JPH1128359A - Catalyst structure for purification of exhaust gas - Google Patents

Catalyst structure for purification of exhaust gas

Info

Publication number
JPH1128359A
JPH1128359A JP9200892A JP20089297A JPH1128359A JP H1128359 A JPH1128359 A JP H1128359A JP 9200892 A JP9200892 A JP 9200892A JP 20089297 A JP20089297 A JP 20089297A JP H1128359 A JPH1128359 A JP H1128359A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst structure
exhaust gas
supported
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9200892A
Other languages
Japanese (ja)
Inventor
Yukio Ozaki
幸雄 小崎
Kazuhiro Ichikawa
和弘 市川
Kiyoshi Inanaga
潔 稲永
Kinji Saito
欣二 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Nippon Metal Industry Co Ltd
Original Assignee
NE Chemcat Corp
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp, Nippon Metal Industry Co Ltd filed Critical NE Chemcat Corp
Priority to JP9200892A priority Critical patent/JPH1128359A/en
Publication of JPH1128359A publication Critical patent/JPH1128359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a catalyst structure not to be restricted in a shape and a size while it is excellent in high temperature corrosion resistance, has high adhesion strength to a base material of the catalyst, and can be manufactured without use of expensive equipment. SOLUTION: The catalyst structure has a ferrite stainless steel made base material composed of at most 0.2 wt.% C, 0.4 to 3.0 wt.% Si, at most 2.0 wt.% Mn, 13.0 to 20.0 wt.% Cr, 0.3 to 3.0 wt.% Mo, and balance consisting of Fe and impurities. In the catalyst, a metal selected from platinum and paradium as an active constituent and rhodium are supported on a support consisting of γ-alumina and cerium stabilized zirconia, and it is supported on a base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関、ボイラ
ー、ガスタービン等から排出される排気ガスの浄化に用
いられるもので、耐熱性及び耐食性が良好で、しかも触
媒と基材とが強固に密着している耐久性に優れる排気ガ
ス浄化用触媒構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for purifying exhaust gas discharged from an internal combustion engine, a boiler, a gas turbine, etc., and has good heat resistance and corrosion resistance, and firmly adheres a catalyst to a substrate. The present invention relates to an exhaust gas purifying catalyst structure having excellent durability.

【0002】[0002]

【従来の技術】内燃機関、ボイラー、ガスタービン等か
ら排出される排気ガスを浄化する触媒の基材として圧力
損失の少ないハニカム状のものが多用され、その材料に
はコーディライト等のセラミックスが使用されてきた。
2. Description of the Related Art Honeycomb materials having a small pressure loss are frequently used as a base material of a catalyst for purifying exhaust gas discharged from an internal combustion engine, a boiler, a gas turbine, and the like. It has been.

【0003】近年、振動や衝撃に強いため破損しにくい
こと、圧力損失がより少ないこと、温度上昇が早いこと
等の理由から金属を材料とする基材が使用され始めた。
圧力損失をさらに少なくする必要がある用途では、側壁
に多数の貫通孔があいている金属製の円筒状や円錐状の
もの、あるいは十字プレート状のもの等が考案されてい
る。
[0003] In recent years, metal-based substrates have begun to be used because they are resistant to vibration and impact, are less likely to be damaged, have lower pressure loss, and have a faster temperature rise.
In applications where the pressure loss needs to be further reduced, a metal cylindrical or conical shape having a large number of through holes in the side wall or a cross plate shape has been devised.

【0004】排気ガス浄化性触媒をこのような金属製基
材に担持した触媒構造体では、700℃以上の高温の排気
ガスや排気ガスに含まれる水蒸気、S0x、NOx等の腐食性
物質に晒される。このため、触媒構造体を構成する金属
製基材には第一に耐熱性及び耐食性、特に高温耐食性が
要求される。
In such a catalyst structure in which an exhaust gas purifying catalyst is supported on such a metal base material, exhaust gas having a high temperature of 700 ° C. or more and corrosive substances such as water vapor, S0 x and NO x contained in the exhaust gas are used. Exposed to For this reason, the metal substrate constituting the catalyst structure is first required to have heat resistance and corrosion resistance, particularly high-temperature corrosion resistance.

【0005】さらに触媒構造体は、内燃機関等の運転・
休止の繰り返しにより熱膨張・収縮が発生し、また、運
転中の振動を受ける。このため触媒構造体には、第二
に、熱膨張・収縮や振動によって触媒が金属製基材から
脱落しないように、金属製基材と触媒とが強固に密着し
ていることが要求される。
Further, the catalyst structure is used for operation and
Thermal expansion / contraction occurs due to repetition of pauses, and vibrations during operation are received. For this reason, second, the catalyst structure is required that the metal substrate and the catalyst are firmly adhered so that the catalyst does not fall off from the metal substrate due to thermal expansion / contraction or vibration. .

【0006】しかし、金属製基材に触媒を直接担持した
従来の触媒構造体は、特に水蒸気を含む排気ガスに晒さ
れると、基材が酸化されてその酸化物が触媒表面に出現
し、触媒活性が低下する上、前述のような熱膨張・収縮
や振動に起因して触媒層が金属製基材から脱落しやすい
等の問題があった。
However, in a conventional catalyst structure in which a catalyst is directly supported on a metal substrate, the substrate is oxidized and its oxides appear on the surface of the catalyst, particularly when exposed to an exhaust gas containing water vapor. In addition to the reduced activity, there were problems such as the catalyst layer easily falling off from the metal substrate due to the thermal expansion / contraction and vibration as described above.

