JPH11281392A - Inertial navigation system - Google Patents

Inertial navigation system

Info

Publication number
JPH11281392A
JPH11281392A JP8649898A JP8649898A JPH11281392A JP H11281392 A JPH11281392 A JP H11281392A JP 8649898 A JP8649898 A JP 8649898A JP 8649898 A JP8649898 A JP 8649898A JP H11281392 A JPH11281392 A JP H11281392A
Authority
JP
Japan
Prior art keywords
inertial navigation
navigation device
navigation system
ins
inertial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8649898A
Other languages
Japanese (ja)
Other versions
JP2893073B1 (en
Inventor
Mamoru Takagi
護 高城
Koichi Tanaka
幸一 田中
Shunkichi Takeuchi
俊吉 竹内
Shinichi Namiki
真一 南木
Akira Hitomi
亮 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Tokyo Keiki Inc
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, Tokimec Inc filed Critical Japan Steel Works Ltd
Priority to JP8649898A priority Critical patent/JP2893073B1/en
Application granted granted Critical
Publication of JP2893073B1 publication Critical patent/JP2893073B1/en
Publication of JPH11281392A publication Critical patent/JPH11281392A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly and accurately estimate a mounting error in an inertial navigation system(INS) that is constituted so that a mounting error is estimated by transfer alignment when the posture and azimuth of navigating body are initialized. SOLUTION: An inertial navigation system(slave INS) 30 is mounted near a navigating body launcher 3 in addition to an inertial navigation system (navigating body INS) 20 that is mounted on a navigating body 2 and an inertial navigation system (master INS) 10 that is mounted on vessels 1, thus performing transfer alignment including an error correction between the slave INS 30 and the master INS 10. A transfer alignment without erroneous correction is made between the navigation body INS 20 and the slave INS 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は艦船より発射される
航走体の初期化をするための慣性航法システムに関し、
より詳細には、トランスファアラインメント法を用いて
初期姿勢及び初期方位を算出するように構成された慣性
航法システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inertial navigation system for initializing a vehicle launched from a ship.
More specifically, the present invention relates to an inertial navigation system configured to calculate an initial attitude and an initial azimuth using a transfer alignment method.

【0002】[0002]

【従来の技術】図3及び図4に艦船1に搭載された航走
体2の配置状態を示す。図示のように、航走体2は、典
型的には艦船1に装備された航走体発射装置3にセット
されている。艦船1には艦船1の姿勢及び方位を演算す
る主慣性航法装置10(以下に「マスタINS」と称す
る。)が搭載され、航走体2にも航走体2自身の姿勢及
び方位を演算する小型慣性航法装置20(以下に「航走
体INS」と称する。)が搭載されている。
2. Description of the Related Art FIGS. 3 and 4 show the arrangement of a hull 2 mounted on a ship 1. FIG. As shown, the vehicle 2 is set on a vehicle launching device 3 typically mounted on the ship 1. The ship 1 is equipped with a main inertial navigation device 10 (hereinafter referred to as "master INS") for calculating the attitude and direction of the ship 1, and the ship 2 also calculates the attitude and direction of the ship 2 itself. And a small inertial navigation device 20 (hereinafter referred to as a “running vehicle INS”).

【0003】航走体INS20に設定した座標系(以下
に「航走体座標」と称する。)とマスタINS10に設
定した座標系(以下に「マスタ座標」と称する。)との
間には直線的偏差及び回転偏差が存在する。この回転偏
差を取付誤差又は取り付けミスアラインメントφと称す
る。取付誤差φは、X,Y,Z軸周りの取付誤差φX
φY ,φZ を含み、航走体2を艦船に機械的に装着する
際に生ずる誤差である。
[0003] A straight line is provided between the coordinate system set for the traveling body INS20 (hereinafter referred to as "vehicle body coordinates") and the coordinate system set for the master INS10 (hereinafter referred to as "master coordinates"). There is a target deviation and a rotational deviation. This rotation deviation is referred to as a mounting error or mounting misalignment φ. The mounting error φ is the mounting error φ X around the X, Y, and Z axes,
The error includes φ Y and φ Z and is an error that occurs when the aircraft 2 is mechanically mounted on a ship.

