JPH11281222A - Controller of quantity of refrigerant circulating in open show case - Google Patents

Controller of quantity of refrigerant circulating in open show case

Info

Publication number
JPH11281222A
JPH11281222A JP10085419A JP8541998A JPH11281222A JP H11281222 A JPH11281222 A JP H11281222A JP 10085419 A JP10085419 A JP 10085419A JP 8541998 A JP8541998 A JP 8541998A JP H11281222 A JPH11281222 A JP H11281222A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
evaporator
degree
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10085419A
Other languages
Japanese (ja)
Inventor
Yoichi Anzai
洋一 安西
Satoru Hirakuni
悟 平▲くに▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd, Mitsubishi Electric Corp filed Critical Nihon Kentetsu Co Ltd
Priority to JP10085419A priority Critical patent/JPH11281222A/en
Publication of JPH11281222A publication Critical patent/JPH11281222A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of times of start and stoppage of a compressor, by controlling the aperture of an electric expansion valve and controlling the quantity of a refrigerant circulating in a refrigerant circuit, and keeping the quantity of a refrigerant constant at a set temperature within a refrigerator, and adjusting the temperature of the refrigerant at the outlet of an evaporator at a proper temperature. SOLUTION: A refrigerant pressurized and liquefied with a compressor 1 and a condenser 3 is depressurized with an electric control valve whose aperture is controllable with a pulse motor, and is evaporated and gasified with an evaporator 4, and again it is sucked with a compressor 1. The control of the aperture of this expansion valve 5 is performed by relating the two factors of the in-refrigerator temperature of an open case arid the overheat degree of the refrigerant at the outlet of the evaporator to each other. The 0 origin production of the pulse motor, that is, the origin production where the valve part comes to full close position is made at the time of turning on the power of the refrigerant circuit and the time of reopening of the cooling after finish of defrost. A controller outputs the planned number of pulses as initial aperture to the expansion valve 5, and operates and stores the differences between the set in-refrigerator temperature and the degree-of-overheat lower limit value and the actual in-refrigerator temperature and the temperatures detected by the evaporator inlet and outlet refrigerant detection means 6 and 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オープンショーケ
ースの冷媒回路における、開度調節可能な電動式膨張弁
を用いた冷媒循環量制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the amount of circulating refrigerant in a refrigerant circuit of an open showcase using an electric expansion valve whose opening can be adjusted.

【0002】[0002]

【従来の技術】図5は、従来のオープンショーケースの
冷媒循環量制御装置を示し、図において1は圧縮機、2
は低圧圧力スイッチ、3は凝縮器、4は蒸発器、11は
蒸発器4の入口側に接続された温度式膨張弁、12は温
度式膨張弁11の入口側に設けられた液管電磁弁、13
は蒸発器4の出口ガス温度を検出する蒸発器出口ガス温
度検出器である。8は庫内温度センサー、14は庫内温
度センサー8の信号により液管電磁弁12を制御する制
御装置である。
2. Description of the Related Art FIG. 5 shows a conventional open-showcase refrigerant circulation amount control device.
Is a low pressure switch, 3 is a condenser, 4 is an evaporator, 11 is a temperature type expansion valve connected to the inlet side of the evaporator 4, 12 is a liquid pipe solenoid valve provided on the inlet side of the temperature type expansion valve 11. , 13
Is an evaporator outlet gas temperature detector for detecting the outlet gas temperature of the evaporator 4. Reference numeral 8 denotes a temperature sensor in the refrigerator, and 14 denotes a control device for controlling the liquid pipe solenoid valve 12 based on a signal from the temperature sensor 8 in the refrigerator.

【0003】次に動作について説明する。図6は、図5
に示した従来のオープンショーケースの冷媒循環量制御
装置の動作フローである。以下、図6に示す動作フロー
について説明する。温度式膨張弁11は、蒸発器4の出
口ガス温度を検出する出口ガス温度検出器13からの信
号に基づいて、蒸発器4の出口ガス温度が設定値より大
きいときは弁を開き、冷媒循環量を増やすように動作
し、蒸発器4の出口ガス温度が設定値より小さいときは
弁を閉じ、冷媒循環量を減らすように動作することによ
って、蒸発器4の出口ガス温度が設定値で安定するよう
弁開度を調節する。
Next, the operation will be described. FIG. 6 shows FIG.
3 is an operation flow of the conventional open showcase refrigerant circulation amount control device shown in FIG. Hereinafter, the operation flow shown in FIG. 6 will be described. The temperature-type expansion valve 11 opens the valve when the outlet gas temperature of the evaporator 4 is higher than a set value based on a signal from the outlet gas temperature detector 13 for detecting the outlet gas temperature of the evaporator 4 to circulate the refrigerant. When the outlet gas temperature of the evaporator 4 is smaller than the set value, the valve is closed, and the operation is performed so as to reduce the amount of circulating refrigerant, so that the outlet gas temperature of the evaporator 4 is stabilized at the set value. Adjust the valve opening to perform

【0004】また、制御装置14は、オープンショーケ
ースが設置される店舗が開店中か閉店時かを、例えば照
明スイッチのON/OFF状態によって判別し、現在が
開店中であれば、庫内温度センサー8からの信号をあら
かじめ設定されている開店中の設定庫内温度と比較し、
庫内温度センサー8の検出温度が開店中の設定庫内温度
以下となった場合には、液管電磁弁12を閉じるよう信
号を出力し冷媒循環を遮断する。
The control device 14 determines whether the store where the open showcase is installed is open or closed, for example, based on the ON / OFF state of a lighting switch. The signal from the sensor 8 is compared with a preset temperature inside the store during opening,
When the temperature detected by the inside temperature sensor 8 becomes equal to or lower than the set inside temperature during opening of the store, a signal is output to close the liquid pipe solenoid valve 12 and the refrigerant circulation is shut off.