【0007】そこで、これらの問題を解決するため、金
属製基材上にニッケルクロム合金、ステンレス鋼等のク
ロムを含む金属質をプラズマ溶射し、更にその上にアル
ミナ等のセラミックス質をプラズマ溶射して、2つの中
間層を設けた後、その上に触媒層を設ける方法が提案さ
れている(自動車技術Vol.47, No.5、1993)。
Therefore, in order to solve these problems, a metal material containing chromium such as a nickel-chromium alloy or stainless steel is plasma-sprayed on a metal substrate, and a ceramic material such as alumina is further plasma-sprayed thereon. Thus, there has been proposed a method of providing a catalyst layer thereon after providing two intermediate layers (Automotive Technology Vol. 47, No. 5, 1993).

【0008】[0008]

【発明が解決しようとする課題】しかし、前述のプラズ
マ溶射で中間層を設ける方法は処理設備が高価であるこ
と、均一な処理が困難であること、金属製基材に設けら
れた孔の口径が小さいと孔の内面へ溶射するのが困難で
あるため適用できる形状が限定され、従って用途が限定
されること等の問題がある。
However, the method of providing an intermediate layer by the above-described plasma spraying requires expensive processing equipment, difficulties in uniform processing, and the diameter of holes formed in a metal base material. When the diameter is small, it is difficult to spray the inner surface of the hole, so that the applicable shape is limited, and thus there is a problem that the application is limited.

【0009】本発明は、金属製基材に排気ガス浄化性触
媒を設けた従来の触媒構造体が有する問題点を解決する
ためになされたものであり、その目的は、耐熱性、耐食
性に優れ、触媒と基材との密着性が高くて耐久性に優れ
るばかりでなく、高価な設備を用いなくても製造するこ
とができ、しかも形状や大きさに制約されない排気ガス
浄化用触媒構造体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional catalyst structure in which an exhaust gas purifying catalyst is provided on a metal substrate, and its object is to excel in heat resistance and corrosion resistance. In addition to the high adhesion between the catalyst and the base material, which not only has excellent durability, but also can be manufactured without using expensive equipment, and has a catalyst structure for purifying exhaust gas which is not restricted by its shape and size. To provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、特定の合金組成からなるステンレス鋼を基材と
し、これに特定の排気ガス浄化性触媒を担持した触媒構
造体が前記目的を達成し得ることを見出した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a catalyst structure comprising a stainless steel having a specific alloy composition as a base material and carrying a specific exhaust gas purifying catalyst on the base material has the above object. Was found to be achieved.

【0011】すなわち、本発明は、(A)重量%で、
C:0.2%以下、Si:0.4%〜3.0%、Mn:
2.0%以下、Cr:13.0〜20.0%、Mo:
0.3〜3.0%、残部Fe及び不純物からなるフェラ
イト系ステンレス鋼製の基材と、(B)γ−アルミナ及
びセリウム安定化ジルコニアからなる担体に活性成分と
して白金及びパラジウムから選ばれる金属並びにロジウ
ムが担持されてなり、前記基材上に支持された触媒と、
からなる排気ガス浄化用触媒構造体を提供するものであ
る。
That is, the present invention relates to (A)
C: 0.2% or less, Si: 0.4% to 3.0%, Mn:
2.0% or less, Cr: 13.0 to 20.0%, Mo:
A metal selected from platinum and palladium as an active ingredient in a ferrite stainless steel base material containing 0.3 to 3.0%, balance Fe and impurities, and (B) a carrier made of γ-alumina and cerium-stabilized zirconia And rhodium is supported, a catalyst supported on the substrate,
The present invention provides an exhaust gas purifying catalyst structure comprising:

【0012】[0012]

【発明の実施の形態】以下に、本発明をの触媒構造体を
詳細に説明する。触媒担持用基材(A) 本発明で基材として使用されるフェライト系ステンレス
鋼は、重量%で、C:0.2%以下、Si:0.4%〜
3.0%、Mn:2.0%以下、Cr:13.0〜2
0.0%、Mo:0.3〜3.0%、残部Fe及び不純
物からなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a catalyst structure according to the present invention will be described in detail. Substrate for supporting catalyst (A) Ferritic stainless steel used as a substrate in the present invention is, by weight%, C: 0.2% or less, Si: 0.4% to
3.0%, Mn: 2.0% or less, Cr: 13.0-2
0.0%, Mo: 0.3 to 3.0%, with the balance being Fe and impurities.

【0013】このフェライト系ステンレス鋼の金属元素
の含有量は次の理由で限定されている。Cが0.20%
を越えると加工性が低下する。 Siが0.4%未満で
は高温耐食性が不十分であり、一方、3.0%を越える
と加工性が低下する。Mnが2.0%を越えると硬化が
著しくなって製造性が低下する。Crが13%未満では
高温耐食性の効果が充分に得られず、20%を越えると
加工性が低下する。Moが0.3%未満では高温耐食性
の効果が少なく、3.0%を越えると加工性が低下し、
コストも上がる。
The content of the metal element in the ferritic stainless steel is limited for the following reasons. C is 0.20%
If it exceeds, the workability is reduced. If the Si content is less than 0.4%, the high-temperature corrosion resistance is insufficient, while if it exceeds 3.0%, the workability decreases. If the Mn content exceeds 2.0%, the curing becomes remarkable and the productivity decreases. If the Cr content is less than 13%, the effect of high-temperature corrosion resistance cannot be sufficiently obtained, and if it exceeds 20%, the workability deteriorates. If Mo is less than 0.3%, the effect of high-temperature corrosion resistance is small, and if it exceeds 3.0%, workability is reduced,
The cost also goes up.