【0004】一般に、ロール、ピッチ及び方位は姿勢及
び方位と称されるが、ここでは随時、両者を纏めて単に
姿勢と称することがある。又、ロール角、ピッチ角及び
方位角は姿勢角及び方位角と称されるが、ここでは両者
を纏めて単に姿勢角と称することがある。
[0004] In general, the roll, the pitch, and the orientation are referred to as an attitude and an orientation. Further, the roll angle, the pitch angle, and the azimuth angle are referred to as an attitude angle and an azimuth angle.

【0005】航走体2の慣性誘導は航走体2自身に搭載
された航走体INS20によってなされるが、航走体2
を所定の軌道に沿って正確に誘導するためには航走体2
の発射前に、航走体2又は航走体INS20の姿勢及び
方位を正確に求める必要がある。これを航走体INS2
0の初期化と称する。
[0005] The inertial guidance of the navigation body 2 is performed by the navigation body INS20 mounted on the navigation body 2 itself.
In order to accurately guide the ship along a predetermined trajectory,
It is necessary to accurately determine the attitude and the azimuth of the vehicle 2 or the vehicle INS 20 before launching the vehicle. This is the airframe INS2
This is referred to as zero initialization.

【0006】航走体INS20の初期化は、航走体IN
S20自身によって実行することはできない。航走体I
NS20の初期化には数十分の時間を要するが、航走体
INS20の電源は航走体発射直前に投入されるからで
ある。また、航走体INS20に使用されるセンサは一
般に低価格且つ低精度だからである。
[0006] Initialization of the traveling vehicle INS20 is performed by using the traveling vehicle IN.
It cannot be executed by S20 itself. Aircraft I
This is because the initialization of the NS 20 requires several tens of minutes, but the power of the navigation body INS 20 is turned on immediately before the launch of the navigation body. Also, the sensors used for the vehicle INS20 are generally inexpensive and have low accuracy.

【0007】一方、マスタINS10は常に運転状態に
あり、マスタINS10自身の姿勢及び方位は常に正確
に求められている。従って、航走体INS20を初期化
するには取付誤差又は取り付けミスアラインメントφが
求められればよい。
On the other hand, the master INS 10 is always in a driving state, and the attitude and orientation of the master INS 10 itself are always accurately obtained. Therefore, in order to initialize the traveling body INS20, it is only necessary to obtain the mounting error or the mounting misalignment φ.

【0008】航走体INS20の姿勢及び方位を高速に
推定する方式としてトランスファアラインメント法と呼
ばれる手法が使用されている。トランスファアラインメ
ント法によると、マスタINS10より航走体INS2
0へ信号が転送され、マスタINS10からの信号を使
用して取付誤差φが推定される。
[0008] As a method for quickly estimating the attitude and orientation of the INS 20, a method called a transfer alignment method is used. According to the transfer alignment method, the vehicle INS2 from the master INS10
0, and the mounting error φ is estimated using the signal from the master INS10.

【0009】より詳細には、航走体INS20によって
検出された加速度及び角速度とマスタINS10によっ
て検出された加速度及び角速度とを比較することによっ
て取付誤差φが推定される。又は、航走体INS20に
よって検出された速度及び姿勢角とマスタINS10に
よって検出された速度及び姿勢角とを比較することによ
って取付誤差φが推定される。
More specifically, the mounting error φ is estimated by comparing the acceleration and the angular velocity detected by the traveling vehicle INS20 with the acceleration and the angular velocity detected by the master INS10. Alternatively, the mounting error φ is estimated by comparing the speed and the attitude angle detected by the navigation vehicle INS20 with the speed and the attitude angle detected by the master INS10.

【0010】取付誤差φの推定演算は、カルマンフィル
タを使用し、航走体INS20によってなされる。カル
マンフィルタの観測値として(1)マスタ座標系と航走
体座標系の間の加速度差又は角速度差を用いる場合と、
(2)マスタ座標系と航走体座標系の間の速度差又は姿
勢差を使用する場合がある。
The calculation for estimating the mounting error φ is performed by the navigation vehicle INS20 using a Kalman filter. (1) using the acceleration difference or the angular velocity difference between the master coordinate system and the vehicle coordinate system as the observation value of the Kalman filter;
(2) A speed difference or a posture difference between the master coordinate system and the vehicle body coordinate system may be used.

【0011】[0011]

【発明が解決しようとする課題】従来の装置では、航走
体INS20とマスタINS10の間にてトランスファ
アラインメントが実行され、取付誤差φが推定演算され
ていた。マスタINS10と航走体INS20の間には
航走体2の取り付け状態に起因した固定的な取付誤差φ
の他に、艦船の動揺によって生ずる船体の歪δに起因し
た取付誤差φの変動成分が存在する。また両者間の相対
的距離に起因した遠心加速度誤差が存在する。従って正
確な取付誤差φを推定するには、これらの誤差を補正す
る必要がある。
In the conventional apparatus, transfer alignment is performed between the vehicle INS20 and the master INS10, and the mounting error φ is estimated and calculated. A fixed attachment error φ between the master INS 10 and the vehicle INS 20 due to the attachment state of the vehicle 2
In addition, there is a fluctuation component of the mounting error φ caused by the hull distortion δ caused by the motion of the ship. In addition, there is a centrifugal acceleration error caused by the relative distance between the two. Therefore, in order to accurately estimate the mounting error φ, it is necessary to correct these errors.

【0012】これらの誤差補正を含む取付誤差φの演算
を航走体INS20によって行うと、演算量が増加し、
カルマンフィルタの演算周期が長くなり、高速な初期化
を達成することができない。従って、航走体INS20
によってこれら誤差補正を正確且つ迅速に演算すること
は困難である。
When the calculation of the mounting error φ including these error corrections is performed by the marine vessel INS20, the calculation amount increases,
The operation cycle of the Kalman filter becomes long, and high-speed initialization cannot be achieved. Therefore, the airframe INS20
It is difficult to calculate these error corrections accurately and quickly.

【0013】本発明は、斯かる点に鑑み、トランスファ
アラインメント法により航走体の姿勢及び方位を推定す
る慣性航法装置において、船体の歪δ及び遠心加速度に
よって生ずる取付誤差φの推定値の誤差を低減すること
を目的とする。
In view of the above, the present invention provides an inertial navigation system for estimating the attitude and heading of a hull by a transfer alignment method, in which an error in an estimated value of a mounting error φ caused by hull distortion δ and centrifugal acceleration is reduced. The purpose is to reduce.

【0014】本発明は、斯かる点に鑑み、トランスファ
アラインメント法により航走体の姿勢及び方位を推定す
る慣性航法装置において、取付誤差φの推定値を迅速且
つ正確に求めることを目的とするものである。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide an inertial navigation system for estimating the attitude and azimuth of a vehicle using a transfer alignment method, in which an estimated value of a mounting error φ is quickly and accurately obtained. It is.

【0015】[0015]

【課題を解決するための手段】本発明によると、航行体
に装着された主慣性航法装置と上記航行体に装備された
航走体に装着された小型慣性航法装置とを含み、上記航
走体の姿勢及び方位の初期化をトランスファアラインメ
ント法によって行うように構成された慣性航法システム
において、上記航走体の発射装置の近傍に従慣性航法装
置を設け、上記主慣性航法装置と上記従慣性航法装置の
間にてトランスファアラインメント法によって取付誤差
を推定し、上記従慣性航法装置と上記小型慣性航法装置
との間にてトランスファアラインメント法によって取付
誤差を推定することによって上記航走体の姿勢及び方位
の初期化をするように構成されている。
According to the present invention, the above navigation includes a main inertial navigation device mounted on a navigation body and a small inertial navigation device mounted on a navigation body mounted on the navigation body. In an inertial navigation system configured to initialize the posture and orientation of the body by a transfer alignment method, an inertial navigation device is provided near the launching device of the navigation vehicle, and the main inertial navigation device and the subordinate inertia are provided. Estimating the mounting error between the navigation devices by the transfer alignment method, and estimating the mounting error between the subordinate inertial navigation device and the small inertial navigation device by the transfer alignment method, thereby setting the attitude of the navigation body and The azimuth is configured to be initialized.

【0016】本発明によると、慣性航法システムにおい
て、上記従慣性航法装置は上記小型慣性航法装置の起動
とは独立的に常に起動状態にされていることを特徴とす
る。更に、上記従慣性航法装置は複数の上記航走体に初
期化データを供給するように構成されていることを特徴
とする。また、上記従慣性航法装置は遠心加速度補正を
し、遠心加速度に起因した誤差を除去するように構成さ
れていることを特徴とする。
According to the present invention, in the inertial navigation system, the subordinate inertial navigation device is always activated independently of the activation of the small inertial navigation device. Further, the inertial navigation device is characterized in that it is configured to supply initialization data to a plurality of the vehicles. Further, the inertial navigation device is characterized in that it is configured to correct centrifugal acceleration and remove an error caused by centrifugal acceleration.

【0017】本発明によると、慣性航法システムにおい
て、上記従慣性航法装置は上記航行体の船体歪みに起因
した誤差を除去するように構成されていることを特徴と
する。また、Z軸周りの船体歪みが微小な場合には、上
記従慣性航法装置はZ軸周りの取付誤差の推定演算はし
ないでその代わりに従慣性航法装置の装備時に計測した
主慣性航法装置に対するZ軸周りの取付誤差を使用する
ことを特徴とする。
According to the present invention, in the inertial navigation system, the inertial navigation device is configured to remove an error caused by a hull distortion of the navigation body. Further, when the hull distortion around the Z axis is small, the above-mentioned inertial navigation system does not calculate the mounting error around the Z axis, but instead calculates the main inertial navigation system measured when the inertial navigation system is equipped. It is characterized in that a mounting error around the Z axis is used.

【0018】[0018]

【発明の実施の形態】図1及び図2を参照して説明す
る。本例によると、航走体発射装置3の近傍に更に従慣
性航法装置(以下に「スレーブINS」と称する。)3
0が設けられている。従って、本例では艦船1に装着さ
れたマスタINS10と航走体2に装着された航走体I
NS20と航走体発射装置3の近傍に装着されたスレー
ブINS30の3つの慣性航法装置が使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 and FIG. According to the present example, a subordinate inertial navigation device (hereinafter, referred to as “slave INS”) 3 is also provided near the vehicle launching device 3.
0 is provided. Accordingly, in this example, the master INS 10 mounted on the ship 1 and the marine vehicle I mounted on the marine vehicle 2
Three inertial navigation devices of NS20 and slave INS30 mounted near the vehicle launching device 3 are used.

【0019】マスタINS10は常に起動状態又は運転
状態にあるが、スレーブINS30も同様に常に起動状
態にある。航走体INS20は通常、非起動状態にあ
り、航走体2の発射直前に電源が投入され起動される。
The master INS 10 is always in a starting state or an operating state, while the slave INS 30 is also always in a starting state. The vehicle INS20 is normally in a non-activated state, and is powered on and activated immediately before the launch of the vehicle 2.

【0020】本例によるとこれら3つの慣性航法装置
(INS)10、20、30の間にてトランスファアラ
インメントが実行される。マスタINS10及びスレー
ブINS30の両者が起動状態となった時に、両者の間
にてトランスファアラインメントが実行される。従っ
て、マスタINS10に対するスレーブINS30の直
線偏差(相対的距離L2 )及び回転偏差(取付誤差
φ2 )又はマスタ座標とスレーブ座標の間の直線偏差及
び回転偏差は常に求められている。
According to the present example, a transfer alignment is performed between these three inertial navigation devices (INS) 10, 20, and 30. When both the master INS 10 and the slave INS 30 are activated, transfer alignment is performed between them. Therefore, the linear deviation (relative distance L 2 ) and rotation deviation (attachment error φ 2 ) of the slave INS 30 with respect to the master INS 10 or the linear deviation and rotation deviation between the master coordinates and the slave coordinates are always obtained.

【0021】即ち、マスタINS10とスレーブINS
30の間のトランスファアラインメントによって、スレ
ーブINS30又はスレーブINS30に設定された座
標系(以下に「スレーブ座標」と称する。)の取付誤差
φ2 又は取り付けミスアラインメントが推定される。ス
レーブINS30又はスレーブ座標の取付誤差φ2 の推
定演算には、船体の歪δに起因した誤差及び遠心加速度
誤差の補正がなされている。従って正確な取付誤差φが
得られている。
That is, the master INS 10 and the slave INS
The transfer alignment between the 30, the attachment error phi 2 or mounting misalignment slave INS30 or slave set coordinate system INS30 (hereinafter referred to as "slave coordinates".) Is estimated. The estimation calculation of the attachment error phi 2 of the slave INS30 or slave coordinates the correction of errors and the centrifugal acceleration error due to the distortion δ of the hull have been made. Therefore, an accurate mounting error φ is obtained.

【0022】航走体2の発射直前に航走体INS20と
スレーブINS30の間でトランスファアラインメント
が実行される。それによって、スレーブINS30に対
する航走体INS20の取付誤差φ3 が推定される。こ
の航走体INS20又は航走体2の取付誤差φ3 の推定
演算には、船体の歪δに起因した誤差及び遠心加速度誤
差の補正がなされない。航走体INS20とスレーブI
NS30の間の相対的距離L3 は十分小さく、従って船
体の歪に起因した誤差及び遠心加速度誤差は無視するこ
とができる。
Immediately before launching the vehicle 2, transfer alignment is performed between the vehicle INS20 and the slave INS30. Thereby, mounting error phi 3 of domestic Hashikarada INS20 the slave INS30 is estimated. This is Wataru Hashikarada INS20 or estimation operation of domestic Hashikarada second mounting error phi 3, it is not made correct errors and centrifugal acceleration error due to the distortion δ of the hull. Aircraft INS20 and Slave I
The relative distance L3 between the NSs 30 is small enough so that errors due to hull distortion and centrifugal acceleration errors are negligible.

【0023】こうして本例によると、航走体2の発射直
前に航走体INS20とスレーブINS30の間でトラ
ンスファアラインメントが実行され、このトランスファ
アラインメントでは、船体の歪δに起因した誤差及び遠
心加速度誤差に対する補正がなされないため、迅速に且
つ高精度にて航走体INS20の姿勢及び方位が求めら
れる。
According to the present embodiment, transfer alignment is performed between the marine vessel INS20 and the slave INS 30 immediately before the launching of the marine vessel 2. In this transfer alignment, an error caused by the hull distortion δ and a centrifugal acceleration error are caused. Since the correction is not made, the attitude and the azimuth of the vehicle INS20 are quickly and accurately obtained.

【0024】マスタINS10に対する航走体INS2
0の相対的距離L1 及び取付誤差φ 1 は、マスタINS
10に対するスレーブINS30の相対的距離L2 及び
取付誤差φ2 とスレーブINS30に対する航走体IN
S20の相対的距離L3 及び取付誤差φ3 を加算すれば
よい。
Aircraft INS2 for master INS10
0 relative distance L1And mounting error φ 1Is the master INS
10 relative distance L of slave INS 30 toTwoas well as
Mounting error φTwoAnd INV for the slave INS30
S20 relative distance LThreeAnd mounting error φThreeIf you add
Good.

【0025】[0025]

【数1】L1 =L2 +L3 φ1 =φ2 +φ3 L 1 = L 2 + L 3 φ 1 = φ 2 + φ 3

【0026】上述の議論では、マスタINS10とスレ
ーブINS30の間のトランスファアラインメントにお
いて推定演算される取付誤差φ2 は、X,Y,Z軸周り
の取付誤差φX ,φY ,φZ を含む。本例によると、こ
のトランスファアラインメントにおいて、Z軸周りの取
付誤差φZ の推定演算は省略され、X,Y軸周りの取付
誤差φX ,φY のみが推定演算されてよい。Z軸周りの
取付誤差φZ は、スレーブINS30の取り付けの際に
計測した値(固定値)が用いられてよい。
In the above discussion, the mounting error φ 2 estimated and calculated in the transfer alignment between the master INS 10 and the slave INS 30 includes the mounting errors φ X , φ Y , and φ Z around the X, Y, and Z axes. According to this example, in this transfer alignment, the calculation for estimating the mounting error φ Z around the Z axis is omitted, and only the mounting errors φ X and φ Y about the X and Y axes may be calculated. A value (fixed value) measured when the slave INS 30 is mounted may be used as the mounting error φ Z around the Z axis.

【0027】図5に示すように、艦船1の船尾方向(1
A−1B)に沿って船首方向にX軸、X軸に直交するよ
うに甲板に平行にY軸、X軸及びY軸に垂直に下方にZ
軸をとる。一般に、艦船1のZ軸周りの船体歪δZ は、
X,Y軸周りの船体歪δX ,δY に比べて十分小さい。
従って、Z軸周りの取付誤差φZ は固定値としてよい。
As shown in FIG. 5, the stern direction (1
A-1B) along the X-axis in the bow direction and the Y-axis parallel to the deck so as to be orthogonal to the X-axis, and the Z-axis vertically downward to the X-axis and the Y-axis
Take the axis. In general, the hull distortion δ Z of the ship 1 around the Z axis is
It is sufficiently smaller than the hull distortions δ X and δ Y around the X and Y axes.
Therefore, the mounting error φ Z around the Z axis may be a fixed value.

【0028】以上本発明の実施の形態について詳細に説
明したが、本発明はこれらの例に限定されることなく特
許請求の範囲に記載された発明の範囲にて様々な変更等
が可能であることは当業者にとって理解されよう。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to these examples, and various modifications can be made within the scope of the invention described in the claims. It will be understood by those skilled in the art.

【0029】以上にて航走体INSを例として説明した
が、本発明は、艦船に搭載され、トランスファアライン
メント法を用いて初期化を行うように構成された慣性航
法装置であればどのような慣性航法装置にも適用可能で
ある。
The above description has been made with respect to the vehicle INS as an example. However, the present invention is applicable to any inertial navigation device mounted on a ship and configured to perform initialization using a transfer alignment method. It is also applicable to inertial navigation systems.

【0030】[0030]

【発明の効果】本発明によると、トランスファアライン
メント法を用いて初期化を行う場合に、船体の歪δが存
在しても取付誤差φの推定を精度良く行うことができ、
航走体の初期化性能を向上することができる利点があ
る。
According to the present invention, when initialization is performed using the transfer alignment method, it is possible to accurately estimate the mounting error φ even if the hull distortion δ exists,
There is an advantage that the initialization performance of the vehicle can be improved.

【0031】本発明によると、トランスファアラインメ
ント法を用いて初期化を行う場合に、船体の歪δが存在
しても取付誤差φの推定を精度良く行うことができるか
ら、荒天航行時のように船体歪みが比較的大きい場合に
も、航走体の運用が可能となる利点がある。
According to the present invention, when initialization is performed using the transfer alignment method, the mounting error φ can be accurately estimated even when the hull distortion δ is present. Even when the hull distortion is relatively large, there is an advantage that the navigation body can be operated.

【0032】本発明によると、トランスファアラインメ
ント法を用いて初期化を行うように構成された慣性航法
装置において、取付誤差φの推定及び初期化を迅速且つ
正確に行うことができる利点がある。
According to the present invention, in an inertial navigation system configured to perform initialization using the transfer alignment method, there is an advantage that estimation and initialization of the mounting error φ can be performed quickly and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による艦船に搭載された慣性航法装置の
配置状態を示す図である。
FIG. 1 is a diagram showing an arrangement of an inertial navigation device mounted on a ship according to the present invention.

【図2】本発明による艦船に装備された航走体の配置状
態を示す図である。
FIG. 2 is a view showing an arrangement of a marine vehicle mounted on a ship according to the present invention.

【図3】従来の場合の艦船に搭載された慣性航法装置の
配置状態を示す図である。
FIG. 3 is a diagram showing an arrangement state of an inertial navigation device mounted on a ship in a conventional case.

【図4】従来の場合の艦船に装備された航走体の配置状
態を示す図である。
FIG. 4 is a diagram showing an arrangement state of a traveling body mounted on a ship in a conventional case.

【図5】艦船に設定したXYZ座標を説明するための説
明図である。
FIG. 5 is an explanatory diagram for explaining XYZ coordinates set for a ship.

【符号の説明】[Explanation of symbols]

1 艦船、 2 航走体、 3 航走体発射装置、 1
0 マスタINS、20 航走体INS、 30 スレ
ーブINS
1 ship, 2 hull, 3 hull launcher, 1
0 Master INS, 20 Aircraft INS, 30 Slave INS

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 俊吉 東京都世田谷区上馬4−11−28−301 (72)発明者 南木 真一 東京都大田区南蒲田2丁目16番46号 株式 会社トキメック内 (72)発明者 人見 亮 東京都大田区南蒲田2丁目16番46号 株式 会社トキメック内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shunkichi Takeuchi 4-11-28-301, Kamima, Setagaya-ku, Tokyo (72) Inventor Shinichi Nanki 2-16-46 Minami Kamata, Ota-ku, Tokyo Tokimec Co., Ltd. (72) Inventor Ryo Hitomi 2-16-46 Minami Kamata, Ota-ku, Tokyo Inside Tokimec Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 航行体に装着された主慣性航法装置と上
記航行体に装備された航走体に装着された小型慣性航法
装置とを含み、上記航走体の姿勢及び方位の初期化をト
ランスファアラインメント法によって行うように構成さ
れた慣性航法システムにおいて、 上記航走体の発射装置の近傍に従慣性航法装置を設け、
上記主慣性航法装置と上記従慣性航法装置の間にてトラ
ンスファアラインメント法によって取付誤差を推定し、
上記従慣性航法装置と上記小型慣性航法装置との間にて
トランスファアラインメント法によって取付誤差を推定
することによって上記航走体の姿勢及び方位の初期化を
するように構成された慣性航法システム。
1. A navigation system comprising: a main inertial navigation device mounted on a navigation device; and a small inertial navigation device mounted on a navigation device mounted on the navigation device, wherein initialization of the attitude and orientation of the navigation device is performed. In an inertial navigation system configured to perform by the transfer alignment method, an inertial navigation device is provided in the vicinity of the launching device of the vehicle,
Estimating the mounting error by the transfer alignment method between the main inertial navigation device and the sub inertial navigation device,
An inertial navigation system configured to initialize the attitude and orientation of the navigation body by estimating a mounting error between the subordinate inertial navigation device and the small inertial navigation device by a transfer alignment method.
【請求項2】 請求項1記載の慣性航法システムにおい
て、上記従慣性航法装置は上記小型慣性航法装置の起動
とは独立的に常に起動状態にされていることを特徴とす
る慣性航法システム。
2. The inertial navigation system according to claim 1, wherein the subordinate inertial navigation device is always activated independently of activation of the small inertial navigation device.
【請求項3】 請求項1又は2記載の慣性航法システム
において、上記従慣性航法装置は複数の上記航走体に初
期化データを供給するように構成されていることを特徴
とする慣性航法システム。
3. The inertial navigation system according to claim 1, wherein the subordinate inertial navigation device is configured to supply initialization data to the plurality of navigation vehicles. .
【請求項4】 請求項1、2又は3記載の慣性航法シス
テムにおいて、上記従慣性航法装置は遠心加速度補正を
し、遠心加速度に起因した誤差を除去するように構成さ
れていることを特徴とする慣性航法システム。
4. The inertial navigation system according to claim 1, wherein the subordinate inertial navigation device is configured to correct centrifugal acceleration and remove an error caused by centrifugal acceleration. Inertial navigation system.
【請求項5】 請求項1、2、3又は4記載の慣性航法
システムにおいて、上記従慣性航法装置は上記航行体の
船体歪みに起因した誤差を除去するように構成されてい
ることを特徴とする慣性航法システム。
5. The inertial navigation system according to claim 1, wherein the subordinate inertial navigation device is configured to remove an error caused by a hull distortion of the navigation body. Inertial navigation system.
【請求項6】 請求項5記載の慣性航法システムにおい
て、上記従慣性航法装置はZ軸周りの船体歪みが微小な
場合には、Z軸周りの取付誤差の推定演算はしないでそ
の代わりに上記従慣性航法装置の装備時に計測した上記
主慣性航法装置に対するZ軸周りの取付誤差を使用する
ことを特徴とする慣性航法システム。
6. The inertial navigation system according to claim 5, wherein when the hull distortion around the Z axis is very small, the subordinate inertial navigation device does not perform the calculation for estimating the mounting error around the Z axis but instead performs the above calculation. An inertial navigation system using a mounting error around the Z axis with respect to the main inertial navigation device measured when the secondary inertial navigation device is installed.
【請求項7】 請求項1、2、3、4、5又は6記載の
慣性航法システムにおいて、上記従慣性航法装置は上記
航走体の代わりに上記航行体に固定的に装備された装置
又はその近傍に装着されていることを特徴とする慣性航
法システム。
7. The inertial navigation system according to claim 1, wherein the sub-inertial navigation device is fixedly mounted on the navigation body instead of the navigation body. An inertial navigation system mounted near the inertial navigation system.
JP8649898A 1998-03-31 1998-03-31 Inertial navigation system Expired - Lifetime JP2893073B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8649898A JP2893073B1 (en) 1998-03-31 1998-03-31 Inertial navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8649898A JP2893073B1 (en) 1998-03-31 1998-03-31 Inertial navigation system

Publications (2)

Publication Number Publication Date
JP2893073B1 JP2893073B1 (en) 1999-05-17
JPH11281392A true JPH11281392A (en) 1999-10-15

Family

ID=13888652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8649898A Expired - Lifetime JP2893073B1 (en) 1998-03-31 1998-03-31 Inertial navigation system

Country Status (1)

Country Link
JP (1) JP2893073B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196977A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Flying object launcher
JP2011220791A (en) * 2010-04-08 2011-11-04 Japan Aviation Electronics Industry Ltd Inertial navigation system
CN104655132A (en) * 2015-02-11 2015-05-27 北京航空航天大学 Method for estimating body elastic deformation angle on basis of accelerometer
KR20190001832A (en) * 2017-06-28 2019-01-07 국방과학연구소 Inertial navigation system with adaptive time delay compensation and rapid initial alignment method thereof
CN109405825A (en) * 2018-11-09 2019-03-01 北京航天时代激光导航技术有限责任公司 A kind of used group inertia ontology high-precision assembly and disassembly methods of laser
WO2022042241A1 (en) * 2020-08-31 2022-03-03 蓝箭航天空间科技股份有限公司 Initial alignment method for distributed navigation system of recoverable carrier rocket

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525034B (en) * 2016-10-26 2017-09-08 郑州轻工业学院 A kind of inertial navigation system Transfer Alignment modeling method based on dual quaterion
CN109631883B (en) * 2018-12-17 2022-12-09 西安理工大学 Method for accurately estimating local attitude of aircraft based on node information sharing
CN113252029B (en) * 2021-06-04 2021-10-22 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) Astronomical navigation attitude transfer method based on optical gyroscope measurement information

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196977A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Flying object launcher
JP2011220791A (en) * 2010-04-08 2011-11-04 Japan Aviation Electronics Industry Ltd Inertial navigation system
CN104655132A (en) * 2015-02-11 2015-05-27 北京航空航天大学 Method for estimating body elastic deformation angle on basis of accelerometer
CN104655132B (en) * 2015-02-11 2017-08-25 北京航空航天大学 A kind of body elastic deformation angular estimation method based on accelerometer
KR20190001832A (en) * 2017-06-28 2019-01-07 국방과학연구소 Inertial navigation system with adaptive time delay compensation and rapid initial alignment method thereof
CN109405825A (en) * 2018-11-09 2019-03-01 北京航天时代激光导航技术有限责任公司 A kind of used group inertia ontology high-precision assembly and disassembly methods of laser
WO2022042241A1 (en) * 2020-08-31 2022-03-03 蓝箭航天空间科技股份有限公司 Initial alignment method for distributed navigation system of recoverable carrier rocket

Also Published As

Publication number Publication date
JP2893073B1 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US9342075B2 (en) Apparatus, method and computer readable media for calculating status, and movable body
JP6696704B2 (en) System and method for controlling the position of a ship near an object
US9599474B2 (en) Technique to improve navigation performance through carouselling
CN108627154B (en) Polar region operation gesture and course reference system
JP2893073B1 (en) Inertial navigation system
JPH04265817A (en) Inertial-navigation-equipment aligning apparatus
CA2940085C (en) Method and device for determining navigation data
US7770445B2 (en) Device for wind estimation and method associated therewith
CN107478110A (en) A kind of rotating missile attitude angle computational methods based on state observer
Xinjing et al. Horizontal path following for underactuated AUV based on dynamic circle guidance
US20240140581A1 (en) Ship launching support system, ship control device, ship launching support method and program
CN112684453B (en) Positioning error correction method based on unmanned submarine bistatic sound system
Dukan et al. Integration filter for APS, DVL, IMU and pressure gauge for underwater vehicles
JP2896407B1 (en) Inertial navigation device
KR102159937B1 (en) Unmanned submersible with navigation initial alignment function
JP3162187B2 (en) Method and apparatus for setting initial coordinate values of inertia detecting means of moving body
WO2000052413A9 (en) Highly accurate long range optically-aided inertially guided type missile
JP2009294009A (en) Navigation apparatus and attitude angle calculation method and attitude angle calculation program for navigation apparatus
JP2881225B1 (en) Inertial navigation device
JP3137438B2 (en) Initial coordinate value setting method for inertial detection means of moving object
JPH0989585A (en) Inertial navigation system
JPH06213669A (en) Calibration method for set value of coordinate system of inertia reference device of moving body
JP2525072B2 (en) Method of initializing flying body guidance device
JP3899803B2 (en) Guidance control device
US11913757B2 (en) Constraining navigational drift in a munition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term