【0005】さらに、制御装置14は、庫内温度センサ
ー8の検出温度が開店中の設定庫内温度から定められた
ディファレンシャル値分だけ上昇すると、液管電磁弁1
2を開くよう信号を出力し、冷媒を循環させるように液
管電磁弁12を制御する。
Further, when the detected temperature of the internal temperature sensor 8 rises by a predetermined differential value from the set internal temperature during opening of the store, the control device 14 controls the liquid pipe solenoid valve 1.
A signal is output to open the second solenoid valve 2, and the liquid pipe solenoid valve 12 is controlled to circulate the refrigerant.

【0006】現在が閉店時の場合は、制御装置14は、
庫内温度センサー8の検出温度をあらかじめ設定されて
いる閉店時の設定庫内温度と比較し、前記開店中と同様
の制御を行なう。開店中と閉店時とで設定庫内温度を異
なる値としているのは、閉店時には、例えば照明が消さ
れることによる照明の輻射熱などの負荷軽減があるの
で、開店中よりも庫内温度の設定を高くし、庫内に置か
れる商品温度が開店中と比べ低くなり過ぎることを防止
する為である。
When the store is currently closed, the control device 14
The temperature detected by the inside temperature sensor 8 is compared with a preset inside temperature when the store is closed, and the same control as during the opening of the store is performed. The reason that the inside temperature is set to a different value between when the store is opened and when the store is closed is that, when the store is closed, there is a reduction in load such as radiant heat of lighting caused by turning off the lighting. This is to prevent the temperature of the product placed in the refrigerator from becoming too low as compared to when the store is open.

【0007】圧縮機1は、上記のごとく制御される温度
式膨張弁11の弁開度及び、液管電磁弁12の開閉によ
って運転圧力が変動し、液管電磁弁12が閉じられ、冷
媒循環が遮断された場合などには低圧圧力スイッチ2の
作動により停止する場合がある。
The operating pressure of the compressor 1 fluctuates due to the valve opening of the temperature type expansion valve 11 controlled as described above and the opening and closing of the liquid pipe solenoid valve 12, the liquid pipe solenoid valve 12 is closed, and the refrigerant circulates. May be stopped by the operation of the low pressure switch 2 when the power supply is shut off.

【0008】なお、図7は、図5、図6に示した従来の
オープンショーケースの冷媒循環量制御装置による、オ
ープンショーケース庫内温度及び蒸発器出口過熱度、圧
縮機吸入圧力の変化を示すものである。
FIG. 7 shows changes in the temperature of the open showcase compartment, the degree of superheat at the evaporator outlet, and the compressor suction pressure by the conventional open showcase refrigerant circulation amount control device shown in FIGS. It is shown.

【0009】[0009]

【発明が解決しようとする課題】従来のオープンショー
ケースの冷媒循環量制御装置は以上のように構成されて
いるので、冷媒回路内の冷媒循環量は、蒸発器出口冷媒
の過熱度を一定にしようとする温度式膨張弁の弁開度調
節と、庫内温度に基づく液管電磁弁の開閉によって制御
されるが、前記温度式膨張弁の弁開度調節と庫内温度に
基づく液管電磁弁の開閉は、互いに関連すること無く各
々独立に行われる為、庫内温度の調節と冷媒循環量制御
の関係は液管電磁弁の開閉動作のみであり、このため、
庫内温度の変動幅は液管電磁弁の開閉ディファレンシャ
ル値以上とならざるを得ないという問題点があった。
Since the conventional open-showcase refrigerant circulation amount control device is constructed as described above, the amount of refrigerant circulation in the refrigerant circuit keeps the degree of superheat of the refrigerant at the evaporator outlet constant. It is controlled by adjusting the opening degree of the temperature type expansion valve and opening and closing the liquid pipe solenoid valve based on the temperature inside the refrigerator. Since the opening and closing of the valves are performed independently without being related to each other, the relationship between the adjustment of the internal temperature and the control of the refrigerant circulation amount is only the opening and closing operation of the liquid pipe solenoid valve.
There is a problem that the fluctuation range of the internal temperature must be equal to or larger than the differential value for opening and closing the liquid pipe solenoid valve.

【0010】また、液管電磁弁の開閉にともなう圧縮機
の運転圧力の変動により低圧圧力スイッチが作動し、圧
縮機の起動・停止が起こる為、圧縮機の運転も不安定か
つ非効率的となるという問題点があった。
[0010] Further, since the low pressure switch is actuated by the fluctuation of the operating pressure of the compressor due to the opening and closing of the liquid pipe solenoid valve, and the compressor is started and stopped, the operation of the compressor is unstable and inefficient. There was a problem of becoming.

【0011】本発明は、上記のような問題点を解消する
為になされたもので、庫内温度を設定温度で安定して維
持し、庫内温度の変動幅を極力小さくするとともに、圧
縮機の起動・停止の回数を低減し、圧縮機の運転状態を
安定させ運転効率を改善できるオープンショーケースの
冷媒循環量制御装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to stably maintain the internal temperature at a set temperature, minimize the fluctuation range of the internal temperature, and reduce the compressor temperature. It is an object of the present invention to obtain an open-showcase refrigerant circulation amount control device capable of reducing the number of times of start / stop of the compressor, stabilizing the operation state of the compressor, and improving the operation efficiency.

