の移動による効果も向上しないため、N2以上の分解率を示す範囲は限られてくる。
【0041】
光触媒複合体73について、図15に示すように矢印A及びBの両方向から紫外線を照射した場合について考える。この場合についても、金属膜77は紫外線が透過可能な厚さを有するものとする。前述と同様に酒石酸水溶液の処理を行い、酒石酸の分解率を算出すると、図16のグラフにおける線gのようになる。同様の操作を金属膜77のない光触媒複合体について行った場合は、図16のグラフの線hのようになる(詳細については後述の参考例3−1及び比較例4を参照)。
【0042】
図15及び16のような条件において、金属膜77がない場合(線h)、酒石酸の分解率は、触媒膜の厚さの増加に従って増大し、増加の勾配は図10の場合より大きいが、分解率が極大値(N3)に達した後は増加しない。金属膜77がある場合(線g)、分解率は、光触媒膜の厚さの増加に従って著しく増加し、約200nm付近を越えると緩やかに減少して500nm近辺でN3に漸近する。分解率がN3を越えるのは、図16においては約50〜500nmまでの範囲内となる。これらの結果は、一方向からの光照射による図10及び図13の各々の結果を考え合わせて予想されるものと概ね合致する。
【0043】
前述と同様に図15の光触媒複合体の金属膜の厚さを変化させて上記と同様の操作を繰り返し、分解率がN3となる時の光触媒膜の厚さ(x(nm))及び金属膜の厚さ(y(nm))を求める(詳細については後述の参考例3−2を参照)と、図17のプロットのようになり、分解率がN3以上になるのはこのプロットで囲まれた範囲になる。この範囲を近似的に表すと、以下の式(4)及至(6)を満たすx及びy(図中、斜線で示す)とすることができる。
【0044】
【数2】
50 ≦ x ≦ 500 (4)
y ≦ 0.2x + 30 (5)
y ≦ −0.1x + 90 (6)
金属膜の厚さyが約40nm以下で、且つ光触媒膜の厚さxが約50〜500nmの範囲では、明らかに分解率がN3以上であることが理解される。金属膜の厚さが50nmを越えると透過光が不足し、電子の移動による効果も向上しないため、N3以上の分解率を示す範囲は限られてくる。
【0045】
上述の光触媒膜及び金属膜の厚さに関する数値は、使用する材料を変えても同様の傾向を示し、若干の補正を加えることによって好適に適用することができる。又、前述の金属膜以外の光透過性を有する導電性膜(例えばITO膜)を用いた光触媒複合体については、光透過性が高いため、導電性膜の厚みの影響を受けにくいので、図12〜17から容易に考えられるように、光触媒膜の厚さを適切な範囲に設定するのが好ましい。約50〜500nmまでの範囲内、より好ましくは約75〜400nmまでの範囲内に設定する。
【0046】
上記で説明した光触媒複合体は、前述したような浄水処理だけでなく、光触媒を用いて行う各種反応処理に利用することができ、図2のような構成を適宜変形して光反応による合成・分解、及びこれらに基づいた脱臭、脱色、殺菌、精製処理等を実施することができる。
【0047】
【実施例】
以下、実施例を参照して本発明を更に詳細に説明する。
【0048】
(実施例1)
寸法が100mm×100mm×2mmの石英板の片面に、真空蒸着法によって厚さ100nmのITO(酸化錫含有量5モル%)膜を形成し、ITO膜の末端にリード線を接続した。
【0049】
次いで、ITO膜上をメッシュでマスキングし白金を蒸着させ、メッシュをはずすことによって、粒径10〜100μmまでの白金粒体約10万個をITO膜上に形成した。
【0050】
この上に、二酸化チタンゾル(石原産業社製、ST−K01)を100倍に希釈したものを10ml塗布して室温で乾燥させ、更に200℃の空気中で1時間焼成して図3に示すような光触媒複合体を得た。光触媒複合体の二酸化チタン層の厚さは100nmであった。
【0051】
上記光触媒複合体を硬質ガラス製の水槽に取り付けて図4のような浄水装置を作製した。この水槽に濃度が100ppm の蟻酸水溶液1000mlを投入し、水槽の下方からブラックライトを用いて光を照射しながら蟻酸水溶液の蟻酸濃度を測定した。測定結果から、光照射時間と蟻酸水溶液の蟻酸濃度との関係を調べた。これを図5のグラフに線aで示す。
【0052】
他方、白金粒体を形成しなかったこと以外は上記と同様の操作を繰り返して光触媒複合体を形成して図1のような浄水装置を作製し、同様に光照射による蟻酸水溶液の蟻酸濃度の変化を測定した。この結果を図5のグラフに一点鎖線a’で示す。
【0053】
図5から理解されるように、図1のような光触媒膜5においては光励起により光触媒反応の進行の妨げとなる余剰電子が生成し、この余剰電子を光触媒複合体の外部へ除去することを目的として導電性膜3が設けられている。ここで、余剰電子は光触媒膜5から導電性膜3へ両膜の界面を介して受け渡される。この受渡し、換言すれば光触媒膜5からの電子分離を促進させれば、余剰電子はより速やかに導電性膜3へ移動できるようになるため、結果として光触媒複合体の触媒性能が向上する。
【0054】
(比較例1)
ITO膜及び白金粒体を形成しなかったこと以外は実施例1と同様の操作を繰り返して光触媒複合体を形成して浄水装置を作製し、同様に光照射による蟻酸水溶液の蟻酸濃度の変化を測定した。この結果を図5のグラフに破線bで示す。
【0055】
参考例1
寸法が100mm×100mm×2mmの硬質ガラス製の透明の支持体上に真空蒸着法によって金属膜として厚さ40nmの金膜及び触媒膜として厚さ25nmの酸化チタン膜を形成して図9のような光触媒複合体を得た。この光触媒複合体を濃度が25ppm の酒石酸水溶液1000mlに投入して、酒石酸水溶液が矢印C方向に流れるように攪拌しながらUVランプ(消費電力6W)を用いて紫外線を矢印A方向から3時間照射した後に酒石酸水溶液の濃度を測定し、酒石酸の分解率(%)[=100×(25ppm −照射後酒石酸濃度)/25ppm ]を算出した。
【0056】
光触媒膜の厚さを20〜550nmまでの範囲で変更した点以外は上記と同様の操作を繰り返して光触媒複合体を作製し、酒石酸水溶液を用いて酒石酸の分解率を調べた。
【0057】
上述の操作の結果から、光触媒膜の厚さと酒石酸の分解率との関係を図10のグラフに線cで示す。
【0058】
(比較例2)
金属膜を形成しなかったこと以外は参考例1と同様の操作を繰り返して光触媒複合体を形成し、酒石酸の分解率を調べた。得られた結果から、光触媒膜の厚さと酒石酸の分解率との関係を図10のグラフに線dで示す。
【0059】
参考例2−1
寸法が100mm×100mm×2mmの硬質ガラス製の透明の支持体上に真空蒸着法によって金属膜として厚さ5nmの金膜及び触媒膜として厚さ25nmの酸化チタン膜を形成して図12のような光触媒複合体を得た。この光触媒複合体を濃度が25ppm の酒石酸水溶液1000mlに投入して、酒石酸水溶液が矢印C方向に流れるように攪拌しながらUVランプ(消費電力6W)を用いて紫外線を矢印B方向から3時間照射した後に酒石酸水溶液の濃度を測定し、酒石酸の分解率(%)[=(25ppm −照射後酒石酸濃度)/25ppm ]を算出した。
【0060】
光触媒膜の厚さを20〜550nmまでの範囲で変更した点以外は上記と同様の操作を繰り返して光触媒複合体を作製し、酒石酸水溶液を用いて酒石酸の分解率を調べた。
【0061】
上述の操作の結果から、光触媒膜の厚さと酒石酸の分解率との関係を図13のグラフに線eで示す。
【0062】
(比較例3)
金属膜を形成しなかったこと以外は参考例2−1と同様の操作を繰り返して光触媒複合体を形成し、酒石酸の分解率を調べた。得られた結果から、光触媒膜の厚さと酒石酸の分解率との関係を図13のグラフに線fで示す。
【0063】
参考例2−2
金属膜の厚さを10〜70nmまでの範囲で変更した点以外は参考例2−1と同様の操作を繰り返して光触媒複合体を作製し、各厚さの金属膜を有する光触媒複合体について、酒石酸水溶液を用いて酒石酸の分解率を調べた。結果を用いて、図13と同様の光触媒膜の厚さと酒石酸の分解率との関係のグラフを作成した。
【0064】
比較例3の結果から分解率の最大値N2を求め、上記で得られたグラフ及び図13のグラフにおいて分解率がN2となる時の光触媒膜の厚さを求めた。これらの結果から、光触媒膜の厚さと金属膜の厚さとの関係を図14に示す。
【0065】
参考例3−1
寸法が100mm×100mm×2mmの硬質ガラス製の透明の支持体上に真空蒸着法によって金属膜として厚さ5nmの金膜及び触媒膜として厚さ25nmの酸化チタン膜を形成して図15のような光触媒複合体を得た。この光触媒複合体を濃度が25ppm の酒石酸水溶液1000mlに投入して、酒石酸水溶液が矢印C方向に流れるように攪拌しながらUVランプ(消費電力6W)を用いて紫外線を矢印A及びBの両方向から3時間照射した後に酒石酸水溶液の濃度を測定し、酒石酸の分解率(%)[=(25ppm −照射後酒石酸濃度)/25ppm ]を算出した。
【0066】
光触媒膜の厚さを20〜550nmまでの範囲で変更した点以外は上記と同様の操作を繰り返して光触媒複合体を作製し、酒石酸水溶液を用いて酒石酸の分解率を調べた。
【0067】
上述の操作の結果から、光触媒膜の厚さと酒石酸の分解率との関係を図16のグラフに線gで示す。
【0068】
(比較例4)
金属膜を形成しなかったこと以外は参考例3−1と同様の操作を繰り返して光触媒複合体を形成し、酒石酸の分解率を調べた。得られた結果から、光触媒膜の厚さと酒石酸の分解率との関係を図16のグラフに線hで示す。
【0069】
参考例3−2
金属膜の厚さを10〜70nmまでの範囲で変更した点以外は参考例3−1と同様の操作を繰り返して光触媒複合体を作製し、各厚さの金属膜を有する光触媒複合体について、酒石酸水溶液を用いて酒石酸の分解率を調べた。結果を用いて、図16と同様の光触媒膜の厚さと酒石酸の分解率との関係のグラフを作成した。
【0070】
比較例4の結果から分解率の最大値N3を求め、上記で得られたグラフ及び図13のグラフにおいて分解率がN3となる時の光触媒膜の厚さを求めた。これらの結果から、光触媒膜の厚さと金属膜の厚さとの関係を図17に示す。
【0071】
【発明の効果】
以上、本発明によれば、光触媒の活性を長時間に亘って高く維持し、水の浄化、脱色、脱臭等の処理を効率よく進行させることができる。
【図面の簡単な説明】
【図1】 光触媒複合体を示す概略構成図。
【図2】 浄水装置の構成を示す斜視図。
【図3】 本発明に係る光触媒複合体の実施形態を示す概略構成図。
【図4】 本発明に係る浄水装置の実施形態を示す概略構成図。
【図5】 浄水装置を用いた蟻酸の分解処理結果を示すグラフで、線aは図4の浄水装置を用いた場合であり、線a’は図4の浄水装置から金属部材を省いたものを用いた場合、線bは図4の浄水装置から導電性膜及び金属部材を省いたものを用いた場合を示す。
【図6】 光触媒複合体における変形例を示す概略構成図。
【図7】 光触媒複合体における他の変形例を示す概略構成図。
【図8】 光触媒複合体における応用例を示す概略構成図で、(a)は層を形成する粒子を微視的に表した図であり、(b)は層を概念的に表した図。
【図9】 参考例1で用いる光触媒複合体を示す概略構成図。
【図10】 分解反応に図9の光触媒複合体を用いた場合の光触媒膜の厚さと分解率との関係を示すグラフ。
【図11】 光触媒複合体を用いた繊維集合体の概略構成図(a)及び光触媒複合体のX−X線断面図(b)。
【図12】 図9の光触媒複合体において光照射方向の変更を示す説明図。
【図13】 図12の光触媒複合体における光触媒膜の厚さと分解率との関係を示すグラフ。
【図14】 図12の光触媒複合体において分解率がN2値以上となる場合の光触媒膜の厚さと金属膜の厚さとの関係を示すグラフ。
【図15】 図9の光触媒複合体において光照射方向の変更を示す説明図。
【図16】 図15の光触媒複合体における光触媒膜の厚さと分解率との関係を示すグラフ。
【図17】 図15の光触媒複合体において分解率がN3値以上となる場合の光触媒膜の厚さと金属膜の厚さとの関係を示すグラフ。
【符合の説明】
1、15、33、41、51、61、73 光触媒複合体
3、21 導電性膜
5、23、79 光触媒膜
7、19、43、53、63、75 支持体
9、25、71 リード線
11、37 浄水装置
13、39 水槽
17 光源
27 給水管
29 排水管
31 排出管
35 金属部材
45、55、65 電子伝導性材料粒子
47、57、67 光触媒粒子
49、59、69 層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst complex that effectively acts a photocatalyst used for water purification treatment, decolorization, deodorization, and the like, and a water purifier using the photocatalyst complex.
[0002]
[Prior art]
In recent years, attempts have been made to purify water by using an inorganic compound as a photocatalyst to promote a reaction by light energy. In this purification treatment, a photocatalyst film is formed on the support, and the film is put into water to be purified and irradiated with light. The decomposition reaction of the organic substance in water proceeds by the hole in the pair of holes and electrons generated on the photocatalyst by light irradiation.
[0003]
However, in such a configuration, surplus electrons remain on the photocatalyst and suppress the progress of the decomposition reaction. For this reason, a photocatalyst does not act efficiently.
[0004]
To improve this, a metal film formed between a support and a photocatalyst film has been proposed.
[0005]
[Problems to be solved by the invention]
However, when the turbidity of the water subjected to the purification treatment is high, there is a problem that the reaction does not proceed sufficiently because the light to be irradiated is attenuated in water and the intensity of the light reaching the photocatalyst is insufficient. Also, if contaminants accumulate on the surface of the photocatalyst film when the purification treatment is performed for a long time, the progress of the decomposition reaction is delayed because the light is blocked, and the photocatalyst functions by accelerating the coating of the photocatalyst by the contaminants. Disappear.
[0006]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a photocatalyst complex that can fully utilize the function of a photocatalyst and allow a catalytic reaction to proceed efficiently for a long time.
[0007]
Moreover, it aims at providing the water purifier which can perform the purification process of water efficiently using a photocatalyst.
[0008]
[Means for Solving the Problems]
The photocatalyst complex of the present invention includes a photocatalyst film containing a photocatalyst, a conductive film that is provided adjacent to the photocatalyst film and is transparent to light having a wavelength at which the photocatalyst functions. A metal member dispersed and interposed between the photocatalyst film and the conductive film; It is characterized by having.
[0009]
The photocatalyst is titanium oxide, the conductive film contains indium oxide, and the metal member has a spherical shape, a whisker shape, or a rod shape. Shape and , Platinum, gold, silver, copper, palladium, ruthenium, rhodium, nickel, manganese and cobalt.
[0010]
The photocatalyst complex further includes a light transmissive support for supporting the photocatalyst film and the conductive film.
[0015]
Book The water purifier of the invention is attached to a water tank for containing water and the water tank. the above And a light source for supplying light having a wavelength at which the photocatalyst functions to the photocatalyst film of the photocatalyst complex.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
When the photocatalyst layer is provided on the metal film, the supply of light to the photocatalyst is limited only from one direction side because the metal film blocks light. This is extremely disadvantageous in constructing a processing apparatus using a photocatalyst. Moreover, since the reaction efficiency of the photocatalyst depends on the amount of light reaching the photocatalyst, if the photocatalyst film provided on the metal film is thick, only the photocatalyst on the surface of the film functions and the internal photocatalyst does not function at all. Arise. Therefore, there is a problem in the efficient use of the photocatalyst.
[0017]
The problems as described above are solved by using a film having both light transmittance and electron conductivity. Specifically, as shown in FIG. 1, the photocatalyst complex 1 of the present invention has a conductive film 3 having light permeability and a photocatalyst film 5 provided thereon, which obtain mechanical strength. Therefore, it is formed on a transparent support 7. A lead wire 9 is connected to the conductive film 3, and the lead wire 9 is connected to ground or an external circuit (not shown). Depending on the light transmittance of the conductive film 3 and the support 7, the photocatalyst film 5 has not only the direction from the photocatalyst film 5 side indicated by the arrow A in the figure but also the direction from the conductive film 3 side indicated by the arrow B. Also, light irradiation is possible. Holes generated from the photocatalyst excited by light irradiation are used for the progress of a treatment reaction such as a decomposition reaction of contaminants. Therefore, the treatment reaction proceeds by exciting the photocatalyst by irradiating light while bringing the target to be treated using holes (for example, water to be purified) into contact with the photocatalyst film 5, while from the excited photocatalyst. The generated electrons move to the conductive film 3 and are removed to the outside of the complex 1 through the lead wires 9. As a result, reaction progress inhibition due to the surplus electrons remaining in the photocatalytic film 5 does not occur. Moreover, the decomposition reaction of contaminants can also be promoted by light irradiation from the directions of arrows A and B for purification treatment of water with high turbidity.
[0018]
An example of the water purifier using the photocatalyst complex 1 having the configuration of FIG. 1 is shown in FIG. The water purifier 11 includes a water tank 13 for storing water to be treated, a photocatalyst complex 15 installed in the water tank 13, and a light source 17 for exciting the photocatalyst. The photocatalyst complex 15 includes a transparent support 19 formed in a cylindrical shape so as to surround the light source 17, a light-transmitting conductive film 21 laminated on the outer periphery of the support 19, and a conductive film 21. And a lead wire 25 is connected to the upper end of the conductive film 21. Water to be treated is supplied to a water tank 13 from a water supply pipe 27 provided in the water tank 13, and the treated water is discharged from a drain pipe 29. A discharge pipe 31 for removing precipitates and the like from the water tank 13 is connected to the bottom of the water tank 13.
[0019]
When the light source 17 is used to irradiate light from the inside of the photocatalyst complex 15, decomposition of contaminants contained in the water supplied to the water tank 13 and sterilization of microorganisms proceed around the photocatalyst complex 15 due to excitation of the photocatalyst. .
[0020]
The water purifier of FIG. 2 can be variously modified as necessary. For example, the photocatalyst composite 15 may be mounted on the light source 17, or a light-transmitting conductive film and a photocatalyst film may be laminated directly on the light source using the outer peripheral portion of the light source as a support. Further, the water tank 13 may be made of a transparent material, and a light source may be provided outside the water tank 13. Alternatively, a light transmissive conductive film and a photocatalyst film may be laminated on the inner surface of the water tank 13 made of a transparent material, and light irradiation may be performed from the outside of the water tank.
[0021]
The photocatalyst composite having the above-described configuration can be manufactured using the following materials. First, the photocatalytic film may be a layer of a substance having photocatalytic properties, and examples thereof include oxides such as titanium oxide, tin oxide, zirconium oxide, tungsten oxide, iron oxide, zinc oxide, and strontium titanate. In particular, titanium oxide is an excellent photocatalyst that absorbs the energy of photons upon irradiation with ultraviolet rays and exhibits a strong oxidizing power. The photocatalytic film can be formed from such a material by either a vapor phase method or a liquid phase method. Examples of the vapor phase method include a vacuum deposition method and a CVD method. Examples of the liquid phase method include a dip method. Method, ion coating method, liquid phase precipitation method, sol-gel method and the like. A photocatalyst capable of using sunlight by implanting chromium ions into titanium oxide can also be used.
[0022]
The light-transmitting conductive film may be a film of a substance having conductivity without significantly impeding the transmission of light having a wavelength that excites the photocatalyst. A photocatalyst having catalytic ability in the ultraviolet region such as titanium oxide may be used. When used, an ultraviolet transmissive conductive material is deposited. Examples of the light-transmitting conductive material include ITO (a mixture of indium oxide and tin oxide) and ATO (a mixture of antimony oxide and tin oxide). In particular, ITO has high transparency and good electron conductivity. A film made of such a material can be obtained by laminating on a support using a film forming method such as a vacuum evaporation method. Or the powder which consists of such a material can also be fixed on a support body using a binder. As the binder, a binder that becomes a transparent material such as glass is used. A light-transmitting material such as barium sulfate coated with ITO or ATO can also be used as the conductive film.
[0023]
The support may be any material that does not significantly disturb the transmission of light having a wavelength that excites the photocatalyst. Examples thereof include those containing silicon oxide, boron oxide, sodium oxide, potassium oxide, aluminum oxide, zirconium oxide, calcium carbonate and the like as constituent components. However, if a baking process is required in the step of forming the photocatalyst film and the support is also heated at the same time, the material must be heat resistant to withstand the baking process. When the light source is a low-pressure mercury lamp, it is desirable to use quartz glass as the material of the support, and when the light source is sunlight or black light, hard glass or the like can be suitably used.
[0024]
Delivery of surplus electrons from the photocatalyst film 5 of the photocatalyst complex 1 of FIG. 1 to the conductive film 3 is promoted by arranging a metal material so as to contact both films. Specifically, like the photocatalyst complex 33 shown in FIG. 3, the metal member 35 is provided between the conductive film 3 and the photocatalyst film 5 so as to be in contact with both films. The metal member 35 is for improving the conductivity between the conductive film 3 and the photocatalyst film 5 and separating electrons. It is not necessary to connect at least the metal members 35 to each other to form an electron conduction path. As for the shape of the metal member 35, for example, a spherical shape, a whisker shape, or a rod shape can be used. The metal member 35 preferably has a large contact area with both films and does not interfere with light transmission. As such a form, for example, a whisker-like member arranged so as to extend perpendicularly to the bonding interface between the two films Is mentioned. Examples of the metal member include granular materials such as platinum, gold, silver, copper, palladium, ruthenium, rhodium, nickel, manganese, and cobalt. Among them, platinum is excellent in the electron separation function.
[0025]
An example of the water purifier using the photocatalyst complex 33 of FIG. 3 is shown in FIG. This water purifier 37 is a device in which a photocatalyst complex 33 is installed at the bottom of a water tank 39 formed of a light-transmitting material, and light is irradiated from above or below the water tank 39 so that light is emitted from the photocatalyst complex 33. It reaches the photocatalyst film 5 via the support 7 and the conductive film 3, and the decomposition reaction of contaminants contained in the water above the photocatalyst complex 33 proceeds. Electrons generated in the photocatalytic film 5 move to the conductive film 3 through the metal member 35. The conductive film 3 is connected to the ground or a circuit outside the water purifier 37 via a lead wire (not shown).
[0026]
For example, when a formic acid aqueous solution is treated using the water purifier 37 as shown in FIG. 4, the concentration of formic acid decreases with the irradiation time as shown by the line a in FIG. When a photocatalyst complex that does not constitute the conductive film 3 is used, surplus electrons cannot move from the photocatalyst film 5 and the metal member 35 to the outside, so that the progress of the decomposition reaction slows down, and the result shown by the broken line b is obtained. (For details, see Example 1 and Comparative Example 1 below).
[0027]
The boundary between the photocatalyst film and the conductive film in the photocatalyst complex need not be strict. In other words, it may be a layer having a concentration gradient such that the concentration continuously changes in the stacking direction between the photocatalyst and the conductive material. For example, like the photocatalyst complex 41 in FIG. 6, the amount of the light transmissive conductive material particles 45 is large in the vicinity of the light transmissive support 43, and the amount of the photocatalyst particles 47 increases as the distance from the support 43 increases. A layer 49 having such a concentration gradient may be formed on the support 43. Reaction by the irradiated light proceeds by the photocatalyst particles 47 on the surface of the layer 49, surplus electrons are transferred from the photocatalyst particles 47 to the conductive material particles 45, and move through the conductive material particles 45 below the layer 49 to lead. It is removed out of the layer 49 from a line (not shown). Therefore, due to such a concentration gradient, the layer 49 acts substantially the same as the photocatalytic film and the conductive film described above.
[0028]
If it is further modified, it may be a layer in which photocatalyst particles and conductive material particles are arbitrarily mixed as long as the layer can transfer electrons between the conductive material particles. Since the conductive material particles are light transmissive, the photocatalyst particles can receive light irradiated from both sides of the support.
[0029]
FIG. 7 shows an example in which the conductive material particles have a whisker shape. In this photocatalyst complex 51, a layer 59 including whisker-like transparent conductive material particles 55 and photocatalyst particles 57 is laminated on a light-transmitting support 53. When the whisker-like conductive material particles are used, the light transmittance of the layer when the layer is formed so that conductivity between the particles can be obtained is less than when the spherical particles are used. Therefore, the photocatalyst particles 57 can be easily photoexcited, and a large number of photocatalyst particles 57 can be stacked. Instead of the whisker-like particles, a light-transmitting conductive material may be formed into a net-like long fiber, and a photocatalyst may be laminated thereon.
[0030]
FIG. 8 shows an example of an application that reduces the resistance of electrons through a conductive material. In the figure, (a) is a view microscopically showing particles forming the layer, and (b) is a view conceptually showing the layer.
[0031]
In this embodiment, the layer 69 containing the conductive material particles 65 and the photocatalyst particles 67 on the support 63 of the photocatalyst complex 61 is connected with the thickness of the portion 65 ′ containing many conductive material particles 65. A portion 67 ′ that decreases as the distance from the lead wire 71 increases and contains a large amount of photocatalyst particles 67 is inclined with respect to the support 63. As described above, the substantial boundary between the conductive material and the photocatalyst (indicated by the dotted line in the drawing (b)) is inclined and the thickness of the conductive film is different, so that the electrons are smoothly transferred from the photocatalyst to the lead wire. And the resistance decreases.
[0032]
The functions of the photocatalyst can be synergistically improved by appropriately combining the embodiments described above as necessary. A metal member as shown in FIG. 3 may be embedded in the layer 69 of FIG.
[0033]
When the photocatalyst film provided on the conductive film is irradiated with light, for example, when the photocatalyst film is extremely thick, the irradiation light does not reach deep inside the photocatalyst film, and only the surface of the photocatalyst film may act. Conceivable. In such a case, the electrons generated near the surface of the photocatalytic film do not cross the thick film and reach the conductive film, so that the electron removing ability of the conductive film does not work effectively. That is, it can be considered that a problem of electron transmission resistance occurs depending on the thickness of the photocatalytic film. Even if light acts on the entire photocatalytic film, the large distance between the part where the reaction proceeds by photoexcitation and the part where surplus electrons are transferred to the conductive film also causes the problem of electron transmission resistance. It will be. Therefore, the thickness of the photocatalyst film is expected to be a factor that affects the catalytic performance of the entire photocatalyst complex. Hereinafter, the thickness of the photocatalyst film will be described.
[0034]
Consider a photocatalyst complex 73 as shown in FIG. This photocatalyst complex 73 is obtained by forming a metal film 77 and a photocatalyst film 79 having a catalytic function in ultraviolet rays on a transparent support 75. The metal film 77 has a thickness sufficient to completely block ultraviolet rays from below, and is grounded by a lead wire (not shown). This photocatalyst complex 73 is put into a tartaric acid aqueous solution, and the concentration of the tartaric acid aqueous solution is measured after irradiating ultraviolet light from the direction of arrow A for a certain period of time while flowing the tartaric acid aqueous solution in the direction of arrow C to calculate the decomposition rate of tartaric acid. (See below for details. Reference example 1 And Comparative Example 2). When this operation is repeated for the photocatalyst film 79 having different thicknesses, and the relationship between the photocatalyst film thickness and the decomposition rate is obtained, a line c in the graph of FIG. 10 is obtained. When the same operation is performed on the photocatalyst composite without the metal film 77, the result is as shown by the line d in the graph of FIG.
[0035]
When there is no metal film (line d), the decomposition rate increases as the thickness of the photocatalyst film increases, but hardly increases above about 500 nm when the maximum value (N1) is reached. On the other hand, in the case of having a metal film (line c), the decomposition rate increases rapidly as the photocatalytic film thickness increases, but gently decreases beyond 200 nm and gradually approaches N1 at around 500 nm. The difference from the case where there is no metal film (line d) is due to the effect that excess electrons are removed by the metal film and the reaction inhibition by the remaining electrons is prevented. As understood from the graph of FIG. 10, the effect of removing excess electrons in the conductive film in contact with the photocatalyst film with respect to light irradiation from one direction is obtained because the thickness of the photocatalyst film is about 500 nm or less. It can be seen that it is limited to At this time, the maximum value N1 of the decomposition rate by only the catalyst film exceeds the photocatalyst film thickness of about 50 to 500 nm.
[0036]
The correlation as shown in FIG. 10 is considered to be approximately applicable when, for example, a fiber assembly 81 composed of a plurality of photocatalyst composites as shown in FIGS. 11 (a) and 11 (b) is used. It is done. The fiber assembly 81 includes a plurality of photocatalyst composites 83, and each photocatalyst composite 83 includes a metal core fiber 85 and a photocatalyst film 87 covering the core fiber 85. Electrons generated in the photocatalyst film 87 by light irradiated from the surroundings reach the end through the core fiber 85. The end of the core fiber 85 is connected to ground or a circuit by a lead wire or the like. Even if the core fiber 85 is made of a light-transmitting conductive material, the effect of transmitted light from the back surface (inside) of the catalyst film is expected to be small, so the above correlation is applied approximately. It is considered possible.
[0037]
Consider the case where the photocatalyst complex 73 shown in FIG. 9 is irradiated with ultraviolet rays in the direction of arrow B, that is, from the support 75 side as shown in FIG. However, in this case, the metal film 77 is assumed to have a thickness capable of transmitting ultraviolet rays to some extent. When the tartaric acid aqueous solution is treated using the photocatalyst complex 73 under the conditions as shown in FIG. 2 and the decomposition rate of tartaric acid is calculated, a line e in the graph of FIG. 13 is obtained. When the same operation is performed on the photocatalyst composite without the metal film 77, the line f in the graph of FIG. 13 is obtained (details will be described later). Reference Example 2-1 And Comparative Example 3).
[0038]
12 and 13, when the metal film 77 is not present (line f), the decomposition rate of tartaric acid increases with an increase in the thickness of the photocatalytic film, but reaches a maximum value (N2) in the vicinity of about 250 nm. After that, when the thickness of the photocatalytic film reaches 500 nm, the decomposition ability is almost lost. This is because the photocatalyst film 79 is thick, so that ultraviolet rays do not reach the surface of the photocatalyst film where the decomposition reaction proceeds (on the side opposite to the support 75), and ultraviolet rays reach the surface of the photocatalyst where the decomposition reaction proceeds. This is because, for example, it is difficult to emit electrons to the metal film because the resistance to movement of holes and electrons generated by photoexcitation is large because the distance to the portion to be processed is long. Even when the metal film 7 is present (line e), the decomposition rate becomes maximum when the thickness of the photocatalytic film is about 200 nm, and the decomposition ability is almost lost at about 500 nm. When the photocatalyst film is about 500 nm or less, the decomposition rate is improved by removing the remaining electrons. However, when the photocatalyst film is thick, the effect of removing the remaining electrons is not exhibited. As a result, in the case of having a metal film, the decomposition rate exceeds N2 when it is in the range of about 75 to 400 nm in FIG.
[0039]
The same operation as described above was repeated by changing the thickness of the metal film of the photocatalyst complex in FIG. 12, and the thickness (x (nm)) of the photocatalyst film and the thickness of the metal film when the decomposition rate was N2 ( y (nm)) (details will be described later) Reference Example 2-2 14), and the decomposition rate becomes N2 or more in the range surrounded by this plot. When this range is approximately expressed, x and y (indicated by hatching in the figure) satisfying the following expressions (1) to (3) can be obtained.
[0040]
[Expression 1]
75 ≦ x ≦ 400 (1)
y ≦ x / 6 + 27.5 (2)
y ≦ −7x / 50 + 96.5 (3)
It is understood that the decomposition rate is clearly N2 or more when the thickness y of the metal film is about 40 nm or less and the thickness x of the photocatalyst film is about 75 to 400 nm. If the thickness of the metal film exceeds 40 nm, the light transmittance is reduced and the effect of electron movement is not improved, so the range showing a decomposition rate of N2 or more is limited.
[0041]
Consider the case where the photocatalyst complex 73 is irradiated with ultraviolet rays from both directions of arrows A and B as shown in FIG. Also in this case, it is assumed that the metal film 77 has a thickness capable of transmitting ultraviolet rays. When the tartaric acid aqueous solution is treated in the same manner as described above and the decomposition rate of tartaric acid is calculated, a line g in the graph of FIG. 16 is obtained. When the same operation is performed on the photocatalyst composite without the metal film 77, the line h in the graph of FIG. 16 is obtained (details will be described later). Reference Example 3-1 And Comparative Example 4).
[0042]
15 and 16, when the metal film 77 is not present (line h), the tartaric acid decomposition rate increases as the thickness of the catalyst film increases, and the gradient of the increase is larger than in FIG. It does not increase after the decomposition rate reaches the maximum value (N3). When the metal film 77 is present (line g), the decomposition rate increases remarkably as the thickness of the photocatalytic film increases, and when it exceeds about 200 nm, it gradually decreases and gradually approaches N3 at around 500 nm. The decomposition rate exceeds N3 within the range of about 50 to 500 nm in FIG. These results generally agree with those expected by considering the results of FIG. 10 and FIG. 13 by light irradiation from one direction.
[0043]
As described above, the thickness of the photocatalyst composite in FIG. 15 is changed, and the same operation as described above is repeated to determine the photocatalyst film thickness (x (nm)) and the metal film when the decomposition rate is N3. Thickness (y (nm)) is obtained (details will be described later) Reference Example 3-2 17), and the decomposition rate is N3 or more in the range surrounded by this plot. When this range is approximately expressed, x and y (indicated by hatching in the figure) satisfying the following expressions (4) to (6) can be obtained.
[0044]
[Expression 2]
50 ≦ x ≦ 500 (4)
y ≦ 0.2x + 30 (5)
y ≦ −0.1x + 90 (6)
It is understood that the decomposition rate is clearly N3 or more when the thickness y of the metal film is about 40 nm or less and the thickness x of the photocatalyst film is about 50 to 500 nm. When the thickness of the metal film exceeds 50 nm, the transmitted light is insufficient and the effect due to the movement of electrons is not improved, so the range showing a decomposition rate of N3 or more is limited.
[0045]
The above-mentioned numerical values relating to the thickness of the photocatalyst film and the metal film show the same tendency even if the material used is changed, and can be suitably applied by adding a slight correction. In addition, a photocatalyst complex using a light-transmitting conductive film (for example, an ITO film) other than the above-described metal film has high light transmittance, and therefore is not easily affected by the thickness of the conductive film. As can be easily considered from 12 to 17, it is preferable to set the thickness of the photocatalytic film within an appropriate range. It is set within the range of about 50 to 500 nm, more preferably within the range of about 75 to 400 nm.
[0046]
The photocatalyst complex described above can be used not only for the water purification treatment as described above, but also for various reaction treatments using a photocatalyst. The structure shown in FIG. Decomposition and deodorization, decolorization, sterilization, purification treatment and the like based on these can be performed.
[0047]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0048]
(Example 1)
An ITO (thin oxide content 5 mol%) film having a thickness of 100 nm was formed on one side of a quartz plate having dimensions of 100 mm × 100 mm × 2 mm by vacuum deposition, and a lead wire was connected to the end of the ITO film.
[0049]
Next, the ITO film was masked with a mesh, platinum was deposited, and the mesh was removed to form approximately 100,000 platinum particles having a particle size of 10 to 100 μm on the ITO film.
[0050]
On top of this, 10 ml of 100-fold diluted titanium dioxide sol (manufactured by Ishihara Sangyo Co., Ltd., ST-K01) was applied, dried at room temperature, and further fired in air at 200 ° C. for 1 hour, as shown in FIG. A photocatalyst complex was obtained. The thickness of the titanium dioxide layer of the photocatalyst composite was 100 nm.
[0051]
The photocatalyst composite was attached to a water tank made of hard glass to produce a water purifier as shown in FIG. 1000 ml of formic acid aqueous solution having a concentration of 100 ppm was put into this water tank, and the formic acid concentration of the formic acid aqueous solution was measured while irradiating light from below the water tank using black light. From the measurement results, the relationship between the light irradiation time and the formic acid concentration of the formic acid aqueous solution was examined. This is indicated by line a in the graph of FIG.
[0052]
On the other hand, the same operation as described above was repeated except that platinum particles were not formed to form a photocatalyst complex to produce a water purifier as shown in FIG. Changes were measured. The result is shown by a dashed line a ′ in the graph of FIG.
[0053]
As can be understood from FIG. 5, in the photocatalyst film 5 as shown in FIG. 1, surplus electrons that hinder the progress of the photocatalytic reaction are generated by photoexcitation, and the purpose is to remove the surplus electrons to the outside of the photocatalyst complex. As a result, a conductive film 3 is provided. Here, surplus electrons are transferred from the photocatalyst film 5 to the conductive film 3 via the interface between the two films. If this delivery, in other words, the electron separation from the photocatalyst film 5 is promoted, surplus electrons can move to the conductive film 3 more quickly, and as a result, the catalytic performance of the photocatalyst complex is improved.
[0054]
(Comparative Example 1)
Except that the ITO film and platinum particles were not formed, the same operation as in Example 1 was repeated to form a photocatalyst complex to produce a water purification device. Similarly, the change in formic acid concentration of the formic acid aqueous solution due to light irradiation was changed. It was measured. The result is indicated by a broken line b in the graph of FIG.
[0055]
( Reference example 1 )
As shown in FIG. 9, a gold film having a thickness of 40 nm as a metal film and a titanium oxide film having a thickness of 25 nm as a catalyst film are formed on a transparent support made of hard glass having dimensions of 100 mm × 100 mm × 2 mm by a vacuum deposition method. A photocatalyst complex was obtained. The photocatalyst complex was put into 1000 ml of a tartaric acid aqueous solution having a concentration of 25 ppm and irradiated with ultraviolet rays from the arrow A direction for 3 hours using a UV lamp (power consumption 6 W) while stirring the tartaric acid aqueous solution to flow in the arrow C direction. Later, the concentration of the tartaric acid aqueous solution was measured, and the decomposition rate (%) of tartaric acid [= 100 × (25 ppm−tartaric acid concentration after irradiation) / 25 ppm] was calculated.
[0056]
Except that the thickness of the photocatalyst film was changed in the range of 20 to 550 nm, the same operation as described above was repeated to produce a photocatalyst complex, and the decomposition rate of tartaric acid was examined using an aqueous tartaric acid solution.
[0057]
From the result of the above-described operation, the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid is indicated by a line c in the graph of FIG.
[0058]
(Comparative Example 2)
Except that no metal film was formed Reference example 1 The same procedure was repeated to form a photocatalyst complex, and the decomposition rate of tartaric acid was examined. From the obtained results, the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid is indicated by a line d in the graph of FIG.
[0059]
( Reference Example 2-1 )
As shown in FIG. 12, a 5 nm thick gold film as a metal film and a 25 nm thick titanium oxide film as a catalyst film are formed on a transparent support made of hard glass having dimensions of 100 mm × 100 mm × 2 mm by vacuum deposition. A photocatalyst complex was obtained. This photocatalyst complex was put into 1000 ml of an aqueous tartaric acid solution having a concentration of 25 ppm, and irradiated with ultraviolet rays from the arrow B direction for 3 hours using a UV lamp (power consumption 6 W) while stirring so that the aqueous tartaric acid solution flowed in the arrow C direction. Later, the concentration of the tartaric acid aqueous solution was measured, and the decomposition rate (%) of tartaric acid [= (25 ppm−tartaric acid concentration after irradiation) / 25 ppm] was calculated.
[0060]
Except that the thickness of the photocatalyst film was changed in the range of 20 to 550 nm, the same operation as described above was repeated to produce a photocatalyst complex, and the decomposition rate of tartaric acid was examined using an aqueous tartaric acid solution.
[0061]
From the result of the above-described operation, the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid is indicated by a line e in the graph of FIG.
[0062]
(Comparative Example 3)
Except that no metal film was formed Reference Example 2-1 The same procedure was repeated to form a photocatalyst complex, and the decomposition rate of tartaric acid was examined. From the obtained results, the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid is indicated by a line f in the graph of FIG.
[0063]
( Reference Example 2-2 )
Except for changing the thickness of the metal film in the range of 10 to 70 nm Reference Example 2-1 A photocatalyst complex was prepared by repeating the same procedure as in Example 1. The tartaric acid decomposition rate was examined using a tartaric acid aqueous solution for the photocatalyst complex having a metal film of each thickness. Using the result, the same graph of the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid was prepared.
[0064]
The maximum value N2 of the decomposition rate was determined from the result of Comparative Example 3, and the thickness of the photocatalytic film when the decomposition rate was N2 was determined in the graph obtained above and the graph of FIG. From these results, the relationship between the thickness of the photocatalytic film and the thickness of the metal film is shown in FIG.
[0065]
( Reference Example 3-1 )
As shown in FIG. 15, a 5 nm thick gold film as a metal film and a 25 nm thick titanium oxide film as a catalyst film are formed on a transparent support made of hard glass having dimensions of 100 mm × 100 mm × 2 mm by vacuum deposition. A photocatalyst complex was obtained. This photocatalyst complex is put into 1000 ml of a tartaric acid aqueous solution having a concentration of 25 ppm, and UV light is emitted from both directions of arrows A and B using a UV lamp (power consumption 6 W) while stirring so that the tartaric acid aqueous solution flows in the direction of arrow C. After the time irradiation, the concentration of the tartaric acid aqueous solution was measured, and the decomposition rate (%) of tartaric acid [= (25 ppm−tartaric acid concentration after irradiation) / 25 ppm] was calculated.
[0066]
Except that the thickness of the photocatalyst film was changed in the range of 20 to 550 nm, the same operation as described above was repeated to produce a photocatalyst complex, and the decomposition rate of tartaric acid was examined using an aqueous tartaric acid solution.
[0067]
From the result of the above operation, the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid is shown by a line g in the graph of FIG.
[0068]
(Comparative Example 4)
Except that no metal film was formed Reference Example 3-1 The same procedure was repeated to form a photocatalyst complex, and the decomposition rate of tartaric acid was examined. From the obtained results, the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid is indicated by a line h in the graph of FIG.
[0069]
( Reference Example 3-2 )
Except for changing the thickness of the metal film in the range of 10 to 70 nm Reference Example 3-1 A photocatalyst complex was prepared by repeating the same procedure as in Example 1. The tartaric acid decomposition rate was examined using a tartaric acid aqueous solution for the photocatalyst complex having a metal film of each thickness. Using the result, the same graph of the relationship between the thickness of the photocatalyst film and the decomposition rate of tartaric acid was prepared.
[0070]
The maximum value N3 of the decomposition rate was determined from the result of Comparative Example 4, and the thickness of the photocatalytic film when the decomposition rate was N3 was determined in the graph obtained above and the graph of FIG. From these results, the relationship between the thickness of the photocatalytic film and the thickness of the metal film is shown in FIG.
[0071]
【The invention's effect】
As described above, according to the present invention, the activity of the photocatalyst can be maintained high for a long time, and treatments such as water purification, decolorization, and deodorization can be efficiently advanced.
[Brief description of the drawings]
[Figure 1] Photocatalyst complex FIG.
[Figure 2] Water purifier FIG.
FIG. 3 is a photocatalyst composite according to the present invention. The fruit The schematic block diagram which shows embodiment.
FIG. 4 Water purification apparatus according to the present invention The fruit The schematic block diagram which shows embodiment.
FIG. 5 is a graph showing the results of decomposition treatment of formic acid using a water purifier, where line a is the case where the water purifier shown in FIG. 4 is used, and line a ′ is obtained by omitting metal members from the water purifier shown in FIG. When b is used, line b shows the case where the water purifier of FIG. 4 is used without the conductive membrane and metal member.
[Fig. 6] Variations in photocatalytic composites FIG.
[Fig. 7] Other variations in photocatalyst composites FIG.
[Fig. 8] Application examples in photocatalyst composites FIG. 2A is a diagram schematically showing particles forming a layer, and FIG. 2B is a diagram conceptually showing the layer.
FIG. 9 Photocatalyst composite used in Reference Example 1 FIG.
10 is a graph showing the relationship between the thickness of the photocatalyst film and the decomposition rate when the photocatalyst complex of FIG. 9 is used for the decomposition reaction.
FIG. 11 Photocatalyst complex The schematic block diagram (a) of the fiber assembly which used the XX, and XX sectional drawing (b) of a photocatalyst composite_body | complex.
12 is an explanatory view showing a change in the direction of light irradiation in the photocatalyst complex of FIG. 9;
13 is a graph showing the relationship between the thickness of the photocatalyst film and the decomposition rate in the photocatalyst complex of FIG.
14 is a graph showing the relationship between the thickness of the photocatalyst film and the thickness of the metal film when the decomposition rate is N2 or more in the photocatalyst complex of FIG.
15 is an explanatory view showing a change in the light irradiation direction in the photocatalyst complex of FIG. 9. FIG.
16 is a graph showing the relationship between the thickness of the photocatalyst film and the decomposition rate in the photocatalyst complex of FIG.
17 is a graph showing the relationship between the thickness of the photocatalyst film and the thickness of the metal film when the decomposition rate is N3 or more in the photocatalyst complex of FIG.
[Explanation of sign]
1, 15, 33, 41, 51, 61, 73 Photocatalyst complex
3, 21 Conductive film
5, 23, 79 Photocatalytic membrane
7, 19, 43, 53, 63, 75 Support
9, 25, 71 Lead wire
11, 37 Water purifier
13, 39 aquarium
17 Light source
27 Water supply pipe
29 Drain pipe
31 Discharge pipe
35 Metal parts
45, 55, 65 Electron conductive material particles
47, 57, 67 Photocatalyst particles
49, 59, 69 layers

Claims (4)

光触媒を含有する光触媒膜と、該光触媒膜に隣接して設けられ該光触媒が機能する波長の光に対して透過性を有する導電性膜と、該光触媒膜及び該導電性膜間に分散して介在する金属部材とを有することを特徴とする光触媒複合体。  A photocatalyst film containing a photocatalyst, a conductive film that is provided adjacent to the photocatalyst film and is transmissive to light having a wavelength at which the photocatalyst functions, and is dispersed between the photocatalyst film and the conductive film. A photocatalyst composite comprising an intervening metal member. 前記光触媒は酸化チタンであり、前記導電性膜は酸化インジウムを含有し、前記金属部材として、球状、ウィスカー状又は棒状の形状であり、白金、金、銀、銅、パラジウム、ルテニウム、ロジウム、ニッケル、マンガン及びコバルトからなる群より選択される金属の粒状物を有する請求項1記載の光触媒複合体。The photocatalyst is titanium oxide, the conductive film contains indium oxide, and the metal member has a spherical, whisker-like or rod-like shape , platinum, gold, silver, copper, palladium, ruthenium, rhodium, nickel The photocatalyst complex according to claim 1, further comprising a particulate material of a metal selected from the group consisting of manganese and cobalt. 更に、前記光触媒膜及び前記導電性膜を支持するための光透過性支持体を有する請求項1又は2に記載の光触媒複合体。  Furthermore, the photocatalyst composite_body | complex of Claim 1 or 2 which has a light-transmissive support body for supporting the said photocatalyst film | membrane and the said electroconductive film | membrane. 水を収容する水槽と、該水槽に付設される請求項1〜3のいずれかに記載の光触媒複合体と、該光触媒が機能する波長の光を該光触媒複合体の光触媒膜に供給するための光源とを有することを特徴とする浄水装置。  A water tank for containing water, the photocatalyst complex according to any one of claims 1 to 3 attached to the water tank, and light for supplying light having a wavelength at which the photocatalyst functions to the photocatalyst film of the photocatalyst complex. A water purifier having a light source.
JP18668197A 1997-07-11 1997-07-11 Photocatalyst complex and water purifier Expired - Fee Related JP4174087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18668197A JP4174087B2 (en) 1997-07-11 1997-07-11 Photocatalyst complex and water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18668197A JP4174087B2 (en) 1997-07-11 1997-07-11 Photocatalyst complex and water purifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007060927A Division JP4799450B2 (en) 2007-03-09 2007-03-09 Photocatalyst complex and water purifier

Publications (2)

Publication Number Publication Date
JPH1128364A JPH1128364A (en) 1999-02-02
JP4174087B2 true JP4174087B2 (en) 2008-10-29

Family

ID=16192786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18668197A Expired - Fee Related JP4174087B2 (en) 1997-07-11 1997-07-11 Photocatalyst complex and water purifier

Country Status (1)

Country Link
JP (1) JP4174087B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (en) * 2005-11-29 2007-06-14 Shinshu Univ Photocatalyst fiber and liquid cleaning apparatus using the same
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
CN104874298A (en) * 2015-05-25 2015-09-02 天津理工大学 Method for preparing nanometer ZnS/cellulose complex film with photocatalytic activity
JP6270884B2 (en) * 2016-02-26 2018-01-31 三菱ケミカル株式会社 Method for producing electrode for photohydrolysis reaction

Also Published As

Publication number Publication date
JPH1128364A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
Liu et al. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly
Sun et al. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light
Karunakaran et al. Solvothermal synthesis of CeO2–TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide
US7767158B2 (en) Surface light-emitting device, filtering device using same, and optically assisted ceramic filter
Niishiro et al. Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation
CN100473453C (en) Photolytic and photocatalytic reaction enhancement device
Qin et al. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO
US6680277B2 (en) Photocatalytic susbstance
EP1843401A1 (en) Surface emitting device
TW201247552A (en) Water purifying device
Muscetta et al. Photocatalytic applications in wastewater and air treatment: A patent review (2010–2020)
US20170259254A1 (en) Photocatalyst apparatus and system
JP5897251B2 (en) Water purification system
JP4174087B2 (en) Photocatalyst complex and water purifier
US20230234032A1 (en) Filter medium for air and water purification and disinfection
JP4799450B2 (en) Photocatalyst complex and water purifier
CN115350295B (en) Deep ultraviolet LED photocatalyst module and preparation method thereof
JP2008136914A (en) Apparatus for producing ultrapure water
WO2005053363A1 (en) El fiber and photocatalyst reaction vessel
CN212439448U (en) Ultraviolet light photocatalyst sterilizer
JP2002166176A (en) Photocatalyst structure and photocatalyst reactor
CN1209190C (en) Nano-crystal titanium dioxide photo catalyst of loading type built up metal and its preparation
JP2021194129A (en) Sterilization filter, production method of sterilization filter, and air sterilization device
RU2751199C1 (en) Air purification device
JP3502414B2 (en) Method for producing photocatalyst for removing heavy metal ions in liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees