JPH1128357A - Manufacture of composite wherein metal oxide is supported on carbon support - Google Patents

Manufacture of composite wherein metal oxide is supported on carbon support

Info

Publication number
JPH1128357A
JPH1128357A JP9182086A JP18208697A JPH1128357A JP H1128357 A JPH1128357 A JP H1128357A JP 9182086 A JP9182086 A JP 9182086A JP 18208697 A JP18208697 A JP 18208697A JP H1128357 A JPH1128357 A JP H1128357A
Authority
JP
Japan
Prior art keywords
metal
carbon
containing compound
oxide
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9182086A
Other languages
Japanese (ja)
Inventor
Kazuo Sugiyama
和夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP9182086A priority Critical patent/JPH1128357A/en
Publication of JPH1128357A publication Critical patent/JPH1128357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a useful composite as a catalyst or the like wherein a metal oxide is supported on a carbon support. SOLUTION: A metal-containing compound is adsorbed to a carbon support such as active carbon or carbon fiber. Then, the carbon support to which the metal-containing compound is adsorbed is treated with plasma such as microwave plasma. Thereby, a compound-supporting oxide of transition metal and metal oxide such as composite oxide containing a transition metal can be manufactured including conversion of the metal-containing compound into the metal oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素系担体に金属
酸化物を担持した複合体を製造する方法に関する。本発
明の製造方法により得られる複合体は、例えば、金属酸
化物担持触媒として有用である。
[0001] The present invention relates to a method for producing a composite in which a metal oxide is supported on a carbon-based support. The composite obtained by the production method of the present invention is useful, for example, as a metal oxide-supported catalyst.

【0002】[0002]

【従来の技術】活性炭のような炭素系担体を担体とする
触媒が知られている。そのような触媒の主なものは、白
金炭及びパラジウム炭として知られる、白金を活性炭に
担持した触媒及びパラジウムを活性炭に担持した触媒で
ある。これらの触媒は、活性炭の高い表面積を利用し
て、その表面に触媒として働く白金及びパラジウムを担
持させることで、反応の場を多くし、単位量当たりの金
属触媒の活性を高めたものである。
2. Description of the Related Art Catalysts using a carbon-based carrier such as activated carbon as a carrier are known. The main such catalysts are platinum on activated carbon and palladium on activated carbon, known as platinum and palladium on carbon. These catalysts make use of the high surface area of activated carbon and carry platinum and palladium acting as catalysts on the surface, thereby increasing the number of reaction fields and increasing the activity of the metal catalyst per unit amount. .

【0003】[0003]

【発明が解決すべき課題】一方、金属酸化物は、石油化
学工業における化成品製造用触媒や自動車の排ガス浄化
用触媒等として利用されている。しかるに、活性炭のよ
うな炭素系担体に担持した触媒はほとんど知られていな
い。これは、触媒調製上の理由による。金属酸化物を担
持する活性炭の調製は、ほとんどの場合、活性炭上に直
接金属酸化物を担持させることでは行えない。まず、水
溶性の金属化合物を活性炭に吸着させた後、金属化合物
を酸化処理する必要がある。この酸化処理には、生成さ
せるべき金属酸化物の種類によるが、酸素を含む雰囲気
中で比較的高温での焼成が必要である。しかるに、その
ような条件下では活性炭が燃焼してしまい、目的とする
金属酸化物担持活性炭は得られない。このため、僅か
に、比較的低温で酸化する鉄、銀、ニッケルの例が知ら
れているに過ぎない。
On the other hand, metal oxides are used as catalysts for producing chemical products in the petrochemical industry, as catalysts for purifying exhaust gas from automobiles, and the like. However, catalysts supported on a carbon-based carrier such as activated carbon are hardly known. This is for reasons of catalyst preparation. In most cases, preparation of activated carbon supporting a metal oxide cannot be performed by directly supporting the metal oxide on the activated carbon. First, after a water-soluble metal compound is adsorbed on activated carbon, it is necessary to oxidize the metal compound. This oxidation treatment requires firing at a relatively high temperature in an atmosphere containing oxygen, depending on the type of metal oxide to be generated. However, under such conditions, the activated carbon burns, and the desired activated carbon supporting metal oxide cannot be obtained. For this reason, only a few examples of iron, silver and nickel oxidizing at relatively low temperatures are known.

【0004】活性炭の高い表面積を利用した高活性の金
属酸化物触媒が得られれば、その利用範囲は広いと考え
られるが、上記製造技術上の理由から、そのような触媒
は実用化さていない。そこで本発明の目的は、活性炭等
の炭素系担体に金属酸化物を担持した触媒等として有用
な複合体を製造する方法を提供することにある。
[0004] If a highly active metal oxide catalyst utilizing the high surface area of activated carbon can be obtained, its use range is considered to be wide. However, such a catalyst has not been put into practical use because of the above-mentioned production technology. Therefore, an object of the present invention is to provide a method for producing a composite useful as a catalyst in which a metal oxide is supported on a carbon-based carrier such as activated carbon.

【0005】[0005]

【課題を解決するための手段】本発明者は、金属含有化
合物を吸着させた炭素系担体をプラズマ処理すること
で、これまでの焼成よりはるかに低い温度で上記金属含
有化合物を金属酸化物に変換でき、目的とする炭素系担
体に金属酸化物を担持した複合体が得られることを見い
だして本発明を完成した。
Means for Solving the Problems The present inventors plasma-treat a carbon-based support on which a metal-containing compound has been adsorbed, so that the metal-containing compound can be converted into a metal oxide at a temperature much lower than conventional firing. The present invention has been completed by finding that a composite in which a metal oxide is supported on a target carbon-based carrier can be obtained by conversion.

【0006】即ち、本発明は、炭素系担体に金属含有化
合物を吸着させ、次いで前記金属含有化合物を吸着させ
た炭素系担体をプラズマ処理することにより、前記金属
含有化合物を金属酸化物に変換させることを含む、炭素
系担体に金属酸化物を担持した複合体の製造方法に関す
る。
That is, the present invention converts a metal-containing compound into a metal oxide by adsorbing a metal-containing compound on a carbon-based carrier and then subjecting the carbon-based carrier to which the metal-containing compound has been adsorbed to a plasma treatment. And a method for producing a composite in which a metal oxide is supported on a carbon-based support.

【0007】[0007]

【発明の実施の形態】本発明の製造方法の製造対象であ
る複合体は、炭素系担体に金属酸化物を担持した複合体
である。炭素系担体は、例えば、活性炭であり、それ以
外の炭素系担体としてカーボンファイバ等を例示でき
る。活性炭としては、従来の活性炭をそのまま用いるこ
とができる。活性炭の原料となる炭素材料は、通常は椰
子殻であるが、椰子殻以外に、木炭、のこくず、亜炭、
石炭、ピッチ、もみ殻、古タイヤ等であっても良い。さ
らに、活性炭製造時の賦活方法にも特に制限はなく、ガ
ス賦活及び薬品賦活のいずれの方法により賦活された活
性炭も用いることができる。さらに、活性炭には、通
常、形状によって造粒炭、破砕炭、顆粒炭、球形炭等が
あるが、本発明では、いずれの形状の活性炭も使用する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION A composite to be produced by the production method of the present invention is a composite in which a metal oxide is supported on a carbon support. The carbon-based carrier is, for example, activated carbon, and other carbon-based carriers include carbon fibers and the like. As the activated carbon, conventional activated carbon can be used as it is. The carbon material used as the raw material for activated carbon is usually coconut shell, but in addition to coconut shell, charcoal, sawdust, lignite,
Coal, pitch, chaff, old tires and the like may be used. Furthermore, there is no particular limitation on the activation method at the time of producing activated carbon, and activated carbon activated by either gas activation or chemical activation can be used. Further, the activated carbon generally includes granulated coal, crushed coal, granular coal, spherical coal and the like depending on the shape. In the present invention, any shape of activated carbon can be used.

【0008】金属酸化物は、例えば、遷移金属や希土類
の酸化物及び遷移金属や希土類を含む複合酸化物であ
り、遷移金属の酸化物や希土類の酸化物としては、例え
ば、酸化ニッケル、酸化コバルト、酸化チタン、酸化ジ
ルコニウム、酸化マグネシウム、酸化アルミニウム、酸
化珪素、酸化カルシウム、酸化バナジウム、酸化クロ
ム、酸化マンガン、酸化鉄、酸化銅、酸化亜鉛、酸化ス
トロンチウム、酸化イットリウム、酸化ニオブ、酸化ル
テニウム、酸化カドミウム、酸化インジウム、酸化ス
ズ、酸化バリウム、ランタノイド類の酸化(LnOx)
等を例示することができる。複合酸化物としては、例え
ば、ペロブスカイト型複合酸化物を挙げることができ
る。ペロブスカイト型複合酸化物としては、例えば、A
サイトがランタンである、LaCoO3 、LaTi
3 、LaMnO3 、LaFeO3 、LaNiO3、L
aCrO3 等や、Aサイトがストロンチウムである、S
rMoO3 、SrTiO3 、さらにAサイトがイットリ
ウムである、YNiO3 等を挙げることができる。
The metal oxide is, for example, a transition metal or rare earth oxide or a composite oxide containing the transition metal or rare earth. Examples of the transition metal oxide or rare earth oxide include nickel oxide and cobalt oxide. , Titanium oxide, zirconium oxide, magnesium oxide, aluminum oxide, silicon oxide, calcium oxide, vanadium oxide, chromium oxide, manganese oxide, iron oxide, copper oxide, zinc oxide, strontium oxide, yttrium oxide, niobium oxide, ruthenium oxide, oxidation Oxidation of cadmium, indium oxide, tin oxide, barium oxide, lanthanoids (LnOx)
And the like. Examples of the composite oxide include a perovskite-type composite oxide. Examples of the perovskite-type composite oxide include A
LaCoO 3 , LaTi whose site is lantern
O 3 , LaMnO 3 , LaFeO 3 , LaNiO 3 , L
aCrO 3 etc., S site where A site is strontium, S
Examples include rMoO 3 , SrTiO 3 , and YNiO 3 in which the A site is yttrium.

【0009】炭素系担体への金属酸化物の担持量は、特
に制限はなく、本発明の複合体の用途により適宜選択で
きる。本発明の複合体を触媒として利用する場合、例え
ば、炭素系担体100重量部当たり、0.01〜50重量
部の範囲とすることができる。但し、この範囲に限定さ
れるものではない。
The amount of the metal oxide carried on the carbon-based support is not particularly limited, and can be appropriately selected depending on the use of the composite of the present invention. When the composite of the present invention is used as a catalyst, for example, it can be in the range of 0.01 to 50 parts by weight per 100 parts by weight of the carbon-based carrier. However, it is not limited to this range.

【0010】本発明の製造方法は、炭素系担体に金属含
有化合物を吸着させ、次いで金属含有化合物を吸着させ
た炭素系担体にプラズマ処理することにより前記金属含
有化合物を金属酸化物に変換させることを含む。
In the production method of the present invention, a metal-containing compound is adsorbed on a carbon-based carrier, and the metal-containing compound is converted into a metal oxide by subjecting the carbon-based carrier to which the metal-containing compound has been adsorbed to plasma treatment. including.

【0011】炭素系担体への金属含有化合物の吸着は、
例えば、炭素系担体を金属含有化合物を含む水溶液に浸
漬し、乾燥することで行うことができる。金属含有化合
物は、炭素系担体への吸着を容易に行うという観点か
ら、水溶液への溶解性が高い化合物であることが適当で
ある。但し、溶解性が低い化合物であっても、水溶液へ
の浸漬及び乾燥を繰り返し行うことで、所望量の金属含
有化合物を吸着させることができる。また、金属含有化
合物の種類は、金属酸化物への変換の容易さ等を考慮し
て選択することができる。金属含有化合物としては、例
えば、金属水酸化物、金属炭酸塩、金属硝酸塩、有機酸
塩、金属アルコキサイド、有機金属錯体等を挙げること
ができる。
[0011] The adsorption of the metal-containing compound on the carbon-based support is as follows.
For example, it can be carried out by immersing the carbon-based carrier in an aqueous solution containing a metal-containing compound and drying. The metal-containing compound is suitably a compound having high solubility in an aqueous solution from the viewpoint of facilitating adsorption to a carbon-based carrier. However, even if the compound has low solubility, a desired amount of the metal-containing compound can be adsorbed by repeatedly immersing in an aqueous solution and drying. The type of the metal-containing compound can be selected in consideration of the ease of conversion to a metal oxide and the like. Examples of the metal-containing compound include a metal hydroxide, a metal carbonate, a metal nitrate, an organic acid salt, a metal alkoxide, an organic metal complex, and the like.

【0012】金属含有化合物を含む水溶液中の金属含有
化合物の濃度や浸漬条件(時間及び温度等)は、金属含有
化合物の種類や吸着させようとする金属含有化合物等を
勘案して適宜決定できる。また、金属含有化合物の活性
炭への吸着を促進する目的で、活性炭を金属含有化合物
を含む水溶液に浸漬した後、これを、例えば、アルカリ
化して、金属の水酸化物として析出させることもでき
る。
The concentration of the metal-containing compound in the aqueous solution containing the metal-containing compound and the immersion conditions (time, temperature, etc.) can be appropriately determined in consideration of the type of the metal-containing compound, the metal-containing compound to be adsorbed, and the like. Further, in order to promote adsorption of the metal-containing compound to the activated carbon, the activated carbon can be immersed in an aqueous solution containing the metal-containing compound, and then, for example, alkalized to precipitate as a metal hydroxide.

【0013】尚、金属含有化合物の吸着前に、処理対象
である活性炭を、例えば、真空下で加熱して脱水するこ
とで、金属含有化合物の吸着を促進することができる。
この真空加熱処理は、例えば温度50〜600℃、真空
度1torr以下、処理時間1〜5時間の条件で行うこ
とができる。
The adsorption of the metal-containing compound can be promoted by, for example, heating and dehydrating the activated carbon to be treated before adsorption of the metal-containing compound under vacuum.
This vacuum heat treatment can be performed, for example, under the conditions of a temperature of 50 to 600 ° C., a degree of vacuum of 1 torr or less, and a treatment time of 1 to 5 hours.

【0014】金属含有化合物を吸着させた炭素系担体
は、次いで、プラズマ処理される。このプラズマ処理
は、炭素系担体に吸着させた金属含有化合物が金属酸化
物に変換されるように行われる。プラズマ処理の方法自
体は、従来から知られた方法であることができ、例え
ば、特開平5−220530号や特開平9−52042
号等に記載されたマイクロ波等の電磁波を用いるプラズ
マ処理方法やRFプラズマ処理方法等であることができ
る。また、このようなプラズマ処理は、減圧下及び常圧
下のいずれでも行うことができる。さらに、金属含有化
合物を金属酸化物に変換するという観点からは、プラズ
マ処理は、減圧下で行うか、あるいは減圧下又は常圧下
であって不活性ガスまたは酸素含有ガスの流通下で行わ
れることが適当である。
The carbon-based support having the metal-containing compound adsorbed thereon is then subjected to a plasma treatment. This plasma treatment is performed so that the metal-containing compound adsorbed on the carbon-based carrier is converted into a metal oxide. The plasma processing method itself can be a conventionally known method, for example, Japanese Patent Application Laid-Open Nos. 5-220530 and 9-52042.
And a plasma processing method using an electromagnetic wave such as a microwave described in No. 1 or an RF plasma processing method. Such a plasma treatment can be performed either under reduced pressure or normal pressure. Further, from the viewpoint of converting the metal-containing compound into a metal oxide, the plasma treatment is performed under reduced pressure, or performed under reduced pressure or normal pressure and under the flow of an inert gas or an oxygen-containing gas. Is appropriate.

【0015】電磁波を用いるプラズマ処理は、例えば図
1に示すような装置を用いて行うことができる。図中、
1はマイクロ波発生器、2は導波管、3は石英ガラス製
の処理室、4はアイソレーター、5はスリー・スタブ同
調器(Three−stubtuner)、6はマイク
ロ波出力計、7はマイクロ波反射用プランジャである。
マイクロ波反射用プランジャ7はマイクロ波を反射して
処理室3にマイクロ波を集中させるために使用される。
処理室3に金属含有化合物を吸着させた炭素系担体を置
き、これにマイクロ波を照射することでプラズマが発生
し、上記炭素系担体がプラズマ処理される。
The plasma processing using an electromagnetic wave can be performed using, for example, an apparatus as shown in FIG. In the figure,
1 is a microwave generator, 2 is a waveguide, 3 is a processing chamber made of quartz glass, 4 is an isolator, 5 is a three-stub tuner (Three-stubtuner), 6 is a microwave power meter, and 7 is a microwave. It is a reflection plunger.
The microwave reflecting plunger 7 is used to reflect the microwave and concentrate the microwave in the processing chamber 3.
A carbon-based carrier on which a metal-containing compound is adsorbed is placed in the processing chamber 3, and a microwave is applied to the carbon-based carrier to generate plasma.

【0016】プラズマは、励起した分子、原子、イオ
ン、電子など荷電粒子を含み、全体として電気的にほぼ
中性を保つ粒子の集団である。プラズマは、通常は、1
Pa〜1atm程度の範囲にある気体を極めて高い高温
状態にするか、あるいは強い磁場又は電磁波のもとにお
くと発生する。本発明においてプラズマ処理とは、この
ような環境中に、対象とする材料を一定時間置くことを
いう。
The plasma is a group of particles that contain charged particles such as excited molecules, atoms, ions, and electrons, and that are electrically almost neutral as a whole. The plasma is usually 1
It is generated when a gas in the range of about Pa to 1 atm is brought to an extremely high temperature state or is placed under a strong magnetic field or an electromagnetic wave. In the present invention, plasma processing refers to placing a target material in such an environment for a certain period of time.

【0017】図1に示す上記装置では、プラズマは、処
理室3を例えば、減圧にし、マイクロ波のような電磁波
を照射することにより、発生させることができる。処理
室3の真空度は、約1トル(Torr)以下にすること
が、プラズマの発生を維持するという観点から適当であ
る。また電磁波は、ラジオ波からマイクロ波の範囲が適
当であり、振動数は、おおよそ1GHz〜1000GH
zの範囲、通常は1〜10GHzが適当である。 この
プラズマは、減圧下でラジオ波やマイクロ波などの電磁
波を利用するいわゆる低温プラズマである。
In the apparatus shown in FIG. 1, the plasma can be generated by, for example, reducing the pressure in the processing chamber 3 and irradiating the processing chamber 3 with an electromagnetic wave such as a microwave. It is appropriate to set the degree of vacuum of the processing chamber 3 to about 1 Torr or less from the viewpoint of maintaining the generation of plasma. The electromagnetic wave is preferably in a range from a radio wave to a microwave, and the frequency is approximately 1 GHz to 1000 GHz.
The range of z, usually 1 to 10 GHz, is appropriate. This plasma is a so-called low-temperature plasma utilizing electromagnetic waves such as radio waves and microwaves under reduced pressure.

【0018】金属含有化合物を吸着させた炭素系担体
は、金属含有化合物の吸着に使用した薬剤の種類等に応
じて、必要により、プラズマ処理の前に、中和のための
酸性化またはアルカリ化をすることができる。酸性化処
理とは、炭素系担体を酸性水溶液に一定時間浸漬後、適
宜洗浄及び乾燥する処理である。酸性水溶液に含まれる
酸性成分は、塩酸、硝酸、酢酸等であることができる。
酸成分の濃度は、酸の種類等を考慮して適宜決定される
が、通常0.1〜2モル/リットルの範囲とすることが
適当である。
The carbon-based carrier to which the metal-containing compound has been adsorbed may be acidified or alkalized for neutralization before the plasma treatment, if necessary, depending on the type of the agent used for adsorbing the metal-containing compound. Can be. The acidification treatment is a treatment in which the carbon-based carrier is immersed in an acidic aqueous solution for a certain period of time, and then appropriately washed and dried. The acidic component contained in the acidic aqueous solution can be hydrochloric acid, nitric acid, acetic acid and the like.
The concentration of the acid component is appropriately determined in consideration of the type of the acid and the like, but is usually preferably in the range of 0.1 to 2 mol / liter.

【0019】また、アルカリ化処理とは、炭素系担体を
一定時間アルカリ水溶液に浸漬後、適宜洗浄及び乾燥す
る処理である。アルカリ水溶液に含まれるアルカリ成分
としては特に制限はないが、アルカリ金属水酸化物(例
えば、水酸化ナトリウム、水酸化カリウム、水酸化リチ
ウム等)、アルカリ土類金属水酸化物(例えば、水酸化
カルシウム、水酸化バリウム、水酸化ストロンチウム
等)、アンモニア、アミン類等を挙げることができる。
酸成分及びアルカリ成分の濃度は、酸及びアルカリの種
類等を考慮して適宜決定されるが、通常0.1〜2モル
/リットルの範囲とすることが適当である。酸処理又は
アルカリ処理が済んだ炭素系担体は、水分を除去した
後、プラズマ処理を施す。
The alkalizing treatment is a treatment in which the carbon-based carrier is immersed in an alkaline aqueous solution for a certain period of time, and then appropriately washed and dried. The alkali component contained in the aqueous alkali solution is not particularly limited, but may be an alkali metal hydroxide (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.), an alkaline earth metal hydroxide (eg, calcium hydroxide) , Barium hydroxide, strontium hydroxide, etc.), ammonia, amines and the like.
The concentration of the acid component and the alkali component is appropriately determined in consideration of the type of the acid and the alkali, and is usually in the range of 0.1 to 2 mol / liter. The carbon-based support that has been subjected to the acid treatment or the alkali treatment is subjected to a plasma treatment after removing water.

【0020】[0020]

【発明の効果】本発明の製造方法によれば、活性炭等の
炭素系担体に金属酸化物を担持した触媒等として有用な
複合体を提供することができる。
According to the production method of the present invention, a composite useful as a catalyst or the like in which a metal oxide is supported on a carbon-based carrier such as activated carbon can be provided.

【0021】[0021]

【実施例】以下本発明を実施例によりさらに説明する。 実施例1 図1に概略説明図を示す装置を用いて金属含有化合物を
吸着させた炭素系担体のプライマ処理を行った。即ち、
市販の活性炭15gを秤量し、イオン交換水と共沸して
活性炭の洗浄を行った。洗浄後の活性炭を110℃で3
時間乾燥、脱気処理した。9.0gのチタンテトライソ
プロポキシド(TTIP)を100mlのジエチルエー
テルに溶解した。この溶液に上記脱気処理した活性炭を
添加、攪拌した後、室温で12時間放置した。次いで、
室温で上記溶液を攪拌しながら約150mlのイオン交
換水を徐々に加えた。さらに、この溶液を30℃に維持
しながら、攪拌を続けた。ジエチルエーテル臭がしなく
なるまで、数回デカンテーションと洗浄とを繰り返し
た。その後、110℃で18時間乾燥し、生成物から粉
末のチタン酸を活性炭から分離した。
The present invention will be further described with reference to the following examples. Example 1 A carbon-based support on which a metal-containing compound was adsorbed was subjected to a primer treatment using an apparatus whose schematic diagram is shown in FIG. That is,
15 g of commercially available activated carbon was weighed and azeotroped with ion-exchanged water to wash the activated carbon. Activated carbon after washing at 110 ℃ 3
It was dried and degassed for hours. 9.0 g of titanium tetraisopropoxide (TTIP) was dissolved in 100 ml of diethyl ether. The degassed activated carbon was added to this solution, stirred, and allowed to stand at room temperature for 12 hours. Then
While stirring the above solution at room temperature, about 150 ml of ion-exchanged water was gradually added. Further, stirring was continued while maintaining the solution at 30 ° C. The decantation and washing were repeated several times until the smell of diethyl ether disappeared. Thereafter, the powder was dried at 110 ° C. for 18 hours to separate powdery titanic acid from the activated carbon from the product.

【0022】得られた活性炭を処理室3に充填し、次い
で真空ポンプにより処理室3内を0.1torrに減圧
した。所定の圧力にまで減圧した後、300Wのマイク
ロ波(2.45GHz)を処理室に照射して処理室内を
プラズマ状態にした。1分間、2分間、3分間及び5分
間経過後、マイクロ波の照射をやめ、活性炭を処理室か
ら取り出した。得られたサンプルをRAD−Bで分析し
た結果、TiO2(アナターゼまたはルチル)のピーク
が観測された。図2に2分間プラズマ処理した場合の結
果を示す。この条件ではTiO2(アナターゼ)が生成
していた。また、図3に5分間プラズマ処理した場合の
結果を示す。この条件ではTiO2(ルチル)が生成し
ていた。上記実施例では、従来、活性炭が燃えない温度
条件で生成できなかったTiO2を活性炭に担持させる
ことができた。
The activated carbon thus obtained was charged into the processing chamber 3, and the pressure inside the processing chamber 3 was reduced to 0.1 torr by a vacuum pump. After the pressure was reduced to a predetermined pressure, a microwave of 300 W (2.45 GHz) was applied to the processing chamber to bring the processing chamber into a plasma state. After 1 minute, 2 minutes, 3 minutes, and 5 minutes, the microwave irradiation was stopped, and the activated carbon was removed from the processing chamber. As a result of analyzing the obtained sample by RAD-B, a peak of TiO 2 (anatase or rutile) was observed. FIG. 2 shows the result when the plasma processing is performed for 2 minutes. Under these conditions, TiO 2 (anatase) was produced. FIG. 3 shows the results of the case where the plasma treatment was performed for 5 minutes. Under these conditions, TiO 2 (rutile) was generated. In the above example, TiO 2 which could not be produced under the temperature condition in which activated carbon did not burn conventionally could be supported on activated carbon.

【0023】実施例2 実施例1と同様の方法により、洗浄、乾燥及び脱気した
活性炭を、硝酸ニッケル水溶液(0.1M)に添加し、
3時間攪拌した後、室温で16時間放置した。得られた
硝酸ニッケルを吸着した活性炭を、2.5wt%のNa
OH水溶液でアルカリ化処理した後、80℃で18時間
乾燥し、生成物から沈殿物の粉末を活性炭から分離し
た。得られた活性炭を実施例1と同様にして1分間マイ
クロ波プラズマ処理した。得られたサンプルをRAD−
Bで分析した結果、図4に示すように酸化ニッケルのピ
ークが観測された。
Example 2 In the same manner as in Example 1, washed, dried and degassed activated carbon was added to an aqueous nickel nitrate solution (0.1 M).
After stirring for 3 hours, it was left at room temperature for 16 hours. The activated carbon adsorbing the obtained nickel nitrate is replaced with 2.5 wt% of Na.
After alkalization with an aqueous OH solution, the product was dried at 80 ° C. for 18 hours, and a precipitate powder was separated from activated carbon from the product. The obtained activated carbon was subjected to microwave plasma treatment for 1 minute in the same manner as in Example 1. RAD-
As a result of analysis in B, a peak of nickel oxide was observed as shown in FIG.

【0024】実施例3 硝酸ニッケル水溶液(0.1M)の代わりに、硝酸コバ
ルト(0.1M)を用いた以外は実施例2と同様の浸
漬、アルカリ化、及びプラズマ処理操作を行った(マイ
クロ波プラズマ処理時間は1分間)。得られたサンプル
をRAD−Bで分析した結果を図5に示す。図5では酸
化コバルトのピークが観測された。
Example 3 The same immersion, alkalization, and plasma treatment operations as in Example 2 were performed except that cobalt nitrate (0.1 M) was used instead of the nickel nitrate aqueous solution (0.1 M) (Micro (Wave plasma processing time is 1 minute). The result of analyzing the obtained sample by RAD-B is shown in FIG. In FIG. 5, a peak of cobalt oxide was observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法に使用できるプラズマ処理
装置の概略説明図。
FIG. 1 is a schematic explanatory view of a plasma processing apparatus that can be used in the manufacturing method of the present invention.

【図2】 実施例1における2分間プラズマ処理したサ
ンプルのRAD−Bによる回折パターンを示す。
FIG. 2 shows a diffraction pattern by RAD-B of a sample subjected to plasma treatment for 2 minutes in Example 1.

【図3】 実施例1における5分間プラズマ処理したサ
ンプルのRAD−Bによる回折パターンを示す。
FIG. 3 shows a diffraction pattern by RAD-B of a sample subjected to a plasma treatment for 5 minutes in Example 1.

【図4】 実施例2で得られたサンプルのRAD−Bに
よる回折パターンを示す。
FIG. 4 shows a diffraction pattern by RAD-B of the sample obtained in Example 2.

【図5】 実施例3で得られたサンプルのRAD−Bに
よる回折パターンを示す。
FIG. 5 shows a diffraction pattern by RAD-B of the sample obtained in Example 3.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 炭素系担体に金属含有化合物を吸着さ
せ、次いで前記金属含有化合物を吸着させた炭素系担体
をプラズマ処理することにより、前記金属含有化合物を
金属酸化物に変換させることを含む、炭素系担体に金属
酸化物を担持した複合体の製造方法。
1. A method comprising: adsorbing a metal-containing compound on a carbon-based carrier; and subjecting the carbon-based carrier to which the metal-containing compound has been adsorbed to plasma treatment to convert the metal-containing compound into a metal oxide. A method for producing a composite in which a metal oxide is supported on a carbon-based support.
【請求項2】炭素系担体が、活性炭またはカーボンファ
イバである請求項1に記載の製造方法。
2. The method according to claim 1, wherein the carbon-based carrier is activated carbon or carbon fiber.
【請求項3】金属酸化物が遷移金属の酸化物及び遷移金
属を含む複合酸化物からなる群から選ばれる請求項1ま
たは2に記載の製造方法。
3. The production method according to claim 1, wherein the metal oxide is selected from the group consisting of transition metal oxides and composite oxides containing transition metals.
【請求項4】複合酸化物がペロブスカイト型複合酸化物
である請求項3に記載の製造方法。
4. The method according to claim 3, wherein the composite oxide is a perovskite-type composite oxide.
【請求項5】炭素系担体を金属含有化合物を含む水溶液
に浸漬し、乾燥することで炭素系担体に金属含有化合物
を吸着させる請求項1〜4のいずれか1項に記載の記載
の製造方法。
5. The production method according to claim 1, wherein the carbon-based carrier is immersed in an aqueous solution containing a metal-containing compound and dried to adsorb the metal-containing compound on the carbon-based carrier. .
【請求項6】プラズマ処理が減圧下、または常圧下で行
われる請求項1〜5のいずれか1項に記載の製造方法。
6. The method according to claim 1, wherein the plasma treatment is performed under reduced pressure or normal pressure.
【請求項7】プラズマ処理が不活性ガス雰囲気中、また
は酸素含有雰囲気中で行われる請求項1〜6のいずれか
1項に記載の製造方法。
7. The method according to claim 1, wherein the plasma treatment is performed in an inert gas atmosphere or an oxygen-containing atmosphere.
【請求項8】プラズマ処理がマイクロ波プラズマ、また
はRFプラズマである請求項1〜7のいずれか1項に記載
の製造方法。
8. The manufacturing method according to claim 1, wherein the plasma processing is microwave plasma or RF plasma.
【請求項9】金属含有化合物を吸着させた炭素系担体
を、プラズマ処理の前に、酸性化、アルカリ化または沈
殿処理する請求項1〜8のいずれか1項に記載の製造方
法。
9. The method according to claim 1, wherein the carbon-based support having the metal-containing compound adsorbed thereon is subjected to an acidification, alkalization or precipitation treatment before the plasma treatment.
JP9182086A 1997-07-08 1997-07-08 Manufacture of composite wherein metal oxide is supported on carbon support Pending JPH1128357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9182086A JPH1128357A (en) 1997-07-08 1997-07-08 Manufacture of composite wherein metal oxide is supported on carbon support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9182086A JPH1128357A (en) 1997-07-08 1997-07-08 Manufacture of composite wherein metal oxide is supported on carbon support

Publications (1)

Publication Number Publication Date
JPH1128357A true JPH1128357A (en) 1999-02-02

Family

ID=16112125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182086A Pending JPH1128357A (en) 1997-07-08 1997-07-08 Manufacture of composite wherein metal oxide is supported on carbon support

Country Status (1)

Country Link
JP (1) JPH1128357A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145215A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP2011056428A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
JP2020023417A (en) * 2018-08-08 2020-02-13 キレスト株式会社 Production method of composite having metal oxide fixed on carbon base material
CN116253365A (en) * 2022-12-14 2023-06-13 中国科学院大连化学物理研究所 Preparation method and application of ferric oxide catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145215A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
US8007691B2 (en) 2006-06-13 2011-08-30 Hitachi Maxell Energy, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP2011056428A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
JP2020023417A (en) * 2018-08-08 2020-02-13 キレスト株式会社 Production method of composite having metal oxide fixed on carbon base material
CN116253365A (en) * 2022-12-14 2023-06-13 中国科学院大连化学物理研究所 Preparation method and application of ferric oxide catalyst

Similar Documents

Publication Publication Date Title
EP0070712B1 (en) Catalysts for photo-assisted oxidation-reduction reactions
CN110433805B (en) Anionic clay-hydrothermal carbon slow-release photocatalytic oxidation material and preparation method and application thereof
JP4508381B2 (en) Iron oxide catalyst for decomposition of organic waste, method for producing the same, and method for treating organic waste
CN112473665A (en) Supported silver-manganese catalyst and preparation method and application thereof
CN113797749B (en) Method for degrading nitrogen oxides by manganese-loaded bronze-ore titanium dioxide under photo-thermal synergistic condition
JPH1128357A (en) Manufacture of composite wherein metal oxide is supported on carbon support
CN113198515B (en) Ternary photocatalyst and preparation method and application thereof
JP5129894B2 (en) Tungsten oxide photocatalyst modified with copper ion and method for producing the same
JP2004196581A (en) Hydrogen production method and catalyst used for the same
CN111437857B (en) Photocatalytic film based on titanium nitride and titanium oxide and preparation method thereof
CN112939053A (en) Method for preparing transition metal oxide material containing oxygen vacancy
CN111617760A (en) Mn-TiO2Composite photocatalytic material and preparation method and application thereof
JP2004143032A (en) Sulfur-containing metal oxide
CN112246256B (en) Piezoelectric catalytic degradation and ammonia synthesis catalyst, and preparation method and application thereof
CN113304742B (en) Activated carbon supported Ti 3+ Self-doping TiO 2 Preparation method of photocatalytic material
JPH1128360A (en) Atomic oxygen-generating catalyst and method for generating atomic oxygen
CN112642461B (en) Modified cuprous ferrite catalyst rich in oxygen vacancies and preparation method and application thereof
CN108187652A (en) A kind of preparation method of visible-light photocatalyst material
CN114602489A (en) High-stability non-noble metal-based formaldehyde catalyst and preparation method thereof
CN113617357A (en) Preparation method and application of nickel oxide catalyst for removing VOCs (volatile organic compounds) by coupling low-temperature plasma
CN113244929A (en) Iron bismuth oxide Bi2Fe4O9Preparation method and application in organic wastewater treatment
CN109107564B (en) Defective perovskite photocatalytic material and preparation method and application thereof
JPH08252461A (en) Preparation of photocatalyst
JP3051918B2 (en) Photocatalyst for decomposing nitrate ion in water and method for decomposing and removing nitrate ion
CN112495398B (en) Preparation process of fine nickel screen for catalytic degradation of organic pollution