【0012】[0012]

【課題を解決するための手段】本発明は前記目的を達成
するため、第1に、圧縮機、凝縮器、減圧膨張機構及び
蒸発器を順次連結して構成され、前記減圧膨張機構とし
て、開度調節可能な電動式膨張弁を設けたオープンショ
ーケースの冷媒回路において、オープンショーケースの
庫内温度及び蒸発器入口冷媒温度、蒸発器出口冷媒温度
を各々検出する温度検出手段を設け、さらに前記温度検
出手段からの入力信号により、現在庫内温度、過熱度
(現在蒸発器出入口冷媒温度差)を検出、演算する制御
装置を設け、前記制御装置はオープンショーケースが設
置される店舗が開店中か閉店時かを判別する手段を有
し、現在が開店中か閉店時かによってあらかじめ設定さ
れている各々異なる値の設定庫内温度及び過熱度下限値
を選択し、検出した現在庫内温度と設定庫内温度との偏
差及び、現在過熱度と過熱度下限値との偏差を演算し、
前記庫内温度の偏差及び過熱度の偏差の値に応じてあら
かじめ定められた複数の前記電動式膨張弁の開度制御方
法の中から制御方法を選択し、前記電動式膨張弁の開度
を制御することによって、冷媒回路内の冷媒循環量を制
御するようにしたことにより、冷媒回路内の冷媒循環量
は庫内温度を設定温度で一定に保ち、かつ蒸発器出口冷
媒過熱度が適正値になるよう調節される。
In order to achieve the above object, the present invention firstly comprises a compressor, a condenser, a decompression expansion mechanism and an evaporator which are sequentially connected. In an open showcase refrigerant circuit provided with a degree-adjustable electric expansion valve, provided is a temperature detecting means for detecting the internal temperature of the open showcase, the evaporator inlet refrigerant temperature, and the evaporator outlet refrigerant temperature, further comprising: A control device for detecting and calculating the current inside temperature and the degree of superheat (current refrigerant temperature difference between the inlet and outlet of the evaporator) based on an input signal from the temperature detecting means is provided, and the control device is opening a store where an open showcase is installed. Means for judging whether the store is closed or not, selecting a set inside temperature and a superheat degree lower limit of different values which are preset depending on whether the store is currently open or closed. Deviation inside temperature and the set temperature and calculates the deviation between the current superheating degree and superheat lower limit,
A control method is selected from among a plurality of opening control methods of the electric expansion valve that are predetermined according to the deviation of the internal temperature and the deviation of the superheat degree, and the opening degree of the electric expansion valve is selected. By controlling the amount of circulating refrigerant in the refrigerant circuit by controlling, the amount of circulating refrigerant in the refrigerant circuit keeps the temperature in the refrigerator constant at the set temperature, and the degree of superheat of the refrigerant at the evaporator outlet is an appropriate value. It is adjusted to become.

【0013】第2に、蒸発器入口冷媒温度検出手段に代
えて、蒸発器出口冷媒圧力検出手段を設け、制御装置
は、前記圧力検出手段より入力した圧力信号を当該圧力
相当の飽和温度に換算して、蒸発器出口冷媒温度検出手
段より入力した温度信号とより過熱度を演算するように
したことにより、蒸発器出口の冷媒過熱度制御は、圧力
検出手段で蒸発器出口冷媒圧力を検出して飽和温度に換
算した値で制御することができる。
Secondly, an evaporator outlet refrigerant pressure detecting means is provided in place of the evaporator inlet refrigerant temperature detecting means, and the control device converts the pressure signal input from the pressure detecting means into a saturation temperature corresponding to the pressure. Then, by calculating the superheat degree and the temperature signal input from the evaporator outlet refrigerant temperature detection means, the refrigerant superheat degree control of the evaporator outlet, the evaporator outlet refrigerant pressure is detected by the pressure detection means Can be controlled by the value converted to the saturation temperature.

【0014】[0014]

【発明の実施の形態】実施の形態1.以下、この発明の
一実施例を図1、図2について説明する。図1は本発明
によるオープンショーケースの冷媒循環量制御装置を示
し、図において1は圧縮機、2は低圧圧力スイッチ、3
は凝縮器、4は蒸発器、5は蒸発器4の入口側に接続さ
れた電動式膨張弁であり、本実施例ではパルスモーター
駆動方式の電動式膨張弁である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an apparatus for controlling the amount of refrigerant circulating in an open showcase according to the present invention.
Is a condenser, 4 is an evaporator, 5 is an electric expansion valve connected to the inlet side of the evaporator 4, and in this embodiment, it is a pulse motor driven electric expansion valve.

【0015】6は蒸発器4の入口冷媒温度検出手段、7
は蒸発器4の出口冷媒温度検出手段、8は庫内温度検出
手段であり、9は当該オープンショーケースが設置され
る店舗が開店中か閉店時かを判別する手段を有し、蒸発
器出入口冷媒温度検出手段6、7及び、庫内温度検出手
段8からの信号を入力とし、かつ電動式膨張弁5の開度
調節量を演算し、開度制御信号を出力する制御装置であ
る。
6 is a means for detecting the refrigerant temperature at the inlet of the evaporator 4, 7
Is a means for detecting the refrigerant temperature at the outlet of the evaporator 4, 8 is a means for detecting the temperature in the refrigerator, 9 is a means for determining whether the store in which the open showcase is installed is open or closed, This is a control device that receives signals from the refrigerant temperature detecting means 6 and 7 and the internal temperature detecting means 8 as inputs, calculates an opening adjustment amount of the electric expansion valve 5, and outputs an opening control signal.

【0016】次に動作について説明する。 まず、図1
に示した冷媒回路における冷媒の流れを述べると、圧縮
機1、凝縮器3で昇圧、液化された冷媒は、パルスモー
ターによって開度調節可能な電動式膨張弁5で減圧さ
れ、蒸発器4で蒸発気化し、再び圧縮機1に吸引され
る。上記のごとく、冷媒回路内を循環する冷媒の循環量
は電動式膨張弁5の開度によって制御されるが、本発明
はこの電動式膨張弁の開度制御を、オープンショーケー
ス庫内温度及び蒸発器出口冷媒過熱度の2因子を関連づ
けて行なうようにするものである。
Next, the operation will be described. First, FIG.
The refrigerant flow in the refrigerant circuit shown in FIG. 1 is described. The refrigerant pressurized and liquefied in the compressor 1 and the condenser 3 is decompressed by an electric expansion valve 5 whose opening can be adjusted by a pulse motor, and It is evaporated and vaporized and sucked into the compressor 1 again. As described above, the circulation amount of the refrigerant circulating in the refrigerant circuit is controlled by the opening degree of the electric expansion valve 5, and the present invention controls the opening degree of the electric expansion valve by controlling the temperature in the open showcase chamber and the temperature. The two factors of the superheat degree of the refrigerant at the evaporator outlet are performed in association with each other.

【0017】電動式膨張弁5の開度制御は、制御装置9
によって行われるが、以下、制御装置9の具体的な制御
方法を図2について説明する。
The opening degree of the electric expansion valve 5 is controlled by a control device 9.
Hereinafter, a specific control method of the control device 9 will be described with reference to FIG.

【0018】まず、オープンショーケースの冷却開始時
には、電動式膨張弁の開度調節を行なうパルスモーター
の0基点出し、すなわち弁部が全閉位置となる基点出し
を行なう。なお、冷却開始時とは、冷媒回路の電源を入
れたとき及び、一定周期で行われるオープンショーケー
スのデフロスト終了後の冷却再開時をいう。
First, at the start of the cooling of the open showcase, the zero point of the pulse motor for adjusting the opening of the electric expansion valve is set, that is, the base point at which the valve section is in the fully closed position is set. Note that the start of cooling refers to the time when the power of the refrigerant circuit is turned on and the time when cooling is restarted after the defrost of the open showcase, which is performed at a constant cycle.

【0019】0基点出し完了後、初期開度としてあらか
じめ定められたパルス数を電動式膨張弁5へ出力し、や
はりあらかじめ設定されている時間だけ前記初期開度で
維持した後、蒸発器出入口冷媒温度検出手段6、7及び
庫内温度検出手段8の信号を入力し、庫内温度検出手段
8の温度を現在庫内温度Ta、蒸発器出入口冷媒温度検
出手段6、7の差を演算して、現在過熱度SHとして記
憶する。
After completion of the zero base point output, a predetermined number of pulses as an initial opening is output to the motor-operated expansion valve 5, which is also maintained at the initial opening for a preset time, and then the evaporator inlet / outlet refrigerant is maintained. The signals of the temperature detecting means 6, 7 and the internal temperature detecting means 8 are input, and the temperature of the internal temperature detecting means 8 is calculated by calculating the difference between the current internal temperature Ta and the evaporator inlet / outlet refrigerant temperature detecting means 6, 7. Is stored as the current degree of superheat SH.

【0020】ここで制御装置9は、当該オープンショー
ケースが設置されている店舗が開店中か閉店時かを判別
するが、この判別方法としては、例えば時限タイマーに
よる開店時間、閉店時間の入力あるいは、自動もしくは
手動による切換スイッチ操作、照明ON/OFFによる
判別など、様々な方法がある。
Here, the control device 9 determines whether the store in which the open showcase is installed is open or closed. For example, the control device 9 inputs the opening time and closing time using a timed timer or There are various methods such as automatic or manual changeover switch operation, and discrimination by lighting ON / OFF.

【0021】現在が開店中であれば、制御装置9は開店
中の設定庫内温度a、過熱度下限値bと、現在庫内温度
Ta、現在過熱度SHとを比較し、各々の偏差ΔTa、
ΔSHを算出する。また、現在が閉店時であれば、開店
中とは別の設定庫内温度c、過熱度下限値dと、現在庫
内温度Ta、現在過熱度SHとを比較し、各々の偏差Δ
Ta、ΔSHを算出する。以下は、開店中、閉店時とも
同様に庫内温度の偏差ΔTa、過熱度の偏差ΔSHの値
に基づき電動式膨張弁5の開度変更パルス数ΔPuls
eを、次のように現在の状態に応じて異なる演算方法で
算出する。
If the store is currently open, the control device 9 compares the set internal temperature a and the superheat degree lower limit value b during the store opening with the current internal temperature Ta and the current superheat degree SH, and calculates a deviation ΔTa ,
Calculate ΔSH. Further, if the store is currently closed, the set inside temperature c and the superheat degree lower limit d, which are different from those during the opening of the store, are compared with the current store temperature Ta and the current superheat degree SH, and each deviation Δ
Ta and ΔSH are calculated. In the following, the opening change pulse number ΔPuls of the electric expansion valve 5 is based on the difference ΔTa of the internal temperature and the difference ΔSH of the degree of superheat both during opening and closing.
e is calculated by a different calculation method according to the current state as follows.

【0022】まず、庫内温度の偏差ΔTaがあらかじめ
設定されている第1の偏差A以上の場合は、例えばプル
ダウン時のように急速冷却が必要なので、過熱度下限値
b又はdよりも現在過熱度SHが小さくならない範囲で最
大限冷媒循環量を確保するため、ΔSH=0となるよう
ΔPulseを決定する。
First, when the deviation ΔTa of the internal temperature is equal to or larger than the first deviation A set in advance, rapid cooling is required, for example, at the time of pull-down, so that the current superheat is lower than the superheat degree lower limit b or d. ΔPulse is determined so that ΔSH = 0 so as to ensure the maximum refrigerant circulation amount within a range where the degree SH does not decrease.

【0023】次に、庫内温度の偏差ΔTaが前記第1の
設定偏差Aよりも小さくなり、かつ別に定められた第2
の設定偏差B以上でかつ、過熱度の偏差ΔSHが0以上
の場合には、現在庫内温度は設定庫内温度から所定の範
囲内にあり、現在過熱度が過熱度下限値以上取れている
安定状態なので、現在の電動式膨張弁5の開度を維持す
るようΔPulse=0と決定する。
Next, the deviation ΔTa of the internal temperature becomes smaller than the first set deviation A, and the second predetermined deviation A is determined.
If the deviation ΔSH of the degree of superheat is not less than 0 and the deviation ΔSH of the degree of superheat is not less than 0, the current internal temperature is within a predetermined range from the set internal temperature, and the current superheat degree is equal to or higher than the superheat degree lower limit value. Since it is in a stable state, ΔPulse = 0 is determined so that the current opening degree of the electric expansion valve 5 is maintained.

【0024】さらに、庫内温度の偏差ΔTaが、前記条
件同様A>ΔTa≧Bだが、過熱度の偏差ΔSHが0未
満の場合には、負荷と冷媒循環量のバランスが悪いので
ΔSH=0となるようΔPulseを決定する。なお、
この場合には電動式膨張弁5の開度は閉め方向に制御さ
れる。
Furthermore, if the deviation ΔTa of the internal temperature is A> ΔTa ≧ B as in the above condition, but the deviation ΔSH of the superheat degree is less than 0, the load and the refrigerant circulation amount are not well balanced, so that ΔSH = 0. ΔPulse is determined as follows. In addition,
In this case, the opening of the electric expansion valve 5 is controlled in the closing direction.

【0025】さらに、庫内温度の偏差ΔTaが、第2の
設定偏差B未満となった場合は、現在庫内温度Ta=設
定庫内温度a又はcとなるようΔPulseを決定す
る。なお、この場合にも電動式膨張弁(5)の開度は閉め
方向に制御される。
Further, when the deviation ΔTa of the internal temperature becomes smaller than the second set deviation B, ΔPulse is determined so that the current internal temperature Ta = the set internal temperature a or c. In this case as well, the degree of opening of the electric expansion valve (5) is controlled in the closing direction.

【0026】以上述べたごとく、制御装置9は、庫内温
度の偏差ΔTa及び過熱度の偏差ΔSHの値に基づき、
電動式膨張弁5のパルス変更量ΔPulseを現在の状
態に適した制御方法によって決定するが、前記設定偏差
A及びBは、例えばA=0.5、B=−0.5のように
定めれば、制御装置9は、庫内温度Taを設定庫内温度
aまたはc±0.5degの範囲に維持するよう動作す
る。また、閉店時の設定庫内温度cは、開店中の設定庫
内温度a+2deg程度とするのが商品温度を開店中と
閉店時とで同一とするのに望ましい。さらに、開店中の
過熱度下限値bは5deg程度、閉店時の過熱度下限値
dは15deg程度とすると、良好な負荷と冷媒循環量
のバランスが得られる。
As described above, the control device 9 calculates the deviation ΔTa of the internal temperature and the deviation ΔSH of the degree of superheat based on
The pulse change amount ΔPulse of the electric expansion valve 5 is determined by a control method suitable for the current state. The set deviations A and B are determined as, for example, A = 0.5, B = −0.5. For example, the control device 9 operates to maintain the internal temperature Ta in the range of the set internal temperature a or c ± 0.5 deg. Further, it is desirable that the set internal temperature c at the time of closing the store is set to about the set internal temperature a during opening of the store a + 2 deg so that the product temperature is the same between when the store is open and when the store is closed. Further, when the superheat degree lower limit b during opening of the store is about 5 deg and the superheat degree lower limit d during closing of the store is about 15 deg, a good balance between the load and the refrigerant circulation amount can be obtained.

【0027】電動式膨張弁5のパルス変更量ΔPuls
eを決定した制御装置9は、現在のパルス数Pulse
にΔPulseを加え、変更後のパルス数Pulsen
ewを算出し、前記Pulsenewの値をあらかじめ
設定されている電動式膨張弁5のパルス数下限値Pul
seminと比較する。
Pulse change amount ΔPuls of electric expansion valve 5
e, the control device 9 determines the current pulse number Pulse
Is added to ΔPulse, and the changed pulse number Pulsen
ew is calculated, and the value of the Pulsenew is set to a preset pulse number lower limit value Pul of the electric expansion valve 5 in advance.
Compare with semin.

【0028】Pulseminを設けているのは、特に
軽負荷時の場合など、制御装置9が電動式膨張弁5の開
度を閉め方向に変更し続けたとき、パルスモーターの弁
開度制御下限値を超えた場合には冷媒循環量制御不可能
と判断し、電動式膨張弁5を全閉とし、冷媒循環を遮断
する為である。
The Pulsemin is provided when the control device 9 keeps changing the opening of the electric expansion valve 5 in the closing direction, especially in the case of a light load, and the lower limit of the valve opening control of the pulse motor. Is exceeded, it is determined that the refrigerant circulation amount cannot be controlled, the electric expansion valve 5 is fully closed, and the refrigerant circulation is shut off.

【0029】変更後のパルス数Pulsenewがパル
ス数下限値Pulsemin以上の場合は、制御装置9
は電動式膨張弁5のパルス数がPulsenewになる
よう信号を出力し、弁開度を調節する。パルスモーター
を駆動し弁開度を調節する制御装置9は、定められた周
期ごとに上記動作を行なうが、パルスモーター駆動周期
は15秒程度に設定すると良好な制御が得られる。
If the changed pulse number Pulsenew is equal to or greater than the pulse number lower limit Pulsemin, the controller 9
Outputs a signal so that the number of pulses of the electric expansion valve 5 becomes Pulsenew, and adjusts the valve opening. The control device 9 that drives the pulse motor and adjusts the valve opening degree performs the above-described operation at predetermined intervals. However, when the pulse motor drive period is set to about 15 seconds, good control can be obtained.

【0030】さて、変更後のパルス数Pulsenew
がパルス数下限値Pulsemin未満となった場合
は、制御装置9は電動式膨張弁5が全閉となるようパル
スモーターに信号を出力する。その後、定められた周期
ごとに現在庫内温度Taを検出し、Taが設定庫内温度
aまたはcから、あらかじめ定められた設定ディファレ
ンシャル値diff分高くなったら、強制全閉から復帰
する際の初期開度としてあらかじめ設定されているパル
ス数で所定時間固定した後、通常の制御に戻るよう動作
する。
Now, the pulse number Pulsenew after the change
Is smaller than the pulse number lower limit value Pulsemin, the control device 9 outputs a signal to the pulse motor so that the electric expansion valve 5 is fully closed. Thereafter, the current internal temperature Ta is detected at a predetermined cycle, and when Ta becomes higher than the set internal temperature a or c by a predetermined set differential value diff, an initial time at the time of returning from the forced full closing is set. After fixing for a predetermined time with the number of pulses set in advance as the opening degree, the operation returns to the normal control.

【0031】上記のような電動式膨張弁5を全閉にして
冷媒循環を遮断する制御は、従来技術の液管電磁弁を閉
じる制御と同様圧縮機1の吸入圧力が低下し、低圧圧力
スイッチ2が作動し圧縮機1が停止するが、これまで述
べた通り、制御装置9は庫内温度と蒸発器出口過熱度と
いう2因子を用いて電動式膨張弁5の開度制御を行な
い、随時冷媒循環量を調節しているので、前記全閉制御
に至る頻度は従来技術よりも減少する。
In the control for shutting off the refrigerant circulation by fully closing the electric expansion valve 5 as described above, the suction pressure of the compressor 1 decreases and the low-pressure switch 2 operates and the compressor 1 stops, but as described above, the control device 9 controls the opening of the electric expansion valve 5 using two factors of the internal temperature and the degree of superheat at the evaporator outlet. Since the amount of circulating refrigerant is adjusted, the frequency of the fully closed control is reduced as compared with the related art.

【0032】なお、図3は、図1、図2に示した実施の
形態1の冷媒循環量制御装置によるオープンショーケー
ス庫内温度、冷却器出口過熱度、圧縮機吸入圧力及び電
動式膨張弁のパルス数の変化を示すものである。
FIG. 3 shows the temperature in the open showcase compartment, the superheat degree at the cooler outlet, the compressor suction pressure, and the electric expansion valve by the refrigerant circulation amount control device of the first embodiment shown in FIGS. 3 shows the change in the number of pulses.

【0033】実施の形態2.図4は他の実施例を示すも
ので、蒸発器出口冷媒過熱度の検出手段が前記実施例1
と異なる。10は蒸発器出口圧力検出手段で、制御装置
9は蒸発器出口圧力検出手段10からの圧力信号を入力
し、その圧力相当の飽和温度に換算する機能を有する。
制御装置9は、蒸発器出口冷媒温度検出手段7から入力
される温度信号と蒸発器出口圧力検出手段10から入力
される圧力信号を飽和温度に換算した値とで蒸発器出口
冷媒の過熱度を算出する。制御方法は実施例1と同様で
あるが、圧力により正確な蒸発温度が得られるので、制
御の精度が向上する。
Embodiment 2 FIG. FIG. 4 shows another embodiment, wherein the means for detecting the degree of superheat of the refrigerant at the evaporator outlet is the same as that of the first embodiment.
And different. Reference numeral 10 denotes evaporator outlet pressure detecting means. The control device 9 has a function of receiving a pressure signal from the evaporator outlet pressure detecting means 10 and converting the pressure signal into a saturation temperature corresponding to the pressure.
The controller 9 determines the degree of superheat of the refrigerant at the evaporator outlet using the temperature signal input from the evaporator outlet refrigerant temperature detecting means 7 and a value obtained by converting the pressure signal input from the evaporator outlet pressure detecting means 10 into a saturation temperature. calculate. The control method is the same as that of the first embodiment, however, since an accurate evaporation temperature can be obtained by the pressure, the control accuracy is improved.

【0034】なお、実施の形態1、実施の形態2ではパ
ルスモーター駆動式電動式膨張弁を採用しているが、電
動式膨張弁は他の駆動方式のものであっても、同様の開
度調節方法によって冷媒循環量制御が可能である。
In the first and second embodiments, a pulse motor driven electric expansion valve is used. However, even if the electric expansion valve is of another driving type, the same degree of opening is used. The refrigerant circulation amount can be controlled by the adjustment method.

【0035】[0035]

【発明の効果】以上のように本発明のオープンショーケ
ースの冷媒循環量制御装置は、第1に、圧縮機、凝縮
器、減圧膨張機構及び蒸発器を順次連結して構成され、
前記減圧膨張機構として、開度調節可能な電動式膨張弁
を設けたオープンショーケースの冷媒回路において、オ
ープンショーケースの庫内温度及び蒸発器入口冷媒温
度、蒸発器出口冷媒温度を各々検出する温度検出手段を
設け、さらに前記温度検出手段からの入力信号により、
現在庫内温度、現在蒸発器出入口冷媒温度差(以下過熱
度)を検出、演算する制御装置を設け、前記制御装置は
オープンショーケースが設置される店舗が開店中か閉店
時かを判別する手段を有し、現在が開店中か閉店時かに
よってあらかじめ設定されている各々異なる値の設定庫
内温度及び過熱度下限値を選択し、検出した現在庫内温
度と設定庫内温度との偏差及び、現在過熱度と過熱度下
限値との偏差を演算し、前記庫内温度の偏差及び過熱度
の偏差の値に応じてあらかじめ定められた複数の前記電
動式膨張弁の開度制御方法の中から制御方法を選択し、
前記電動式膨張弁の開度を制御することによって、冷媒
回路内の冷媒循環量を調節することにより、庫内温度を
設定温度で安定させ、圧縮機の起動、停止回数を低減し
て冷凍サイクルを安定させることができる。
As described above, the apparatus for controlling the amount of refrigerant circulated in the open showcase according to the present invention is constructed by connecting the compressor, the condenser, the decompression and expansion mechanism, and the evaporator in order.
In the open-showcase refrigerant circuit provided with a motorized expansion valve whose degree of opening can be adjusted as the pressure-reducing expansion mechanism, the temperature at which the temperature inside the open showcase, the temperature at the evaporator inlet, and the temperature at the evaporator outlet are detected. Detecting means, further provided by an input signal from the temperature detecting means,
A control device is provided for detecting and calculating the current inside temperature and the current evaporator entrance / exit refrigerant temperature difference (hereinafter referred to as the degree of superheat), and the control device determines whether the store where the open showcase is installed is open or closed. Having a preset inside temperature and a superheat degree lower limit value which are respectively set in advance depending on whether the store is currently opened or closed, and a deviation between the detected present inside temperature and the set inside temperature and Calculating the deviation between the current superheat degree and the lower limit of the superheat degree, and controlling the degree of opening of the plurality of electric expansion valves predetermined according to the deviation of the internal temperature and the deviation of the superheat degree. Select the control method from
The refrigeration cycle is controlled by controlling the opening degree of the electric expansion valve to regulate the amount of refrigerant circulating in the refrigerant circuit, thereby stabilizing the temperature in the refrigerator at a set temperature, and reducing the number of times the compressor is started and stopped. Can be stabilized.

【0036】第2に、蒸発器入口冷媒温度検出手段に代
えて、蒸発器出口冷媒圧力検出手段を設け、制御装置
は、前記圧力検出手段より入力した圧力信号を当該圧力
相当の飽和温度に換算して、蒸発器出口冷媒温度検出手
段より入力した温度信号とより過熱度を演算するように
したことにより、蒸発器出口の冷媒過熱度制御は、圧力
検出手段で蒸発器出口冷媒圧力を検出して飽和温度に換
算した値で制御することができ、庫内温度制御及び過熱
度制御の精度が向上する。
Secondly, an evaporator outlet refrigerant pressure detecting means is provided in place of the evaporator inlet refrigerant temperature detecting means, and the control device converts the pressure signal input from the pressure detecting means into a saturation temperature corresponding to the pressure. Then, by calculating the superheat degree and the temperature signal input from the evaporator outlet refrigerant temperature detection means, the refrigerant superheat degree control of the evaporator outlet, the evaporator outlet refrigerant pressure is detected by the pressure detection means The temperature can be controlled by a value converted to a saturation temperature, and the accuracy of the internal temperature control and the superheat degree control can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明によるオープンショーケースの冷媒循
環量制御装置の実施形態1を示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of a refrigerant circulation amount control device for an open showcase according to the present invention.

【図2】 実施の形態1における制御フローである。FIG. 2 is a control flow according to the first embodiment.

【図3】 実施の形態1におけるオープンショーケース
庫内温度、冷却器出口冷媒過熱度、圧縮機吸入圧力、電
動式膨張弁開度の変化を示すグラフである。
FIG. 3 is a graph showing changes in a temperature inside an open showcase compartment, a superheat degree of a refrigerant at an outlet of a cooler, a compressor suction pressure, and an opening degree of an electric expansion valve in the first embodiment.

【図4】 本発明によるオープンショーケースの冷媒循
環量制御装置の実施形態2を示す冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram showing Embodiment 2 of an open showcase refrigerant circulation amount control device according to the present invention.

【図5】 従来のオープンショーケースの冷媒回路図で
ある。
FIG. 5 is a refrigerant circuit diagram of a conventional open showcase.

【図6】 従来の冷媒循環量制御装置における制御フロ
ーを示し、(a)は温度式膨張弁と出口ガス温度検出器
による制御フロー、(b)は液管電磁弁と庫内温度セン
サーによる制御フローである。
FIG. 6 shows a control flow in a conventional refrigerant circulation amount control device, in which (a) is a control flow using a temperature type expansion valve and an outlet gas temperature detector, and (b) is a control flow using a liquid pipe solenoid valve and a temperature sensor in a refrigerator. It is a flow.

【図7】 従来の冷媒循環量制御装置におけるオープン
ショーケース庫内温度、冷却器出口冷媒過熱度、圧縮機
吸入圧力の変化を示すグラフである。
FIG. 7 is a graph showing changes in the open showcase internal temperature, the cooler outlet refrigerant superheat degree, and the compressor suction pressure in the conventional refrigerant circulation amount control device.

【符号の説明】[Explanation of symbols]

1:圧縮機、2:低圧圧力スイッチ、3:凝縮器、4:
蒸発器、5:電動式膨張弁、6:蒸発器入口冷媒温度検
出手段、7:蒸発器出口冷媒温度検出手段、8:庫内温
度検出手段、9:本発明による制御装置、10:蒸発器
出口圧力検出手段、11:温度式膨張弁、12:液管電
磁弁、13:出口ガス温度検出器、14:従来の制御装
1: compressor, 2: low pressure switch, 3: condenser, 4:
Evaporator, 5: Electric expansion valve, 6: Evaporator inlet refrigerant temperature detecting means, 7: Evaporator outlet refrigerant temperature detecting means, 8: Internal temperature detecting means, 9: Control device according to the present invention, 10: Evaporator Outlet pressure detection means, 11: temperature expansion valve, 12: liquid pipe solenoid valve, 13: outlet gas temperature detector, 14: conventional control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧膨張機構及び蒸発
器を順次連結して構成され、前記減圧膨張機構として、
開度調節可能な電動式膨張弁を設けたオープンショーケ
ースの冷媒回路において、オープンショーケースの庫内
温度及び蒸発器入口冷媒温度、蒸発器出口冷媒温度を各
々検出する温度検出手段を設け、さらに前記温度検出手
段からの入力信号により、現在庫内温度、過熱度(現在
蒸発器出入口冷媒温度差)を検出、演算する制御装置を
設け、前記制御装置はオープンショーケースが設置され
る店舗が開店中か閉店時かを判別する手段を有し、現在
が開店中か閉店時かによってあらかじめ設定されている
各々異なる値の設定庫内温度及び過熱度下限値を選択
し、検出した現在庫内温度と設定庫内温度との偏差及
び、現在過熱度と過熱度下限値との偏差を演算し、前記
庫内温度の偏差及び過熱度の偏差の値に応じてあらかじ
め定められた複数の前記電動式膨張弁の開度制御方法の
中から制御方法を選択し、前記電動式膨張弁の開度を制
御することによって、冷媒回路内の冷媒循環量を制御す
ることを特徴とするオープンショーケースの冷媒循環量
制御装置。
1. A compressor, a condenser, a decompression and expansion mechanism and an evaporator are connected in order, and the decompression and expansion mechanism is
In a refrigerant circuit of an open showcase provided with a motorized expansion valve capable of adjusting the opening degree, a temperature detecting means for detecting a temperature inside the open showcase, an evaporator inlet refrigerant temperature, and an evaporator outlet refrigerant temperature is further provided. A control device is provided for detecting and calculating the current inside temperature and the degree of superheat (current refrigerant temperature difference between the inlet and outlet of the evaporator) based on an input signal from the temperature detecting means, and the control device opens a store where an open showcase is installed. It has a means for determining whether the store is inside or closed, and selects a set inside temperature and a superheat degree lower limit value which are respectively set in advance depending on whether the store is currently opened or closed, and detects the detected present inside temperature. And the difference between the set internal temperature and the current superheat degree and the superheat degree lower limit value are calculated, and a plurality of predetermined values are determined in advance according to the internal temperature difference and the superheat degree deviation value. An open showcase wherein a control method is selected from among the electric expansion valve opening control methods, and the amount of refrigerant circulating in the refrigerant circuit is controlled by controlling the opening of the electric expansion valve. Refrigerant circulation amount control device.
【請求項2】 請求項1記載のオープンショーケースの
冷媒循環量制御装置において、蒸発器入口冷媒温度検出
手段に代えて、蒸発器出口冷媒圧力検出手段を設け、制
御装置は、前記圧力検出手段より入力した圧力信号を当
該圧力相当の飽和温度に換算して、蒸発器出口冷媒温度
検出手段より入力した温度信号とより過熱度を演算する
ようにしたことを特徴とするオープンショーケースの冷
媒循環量制御装置。
2. The refrigerant circulation amount control device for an open showcase according to claim 1, further comprising an evaporator outlet refrigerant pressure detecting means in place of the evaporator inlet refrigerant temperature detecting means, wherein the control device comprises: Wherein the pressure signal input from the evaporator is converted into a saturation temperature corresponding to the pressure, and the degree of superheat is calculated based on the temperature signal input from the evaporator outlet refrigerant temperature detecting means. Quantity control device.
JP10085419A 1998-03-31 1998-03-31 Controller of quantity of refrigerant circulating in open show case Pending JPH11281222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085419A JPH11281222A (en) 1998-03-31 1998-03-31 Controller of quantity of refrigerant circulating in open show case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10085419A JPH11281222A (en) 1998-03-31 1998-03-31 Controller of quantity of refrigerant circulating in open show case

Publications (1)

Publication Number Publication Date
JPH11281222A true JPH11281222A (en) 1999-10-15

Family

ID=13858305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085419A Pending JPH11281222A (en) 1998-03-31 1998-03-31 Controller of quantity of refrigerant circulating in open show case

Country Status (1)

Country Link
JP (1) JPH11281222A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071223A (en) * 2001-03-05 2002-09-12 삼성전자 주식회사 Control system of degree of superheat of air conditioner and control method thereof
JP2003028515A (en) * 2001-07-16 2003-01-29 Smc Corp Constant-temperature liquid circulating device
JP2006105437A (en) * 2004-10-01 2006-04-20 Saginomiya Seisakusho Inc Device and system for controlling cooling system
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler
JP2011257126A (en) * 2010-05-11 2011-12-22 Daikin Industries Ltd Operation control device of air conditioning device, and air conditioning device equipped with the same
WO2022195663A1 (en) * 2021-03-15 2022-09-22 三菱電機株式会社 Refrigeration cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071223A (en) * 2001-03-05 2002-09-12 삼성전자 주식회사 Control system of degree of superheat of air conditioner and control method thereof
JP2003028515A (en) * 2001-07-16 2003-01-29 Smc Corp Constant-temperature liquid circulating device
JP4582473B2 (en) * 2001-07-16 2010-11-17 Smc株式会社 Constant temperature liquid circulation device
JP2006105437A (en) * 2004-10-01 2006-04-20 Saginomiya Seisakusho Inc Device and system for controlling cooling system
JP4714448B2 (en) * 2004-10-01 2011-06-29 株式会社鷺宮製作所 Control device for cooling system
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler
JP2011257126A (en) * 2010-05-11 2011-12-22 Daikin Industries Ltd Operation control device of air conditioning device, and air conditioning device equipped with the same
US9995517B2 (en) 2010-05-11 2018-06-12 Daikin Industries, Ltd. Operation control apparatus of air-conditioning apparatus and air-conditioning apparatus comprising same
WO2022195663A1 (en) * 2021-03-15 2022-09-22 三菱電機株式会社 Refrigeration cycle device
JPWO2022195663A1 (en) * 2021-03-15 2022-09-22

Similar Documents

Publication Publication Date Title
US4745767A (en) System for controlling flow rate of refrigerant
CA1250442A (en) System for controlling flow rate of refrigerant
KR100756725B1 (en) Refrigerator
US4962648A (en) Refrigeration apparatus
US20040103674A1 (en) Method for controlling a multiple cooling compartment refrigerator, and refrigerator using such method
US11549736B2 (en) Refrigerator having a cold air supply means and control method therefore
KR20190005032A (en) Refrigerator and method for controlling the same
GB2305744A (en) Valve controller
US11732948B2 (en) Method for controlling refrigerator to alternately cool two storage compartments
JPH11281222A (en) Controller of quantity of refrigerant circulating in open show case
JPH11281221A (en) Cooler of open show case
JP4819385B2 (en) Control device for cooling system
KR20200082221A (en) Refrigerator and method for controlling the same
US20230408186A1 (en) Refrigerator and method for controlling same
US20240077245A1 (en) Refrigerator and method of controlling the same
JP5384124B2 (en) Refrigeration system, control device and control method thereof
KR20190005033A (en) Refrigerator and method for controlling the same
JP2001241779A (en) Refrigerant flow rate controller for air conditioner
US11879681B2 (en) Method for controlling refrigerator
RU2811723C1 (en) Refrigerator and method for controlling it
US20220341649A1 (en) Refrigerator and method of controlling the same
JPH08285383A (en) Fast cooling control method and device in freezing system
JPH02219967A (en) Method for controlling defrosting in refrigerating plant
JPH056108B2 (en)
JPH056109B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224