【0014】本発明に用いられるステンレス鋼基材は、
その合金組成により高い耐熱性及び耐食性(特に耐酸化
性)を有する上、構成元素であるSiが酸化されやすい
ため、合金組成自体のSiよりも多量のSiをSi酸化
物として含む酸化被膜が形成されているので、排気ガス
浄化性触媒が強固に密着するという利点を有する。この
酸化被膜は、上記ステンレス鋼を空気中で焼鈍、酸洗す
る等の通常の条件で形成することも可能である。また光
輝焼鈍においてSiが選択酸化される雰囲気中で行うこ
とによっても形成することが可能である。
The stainless steel substrate used in the present invention comprises:
Since the alloy composition has high heat resistance and corrosion resistance (especially oxidation resistance) and Si as a constituent element is easily oxidized, an oxide film containing more Si as a Si oxide than Si of the alloy composition itself is formed. Therefore, there is an advantage that the exhaust gas purifying catalyst adheres firmly. This oxide film can be formed under ordinary conditions such as annealing or pickling the stainless steel in air. It can also be formed by performing bright annealing in an atmosphere in which Si is selectively oxidized.

【0015】本発明に用いられる基材の形状について
は、特に制約はない。従来、排気ガス浄化性触媒の基材
として用いられてきたいずれの形状のものも使用するこ
とができる。これらの基材には、排気ガスとの効率的な
接触が達成されるように工夫された種々の形状、構造の
ものがある。例えば、ハニカム状、円筒状、円錐状、湾
曲状、螺旋状、プレート状、十字プレート状、リボン
状、リング状、網状、線状等が挙げられる。形状と大き
さは使用条件に応じて適宜選択することができる。
The shape of the substrate used in the present invention is not particularly limited. Any shape conventionally used as a base material of an exhaust gas purifying catalyst can be used. These substrates have various shapes and structures devised to achieve efficient contact with the exhaust gas. For example, a honeycomb shape, a cylindrical shape, a conical shape, a curved shape, a spiral shape, a plate shape, a cross plate shape, a ribbon shape, a ring shape, a net shape, a line shape, and the like can be given. The shape and size can be appropriately selected according to the use conditions.

【0016】触媒(B) 本発明の触媒構造体は、上記の基材に特定の排気ガス浄
化性触媒を担持してなるものである。担持される触媒
は、γ−アルミナ及びセリウム安定化ジルコニアからな
る担体に活性成分として白金及びパラジウムから選ばれ
る金属とロジウムが担持されてなるものである。該触媒
には、担体としてγ−アルミナ及びセリウム安定化ジル
コニアの混合物を用いる。用いられるγ−アルミナの比
表面積は50〜250m2/gが好ましく、100〜2
00m2/gがさらに好ましい。また、用いられるセリ
ウム安定化ジルコニアのセリウム含有量は、5〜50重
量%が好ましく、15〜35重量%がさらに好ましい。
セリウム安定化ジルコニアの比表面積は20〜100m
2/gが好ましく、40〜80m2/gがさらに好まし
い。γ−アルミナとセリウム安定化ジルコニアの混合比
率には特に制限はないが、セリウム安定化ジルコニアの
混合比率が10〜70重量%であることが好ましく、3
0〜60重量%がさらに好ましい。
Catalyst (B) The catalyst structure of the present invention comprises a specific exhaust gas purifying catalyst supported on the above-described substrate. The supported catalyst is such that rhodium and a metal selected from platinum and palladium as active components are supported on a support made of γ-alumina and cerium-stabilized zirconia. The catalyst uses a mixture of γ-alumina and cerium-stabilized zirconia as a carrier. The specific surface area of the γ-alumina used is preferably 50 to 250 m 2 / g, and 100 to 2 m 2 / g.
00 m 2 / g is more preferred. The cerium content of the cerium-stabilized zirconia used is preferably 5 to 50% by weight, more preferably 15 to 35% by weight.
Specific surface area of cerium stabilized zirconia is 20-100m
2 / g are preferred, more preferably 40 to 80 m 2 / g. The mixing ratio of γ-alumina and cerium-stabilized zirconia is not particularly limited, but the mixing ratio of cerium-stabilized zirconia is preferably 10 to 70% by weight, and preferably 3 to 70% by weight.
0-60% by weight is more preferred.

【0017】触媒の活性成分には、白金及びパラジウム
から選ばれる金属とロジウムを含むことが必須である。
白金とパラジウムのいずれか一種を含んでもよいし、両
方を含んでもよい。触媒の活性成分としては、白金及び
/又はパラジウム並びにロジウムの他に、ランタン及び
バリウムから選ばれる元素を含むことが好ましい。ラン
タンやバリウムが含まれると、触媒の基材への密着強度
がさらに向上するとともに、触媒による炭化水素(H
C)の浄化性能がさらに向上する。ランタン及びバリウ
ムはいずれか一方でもよいし、両方が含まれてもよい。
It is essential that the active component of the catalyst contains a metal selected from platinum and palladium and rhodium.
Either one of platinum and palladium may be included, or both may be included. The active component of the catalyst preferably contains an element selected from lanthanum and barium in addition to platinum and / or palladium and rhodium. When lanthanum and barium are contained, the adhesion strength of the catalyst to the base material is further improved, and the hydrocarbon (H
The purification performance of C) is further improved. Lanthanum and barium may be either one or both.

【0018】したがって、活性成分の構成としては種々
可能であり、具体的には、例えば、白金及びロジウム;
パラジウム及びロジウム;白金、ロジウム及びランタ
ン;白金、ロジウム及びバリウム;パラジウム、ロジウ
ム及びランタン;パラジウム、ロジウム及びバリウム;
白金、ロジウム、ランタン及びバリウム;パラジウム、
ロジウム、ランタン及びバリウムの組み合わせ等であ
る。
Therefore, the composition of the active ingredient can be various, and specifically, for example, platinum and rhodium;
Palladium, rhodium and lanthanum; platinum, rhodium and barium; palladium, rhodium and lanthanum; palladium, rhodium and barium;
Platinum, rhodium, lanthanum and barium; palladium,
It is a combination of rhodium, lanthanum and barium.

【0019】白金及びパラジウムから選ばれる金属の担
持量は、触媒全重量に対して金属換算で1〜20重量%
が好ましく、2〜15重量%がさらに好ましい。ロジウ
ムの担持量は、触媒全重量に対して金属換算で0.5〜
10重量%が好ましく、1〜5重量%がさらに好まし
い。ランタン及びバリウムから選ばれる金属の担持量
は、触媒全重量に対して金属換算で0.5〜7重量%が
好ましく、1〜5重量%がさらに好ましい。
The loading amount of a metal selected from platinum and palladium is 1 to 20% by weight in terms of metal based on the total weight of the catalyst.
Is preferable, and 2 to 15% by weight is more preferable. The supported amount of rhodium is from 0.5 to 0.5 in terms of metal based on the total weight of the catalyst.
It is preferably 10% by weight, more preferably 1 to 5% by weight. The loading amount of a metal selected from lanthanum and barium is preferably 0.5 to 7% by weight, more preferably 1 to 5% by weight in terms of metal, based on the total weight of the catalyst.

【0020】製造方法 次に、本発明の触媒構造体の製造方法について説明す
る。基材と触媒との密着性を向上させるため、触媒を担
持する前に基材の表面をヤスリがけ、各種ブラスト等で
表面処理することが好ましい。また、触媒を担持する前
に基材の表面を清浄にすることが好ましい。この清浄化
処理は、市販の中性洗剤で脱脂した後、純水等で洗浄
し、80〜110℃で20〜60分間乾燥すればよい。
[0020] Manufacturing Method Next, a method for manufacturing the catalyst structure of the present invention. In order to improve the adhesion between the substrate and the catalyst, it is preferable to sand the surface of the substrate and carry out a surface treatment with various blasts or the like before supporting the catalyst. Further, it is preferable to clean the surface of the substrate before supporting the catalyst. This cleaning treatment may be performed by degreasing with a commercially available neutral detergent, washing with pure water or the like, and drying at 80 to 110 ° C for 20 to 60 minutes.

【0021】次に、基材上に前記触媒を担持する。触媒
は、少なくとも基材の排気ガスと接触する表面に担持さ
れる。触媒構造体の実際の使用状況に応じて、基材の全
表面に担持してもよいし、部分的に担持してもよい。例
えば、排気ガスの流れ方向に多数の孔があいているハニ
カムからなる基材の場合、排気ガスと接触する孔の内表
面に触媒を担持する。
Next, the catalyst is supported on a substrate. The catalyst is supported on at least the surface of the substrate that comes into contact with the exhaust gas. Depending on the actual use condition of the catalyst structure, it may be supported on the entire surface of the substrate or may be partially supported. For example, in the case of a honeycomb base material having a large number of holes in the flow direction of the exhaust gas, the catalyst is carried on the inner surface of the hole that contacts the exhaust gas.

【0022】触媒の担特には、従来より慣用されている
方法を用いればよい。例えば、触媒の担体成分と活性成
分を同時に担持してもよいし、あるいは、先ず担体成分
を担持し、その後に活性成分を担持してもよい。担持す
る方法としては、所要の成分を含むスラリーを調製し、
浸漬、刷毛塗り、流し塗り、スプレー塗り等、従来より
慣用されている方法の中から、基材の形状、大きさに応
じて適宜選択すればよい。このようにして、本発明の触
媒構造体が得られる。なお、触媒の担持量は、基材1m
2当たり通常20〜100gが好ましい。
The method of carrying the catalyst, in particular, a conventionally used method may be used. For example, the carrier component and the active component of the catalyst may be supported at the same time, or the carrier component may be supported first and then the active component. As a method of supporting, prepare a slurry containing the required components,
What is necessary is just to select suitably from the conventionally used methods, such as immersion, brush coating, flow coating, spray coating, etc. according to the shape and size of a base material. Thus, the catalyst structure of the present invention is obtained. The amount of the supported catalyst was 1 m
Usually, 20 to 100 g per 2 is preferable.

【0023】本発明の触媒構造体は内燃機関、ボイラ
ー、ガスタービン等から排出される排気ガスの流路に設
置され、排気ガスと接触させることによって該ガスを浄
化する。設置する位置は担持されている触媒の特性によ
り、排気ガスの高温域あるいは低温域等、最適位置を選
べばよい。
The catalyst structure of the present invention is provided in a flow path of exhaust gas discharged from an internal combustion engine, a boiler, a gas turbine or the like, and purifies the gas by contacting the exhaust gas. The installation position may be selected at an optimum position such as a high-temperature region or a low-temperature region of the exhaust gas depending on the characteristics of the supported catalyst.

【0024】[0024]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明はこれら実施例に限定されるもので
はない。なお、例中、%は重量%である。実施例1 日本金属工業(株)製フェライト系ステンレス鋼NTK
U−4B(組成はC:0.01%、Si:2.15
%、Mn:0.58%、Cr:18.75%、Mo:
0.46%、残部Fe)の板を、外径30mmx長さ100mm
x厚さ1mmの円筒状に加工し、この円筒の側壁に、孔径
2mmで孔の中心間隔3mmの多数の貫通孔を形成したものを
基材として使用した。この基材の全面に、粒径250〜300
μmのアルミナ粉を圧縮空気とともに1分間ブラスト処理
した。次いで、これを市販の中性洗剤で脱脂し、純水で
洗浄した後、105℃で60分間乾燥した。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. In the examples,% is% by weight. Example 1 Ferritic stainless steel NTK manufactured by Nippon Metal Industry Co., Ltd.
U-4B (C: 0.01%, Si: 2.15
%, Mn: 0.58%, Cr: 18.75%, Mo:
0.46%, the balance Fe), the outer diameter 30mm × length 100mm
x Process into a cylinder with a thickness of 1 mm, and add a hole diameter to the side wall of this cylinder.
A substrate having a large number of through-holes having a diameter of 2 mm and a center interval of the holes of 3 mm was used as a substrate. A particle size of 250 to 300
A μm alumina powder was blasted with compressed air for 1 minute. Next, this was degreased with a commercially available neutral detergent, washed with pure water, and then dried at 105 ° C. for 60 minutes.

【0025】次に、触媒のスラリーを調製し、これを刷
毛で上記基材の全面に塗布した。使用した触媒は、市販
のγ−アルミナ粉末(BET比表面積150m2/g、平均粒子
径30μm)及び市販のセリウム安定化ジルコニア粉末
(セリウム含有量25%、BET比表面積60m2/g、平均粒
子径10μm)の混合物(触媒全重量に対して、γ−アル
ミナ46%、セリウム安定化ジルコニア48%)に、触媒全重
量に対して金属換算で白金5%及びロジウム1%を担持した
ものであった。次いで、105℃で2時間乾燥した後、空気
中400℃で30分間焼成し、基材1m2当り40gの触媒が担持
された触媒構造体(A−1)を得た。
Next, a slurry of the catalyst was prepared, and this was applied to the entire surface of the base material with a brush. The catalyst used was a commercially available γ-alumina powder (BET specific surface area 150 m 2 / g, average particle size 30 μm) and a commercially available cerium stabilized zirconia powder (cerium content 25%, BET specific surface area 60 m 2 / g, average particle size) (A diameter of 10 μm) (46% of γ-alumina and 48% of cerium-stabilized zirconia with respect to the total weight of the catalyst) supported 5% of platinum and 1% of rhodium in terms of metal with respect to the total weight of the catalyst. Was. Next, after drying at 105 ° C. for 2 hours, it was calcined in air at 400 ° C. for 30 minutes to obtain a catalyst structure (A-1) supporting 40 g of catalyst per 1 m 2 of the base material.

【0026】実施例2 実施例1において、ステンレス鋼NTK U−4Bの代
わりに、日本金属工業(株)製フェライト系ステンレス
鋼NTK E−1(組成はC:0.016%、Si:
0.51%、Mn:0.33%、Cr:18.50%、
Mo:0.57%、残部Fe)を用いた以外は実施例1
と同様にして、触媒構造体(A−2)を得た。
Example 2 In Example 1, instead of the stainless steel NTK U-4B, a ferritic stainless steel NTK E-1 manufactured by Nippon Metal Industry Co., Ltd. (composition: C: 0.016%, Si:
0.51%, Mn: 0.33%, Cr: 18.50%,
Example 1 except that Mo: 0.57% and the balance Fe) were used.
In the same manner as in the above, a catalyst structure (A-2) was obtained.

【0027】実施例3 実施例1において、触媒全重量におけるγ−アルミナ量
を45%に変え、活性成分を金属換算で白金5%とロジ
ウム1%の代わりに、金属換算でパラジウム5%とロジ
ウム2%に変えた以外は実施例1と同様にして、触媒構
造体(A−3)を得た。
Example 3 In Example 1, the amount of γ-alumina in the total weight of the catalyst was changed to 45%, and the active components were changed to 5% of palladium and 1% of rhodium in terms of metal instead of 5% of platinum and 1% of rhodium in terms of metal. Except having changed to 2%, it carried out similarly to Example 1, and obtained the catalyst structure (A-3).

【0028】実施例4 実施例1において、触媒全重量におけるγ−アルミナ量
を43%に変え、活性成分としてさらにランタンを金属
換算で3%担持した以外は実施例1と同様にして、触媒
構造体(A−4)を得た。
Example 4 A catalyst structure was prepared in the same manner as in Example 1 except that the amount of γ-alumina in the total weight of the catalyst was changed to 43%, and lanthanum was further supported as an active component by 3% in terms of metal. A body (A-4) was obtained.

【0029】実施例5 実施例1において、触媒全重量においてγ−アルミナ量
を43%に変え、活性成分としてさらにバリウムを金属
換算で3%担持した以外は実施例1と同様にして、触媒
構造体(A−5)を得た。
Example 5 A catalyst structure was prepared in the same manner as in Example 1 except that the amount of γ-alumina was changed to 43% based on the total weight of the catalyst, and 3% of barium was further supported as an active component in terms of metal. A body (A-5) was obtained.

【0030】比較例1 市販のフェライト系ステンレス鋼SUS430(組成は
C:0.021%、Cr:17.58%、残部Fe)の
板を用いて実施例1と同様にして基材を作った後、同様
にブラスト処理及び清浄化処理を行った。この基材にア
ルミナをプラズマ溶射した。得られたアルミナ被膜の膜
厚は基材の外表面で約30μm、内表面で約5μmであっ
た。被膜にピンホール、ヒビ、割れ等は観察されなかっ
た。次に、このアルミナ被覆基材に実施例1と同様に触
媒を担持し、触媒構造体(B−1)を得た。
Comparative Example 1 A base material was prepared in the same manner as in Example 1 using a commercially available ferritic stainless steel SUS430 (composition: C: 0.021%, Cr: 17.58%, balance Fe). Thereafter, a blast treatment and a cleaning treatment were similarly performed. The substrate was plasma sprayed with alumina. The thickness of the obtained alumina coating was about 30 μm on the outer surface of the substrate and about 5 μm on the inner surface. No pinholes, cracks, cracks, etc. were observed in the coating. Next, a catalyst was supported on this alumina-coated substrate in the same manner as in Example 1, to obtain a catalyst structure (B-1).

【0031】比較例2 比較例1で用いたステンレス鋼の板を用いて実施例1と
同様にして基材を作った後、ブラスト処理せずに清浄化
処理のみ行った。この基材をポリシラザンの13%m−キシ
レン溶液に浸漬して該溶液を塗布した後、80℃で10分間
乾燥し、次いで、450℃で1時間焼成して基材上にポリシ
ラザンの熱分解物からなる被膜を形成した。被膜の厚さ
は約1μmで、被膜にピンホール、ヒビ、割れ等は観察さ
れなかった。次に、このポリシラザン熱分解物被覆基材
に実施例1と同様に触媒を担持し、触媒構造体(B−2)
を得た。
Comparative Example 2 A substrate was made in the same manner as in Example 1 using the stainless steel plate used in Comparative Example 1, and only the cleaning treatment was performed without blasting. This base material is immersed in a 13% m-xylene solution of polysilazane and coated with the solution, dried at 80 ° C. for 10 minutes, and then baked at 450 ° C. for 1 hour to form a thermally decomposed polysilazane on the base material. Was formed. The thickness of the film was about 1 μm, and no pinholes, cracks, cracks, etc. were observed in the film. Next, a catalyst was supported on the polysilazane pyrolyzate-coated substrate in the same manner as in Example 1, and the catalyst structure (B-2)
I got

【0032】比較例3 実施例1において、ステンレス鋼NTK U−4Bの代
わりに市販のフェライト系ステンレス鋼SUS463L
(組成はC:0.005%、Cr:17.02%、 M
o:1.03%、残部Fe)を用いた以外は実施例1と
同様にして、触媒構造体(B−3)を得た。
Comparative Example 3 In Example 1, a commercially available ferritic stainless steel SUS463L was used instead of the stainless steel NTK U-4B.
(Composition: C: 0.005%, Cr: 17.02%, M
o: A catalyst structure (B-3) was obtained in the same manner as in Example 1 except that 1.03% and the balance Fe) were used.

【0033】性能評価例1 実施例1〜5及び比較例1〜3の触媒構造体について、
初期の排気ガス浄化性能を2輪車エンジンを用いて評価
した。排気ガス浄化率試験は、アイドリング時、30k
m/時及び50km/時に相当する運転条件下で炭化水
素(HC)と一酸化炭素(CO)の濃度を測定した。排
気ガス浄化率試験結果を表1に示す。
Performance Evaluation Example 1 For the catalyst structures of Examples 1 to 5 and Comparative Examples 1 to 3,
Initial exhaust gas purification performance was evaluated using a motorcycle engine. Exhaust gas purification rate test is 30k when idling
Under operating conditions corresponding to m / h and 50 km / h, the concentrations of hydrocarbons (HC) and carbon monoxide (CO) were measured. Table 1 shows the results of the exhaust gas purification rate test.

【0034】[0034]

【表1】 [Table 1]

【0035】性能評価例2 実施例1〜5及び比較例1〜3で得られた触媒構造体に
ついて、次の方法で触媒の密着性を試験した。試験の前
に予め各触媒構造体を秤量しておいた。300℃に保持さ
れた電気炉に触媒構造体を入れ、300℃で1時間加熱し
た。触媒構造体を電気炉から取り出し、直ちに水中に入
れ冷却した。この加熱・冷却をさらに2回繰り返した。
次に、触媒構造体を105℃で1時間乾燥した後、秤量し
た。なお、各触媒構造体について触媒を担持する前後で
秤量し、担持された触媒の重量を予め測定しておいた。
次の式により触媒の剥離率を求めた。なお、触媒以外は
剥離しなかった。
Performance Evaluation Example 2 The catalyst structures obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were tested for catalyst adhesion by the following method. Each catalyst structure was weighed before the test. The catalyst structure was placed in an electric furnace maintained at 300 ° C., and heated at 300 ° C. for 1 hour. The catalyst structure was taken out of the electric furnace, immediately put into water and cooled. This heating and cooling was repeated twice more.
Next, the catalyst structure was dried at 105 ° C. for 1 hour and weighed. In addition, each catalyst structure was weighed before and after supporting the catalyst, and the weight of the supported catalyst was measured in advance.
The peeling rate of the catalyst was determined by the following equation. In addition, it did not peel except the catalyst.

【0036】 (A):試験前の触媒構造体の重量 (B):試験後の触媒構造体の重重結果を表2に示す。[0036] (A): Weight of catalyst structure before test (B): Weight of catalyst structure after test is shown in Table 2.

【0037】[0037]

【表2】 表2より、本発明の触媒構造体(A−1〜A−5)は、ス
テンレス基材にアルミナをプラズマ溶射した比較例1の
触媒構造体(B−1)を大きく陵駕する触媒密着性を有し
ていることが判った。
[Table 2] As shown in Table 2, the catalyst structure (A-1 to A-5) of the present invention has a catalyst adhesion that significantly surpasses the catalyst structure (B-1) of Comparative Example 1 in which alumina was plasma-sprayed on a stainless steel substrate. It was found to have.

【0038】性能評価例3 実施例1〜2及び比較例1〜3の触媒構造体について、
耐久後の高温耐食性を評価した。耐久条件は、触媒構造
体を4輪車エンジンの排気ガス(A/F=15.0)に
晒した。。触媒構造体の中心温度は950℃で、表面温
度は1000℃であった。耐久時間は、20時間づつ、
通算100時間まで行った。20時間毎に触媒構造体を
取り出し、腐食の程度を目視観察した。腐食の程度が激
しい触媒構造体については、それ以降の耐久を中上し
た。観察結果を次の基準で評価した。 ◎:腐食なし。 ○:触媒表面に酸化物が点状に発生する。 △:触媒表面の複数の箇所に酸化物が塊状に発生する。 ×:酸化物が触媒表面全体を覆う。 結果を表3に示す。
Performance Evaluation Example 3 For the catalyst structures of Examples 1 and 2 and Comparative Examples 1 to 3,
The high temperature corrosion resistance after durability was evaluated. As for the durability conditions, the catalyst structure was exposed to exhaust gas (A / F = 15.0) of a four-wheeled vehicle engine. . The center temperature of the catalyst structure was 950 ° C., and the surface temperature was 1000 ° C. The endurance time is every 20 hours,
It went up to a total of 100 hours. The catalyst structure was taken out every 20 hours and the degree of corrosion was visually observed. The durability of the catalyst structure having a high degree of corrosion was improved thereafter. The observation results were evaluated according to the following criteria. A: No corrosion. :: Oxides are generated in the form of dots on the catalyst surface. Δ: Oxides are generated in a lump at a plurality of locations on the catalyst surface. ×: The oxide covers the entire surface of the catalyst. Table 3 shows the results.

【0039】[0039]

【表3】 (注)触媒構造体の基材が腐食された場合は、基材の酸
化物が触媒を突き抜けて触媒表面に達していた。表3よ
り、本発明の触媒構造体(A−1〜A−2)は、比較例
の触媒構造体に比較してはるかに優れた高温耐食性を有
することが示された。
[Table 3] (Note) When the substrate of the catalyst structure was corroded, the oxide of the substrate penetrated the catalyst and reached the catalyst surface. Table 3 shows that the catalyst structures (A-1 to A-2) of the present invention have much better high-temperature corrosion resistance than the catalyst structures of Comparative Examples.

【0040】性能評価例4 実施例1〜2及び比較例1の触媒構造体について、耐久
後の触媒浄化性能を評価した。実施例1〜2の触媒構造
体については、性能評価例3で4輪車エンジンの排気ガ
スに100時間晒したものを、比較例1の触媒構造体に
ついては同20時間晒したものを用いた。評価条件は性
能評価例1と同様とした。結果を表4に示す。
Performance Evaluation Example 4 With respect to the catalyst structures of Examples 1 and 2 and Comparative Example 1, the catalyst purification performance after durability was evaluated. The catalyst structures of Examples 1 and 2 were exposed to exhaust gas of a four-wheel engine for 100 hours in Performance Evaluation Example 3, and the catalyst structures of Comparative Example 1 were exposed for 20 hours. . The evaluation conditions were the same as in Performance Evaluation Example 1. Table 4 shows the results.

【0041】[0041]

【表4】 [Table 4]

【0042】表4より、本発明の触媒構造体(A−1〜
A−2)は100時間耐久後であっても優れた浄化性能
を有していることが分かる。このように、本発明の触媒
構造体は、ステンレス基材にアルミナをプラズマ溶射し
た触媒構造体や、ステンレス鋼SUS436Lを基材に
用いた触媒構造体に比較して、基材と触媒との密着性及
び高温耐食性に優れている。
From Table 4, it can be seen that the catalyst structure of the present invention (A-1 to A-1)
It can be seen that A-2) has excellent purification performance even after 100 hours of durability. As described above, the catalyst structure of the present invention has a better adhesion between the base material and the catalyst than a catalyst structure obtained by plasma spraying alumina on a stainless steel substrate or a catalyst structure using stainless steel SUS436L as a base material. Excellent heat resistance and high temperature corrosion resistance.

【0043】[0043]

【発明の効果】本発明の排気ガス浄化用触媒構造体は、
耐食性(特に高温耐食性)に優れ、金属製基材と触媒が
高い密着強度を有している。さらに、高価な設備を用い
なくても製造することができ、形状や大きさに制約され
ない利点を有する。
The exhaust gas purifying catalyst structure of the present invention has the following features.
It has excellent corrosion resistance (especially high-temperature corrosion resistance), and has high adhesion strength between the metal substrate and the catalyst. Furthermore, it can be manufactured without using expensive equipment, and has an advantage that it is not restricted by its shape and size.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/38 B01D 53/36 ZABC (72)発明者 稲永 潔 東京都新宿区西新宿2丁目1番1号 日本 金属工業株式会社内 (72)発明者 斎藤 欣二 東京都新宿区西新宿2丁目1番1号 日本 金属工業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/38 B01D 53/36 ZABC (72) Inventor Kiyoshi Inanaga 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Metal Industry Co., Ltd. Inside the company (72) Inventor Kinji Saito 2-1-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Metal Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(A)重量%で、C:0.2%以下、S
i:0.4%〜3.0%、Mn:2.0%以下、Cr:
13.0〜20.0%、Mo:0.3〜3.0%、残部
Fe及び不純物からなるフェライト系ステンレス鋼製の
基材と、(B)γ−アルミナ及びセリウム安定化ジルコ
ニアからなる担体に活性成分として白金及びパラジウム
から選ばれる金属並びにロジウムが担持されてなり、前
記基材上に支持された触媒と、からなる排気ガス浄化用
触媒構造体。
(A) In weight%, C: 0.2% or less, S
i: 0.4% to 3.0%, Mn: 2.0% or less, Cr:
13.0 to 20.0%, Mo: 0.3 to 3.0%, base material made of ferritic stainless steel composed of Fe and impurities, and carrier composed of (B) γ-alumina and cerium-stabilized zirconia A catalyst selected from platinum and palladium as active components and rhodium supported thereon, and a catalyst supported on the substrate.
【請求項2】前記触媒が活性成分としてさらにランタン
及びバリウムから選ばれる金属を含むものである、請求
項1に記載の触媒構造体。
2. The catalyst structure according to claim 1, wherein said catalyst further contains a metal selected from lanthanum and barium as an active component.
JP9200892A 1997-07-10 1997-07-10 Catalyst structure for purification of exhaust gas Pending JPH1128359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9200892A JPH1128359A (en) 1997-07-10 1997-07-10 Catalyst structure for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9200892A JPH1128359A (en) 1997-07-10 1997-07-10 Catalyst structure for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH1128359A true JPH1128359A (en) 1999-02-02

Family

ID=16431997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9200892A Pending JPH1128359A (en) 1997-07-10 1997-07-10 Catalyst structure for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH1128359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087373A1 (en) * 2004-03-11 2005-09-22 Cataler Corporation Exhaust gas clarification catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087373A1 (en) * 2004-03-11 2005-09-22 Cataler Corporation Exhaust gas clarification catalyst
US7297654B2 (en) 2004-03-11 2007-11-20 Cataler Corporation Exhaust gas-purifying catalyst

Similar Documents

Publication Publication Date Title
SU1011035A3 (en) Molded carrier of catalyst for purifying exhaust gases of internal combustion engine and method for its use
JPH11503661A (en) Thermal spraying method for bonding catalyst materials to metal substrates
US4196099A (en) Catalyst comprising a metal substrate
US7585478B2 (en) Exhaust-gas purifying catalyst
US3640755A (en) Coatings for automotive exhaust gas reactors
CN101564645A (en) Coated metal substrate
US3873472A (en) Catalyst for the purification of exhaust gases and process for preparing the catalyst
CN1174097A (en) Catalyst element for purifying exhaust of internal combustion engine
JPH1128359A (en) Catalyst structure for purification of exhaust gas
JP2014073434A (en) Electrically heating type catalyst apparatus and its manufacturing method
JP2004169111A (en) Metal foil, and honeycomb structure
JPH0346174B2 (en)
JPS59150948A (en) Parts used in combustion engine
JPH0356147A (en) Preparation of catalyst carrier
JPH11197517A (en) Metallic carrier for catalyst
JPH0444177Y2 (en)
JPH01164444A (en) Carrier for exhaust gas purification catalyst
US20050220678A1 (en) Exhaust gas clarification catalyst carrying article
JP5023460B2 (en) Exhaust gas purification metal filter manufacturing method and exhaust gas purification metal filter
RU2032463C1 (en) Carrier of catalyst for purification of exhaust gases of internal combustion engines and method for its preparation
JPS62149886A (en) Manufacture of surface coated steel pipe having superior corrosion resistance
JPS5817656B2 (en) Exhaust gas catalyst
JP3826522B2 (en) Air purification catalyst
JPS60500362A (en) Support for catalysts, especially catalysts for after-combustion, and method for producing this support
JPH0417700B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees