JPH11280921A - High temperature gas selector valve - Google Patents
High temperature gas selector valveInfo
- Publication number
- JPH11280921A JPH11280921A JP8304898A JP8304898A JPH11280921A JP H11280921 A JPH11280921 A JP H11280921A JP 8304898 A JP8304898 A JP 8304898A JP 8304898 A JP8304898 A JP 8304898A JP H11280921 A JPH11280921 A JP H11280921A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- high temperature
- air
- mushroom
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Valve Housings (AREA)
- Lift Valve (AREA)
- Mechanically-Actuated Valves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は省エネと高温燃焼のため
の高温熱交換器であり、とくに空気予熱用に用途の多い
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature heat exchanger for energy saving and high-temperature combustion, and has many uses especially for preheating air.
【0002】[0002]
【従来の技術】従来の空気予熱の熱交換器は鋼管型や鋼
板型の伝熱面式の熱交換器や、薄鋼板蓄熱型の再生式、
いわゆるユングストローム熱交換器などであり、高炉用
の大型高温熱交は煉瓦に蓄熱して、高温ガスの切替を水
冷バタフライ弁などで行なうものである。また最近はバ
ーナとセラミック蓄熱体を一体化して、複数バーナの切
替と、低温部の回路の切替だけで、高温部の切替を避け
た巧妙なシステムが、主として加熱炉関係に使用され出
している。2. Description of the Related Art Conventional heat exchangers for preheating air include heat exchangers of a heat transfer surface type such as a steel pipe type or a steel plate type, and a regeneration type of a thin steel plate heat storage type.
It is a so-called Jungstrom heat exchanger or the like, and large-scale high-temperature heat exchange for a blast furnace stores heat in a brick and switches high-temperature gas by a water-cooled butterfly valve or the like. Recently, a sophisticated system that integrates a burner and a ceramic regenerator and switches between multiple burners and the circuit in the low-temperature section to avoid switching in the high-temperature section has been used mainly for heating furnaces. .
【0003】[0003]
【発明が解決しようとする課題】取扱容易で、標準化さ
れた、高効率の高温熱交を得ようとするもので、その形
式は高温に適し経済性の点で蓄熱式とする。蓄熱体は煉
瓦やセラミックなど種々のものが利用出来、場合によっ
ては砕石など安価なものの利用も考えられるが、蓄熱式
に是非必要な高温の切替弁に適当なものが無い。これを
避けた蓄熱体とバーナの一体型では、バーナを複数個必
要とし、またデリケートな面のある点火を繰りかえすも
のであり、ストーカ燃焼など他種の方式では適用が困難
である。現在環境問題から廃棄物の溶融式の高温焼却が
ダイオキシンの発生抑制、灰分の無害化から求められ、
当然高温切替弁式の本来の高温蓄熱式熱交が必要とされ
ている。これに対して高炉式の水冷バタフライ弁では、
大がかりで厄介であり、水冷による熱損失も大きい。し
かも現在要望の多いのは、より小型の用途であり熱損失
の割合も小型の場合ほど増加する。The purpose of the present invention is to obtain standardized, high-efficiency, high-temperature heat exchange which is easy to handle, and is of a heat storage type which is suitable for high temperatures and is economical. Various types of heat storage materials such as bricks and ceramics can be used, and in some cases, inexpensive materials such as crushed stones can be used. However, there is no suitable high-temperature switching valve that is indispensable for the heat storage type. The integrated type of the heat storage body and the burner which avoids this requires a plurality of burners and repeats ignition with a delicate surface, and is difficult to apply in other types such as stoker combustion. At present, due to environmental issues, melting high-temperature incineration of waste is required to reduce the generation of dioxins and detoxify ash.
Naturally, the original high-temperature heat storage type heat exchange of the high-temperature switching valve type is required. In contrast, a blast furnace water-cooled butterfly valve
It is bulky and troublesome, and heat loss due to water cooling is large. What is more demanding at present is smaller applications, and the heat loss ratio increases as the size becomes smaller.
【0004】[0004]
【課題を解決するための手段】セラミック技術の進歩に
より種々の部品がセラミック化されて来た。これを本切
替弁にも応用するのであるが、この場合あまり複雑な形
状は不適当であり、内燃機関で研究の進んでいる茸弁が
望ましい。また容量の増加にも、内燃機関と同様に、そ
の数を増やすことで対応するとコンパクトに納められ
る。さらに弁の駆動機構としても、電気部品や油圧部品
を使用すると、高熱により損傷の危険大きいので、これ
を避け空気圧ピストン、シリンダーを利用する。ただこ
の時も制御空気の断続に電磁弁など高熱に弱い電気部品
が必要となるが、電磁弁を高熱のおよばぬ離れた場所に
配置し、空気圧ピストンとの間を細い空気配管で結び、
高熱を遮断する。このように空気圧駆動とすると、茸弁
は空気圧ピストンと直結で簡単に駆動でき、複動式とす
るので耐熱で問題のバネのような金属部品も不要であ
る。このような構成で高さも低くなりコンパクトとな
る。熱交換器の内圧は一般に低い値で空気圧ピストンも
低圧で充分である。空気圧ピストンの潤滑油もセラミッ
クピストンのため不要で、高熱に弱い油を排除できる。Various components have been ceramized with the advancement of ceramic technology. This is also applied to the present switching valve, but in this case, a too complicated shape is inappropriate, and a mushroom valve, which has been studied in an internal combustion engine, is desirable. In addition, as in the case of the internal combustion engine, if the number is increased, the capacity can be reduced in size. Furthermore, when electric parts or hydraulic parts are used as the valve drive mechanism, there is a great risk of damage due to high heat. Therefore, pneumatic pistons and cylinders are used instead. However, even at this time, electrical parts that are sensitive to high heat such as solenoid valves are required for intermittent control air, but place the solenoid valve in a location far from high heat and connect with a pneumatic piston with thin air piping,
Cut off high heat. With the pneumatic drive, the mushroom valve can be easily driven by being directly connected to the pneumatic piston, and since it is a double-acting type, heat-resistant and metal parts such as a problematic spring are not required. With such a configuration, the height is reduced and the device is compact. The internal pressure of the heat exchanger is generally low and a low pressure of the pneumatic piston is sufficient. Lubricating oil for the pneumatic piston is also unnecessary because it is a ceramic piston, and oil that is vulnerable to high heat can be eliminated.
【0005】[0005]
【実施例】実施例について図面を参照して説明する。図
1は本発明の全体構成図を示す。1は蓄熱体、でありコ
ンパクトに構成する時はセラミックで精密成形するが、
経済性を主とするときは砕石などを利用するものとす
る。2は高温廃ガス用弁構成であり、3は高温予熱空気
用弁構成、である。それぞれ高温廃ガスの発生口と、高
温予熱空気の供給口に連絡されている。4は高温廃ガス
茸弁であり、閉止状態を示し、5は高温予熱空気茸弁で
あり、開放状態を示す。従って現在は高温予熱空気を、
蓄熱体1の放熱により発生している状態である。予熱空
気が蓄熱体1を上昇して高温となり、高温予熱空気茸弁
5を通り、右側の出口から出て行く。ある放熱時間が経
過して、空気温度が規定値より低下すると、この弁が閉
じて、逆に高温廃ガス茸弁4が開き、高温廃ガスが左側
の入口から流入し、弁を通って蓄熱体1を流下して、再
加熱して昇温し、蓄熱する。6は高温廃ガス弁幹であ
り、やはり高温廃ガスに接触するのでセラミックとす
る。7は高温予熱空気弁幹であり、やはり高温予熱空気
に接触するのでセラミックとする。8はサーボ空気ピス
トンであり、やはり高温廃ガスの熱伝導により高温とな
るのでセラミックとする。9もサーボ空気ピストンであ
り、やはり高温予熱空気の熱伝導により高温となるので
セラミックとする。10、11はサーボ空気シリンダー
であり、やはり高温環境の熱伝導により高温となるので
セラミックとする。また、これらの周囲全体は断熱材で
カバーして放熱を防ぎ、省エネを計る。この図では一対
の弁だけが示されているが、連続して作動せしめるため
には、複数対の弁を位相を均等にずらして組合わせるこ
とが当然必要である。また低温の入口弁は下方に対称に
設けられる。これは低温のため普通の鋼材の弁で充分で
ある。12はサーボ空気配管であり、細い配管を長い距
離に配置するので、シリンダーに近い所はセラミックと
するが、その他の所は普通の鋼管で充分である。13は
電磁弁、であってサーボ空気シリンダーに、複動のサー
ボ空気を送り、弁を開閉せしめる。ただし電磁弁は高熱
の影響のない離れた場所に設置するので、普通の電磁弁
が使用できる。An embodiment will be described with reference to the drawings. FIG. 1 shows an overall configuration diagram of the present invention. 1 is a heat storage body. When it is compact, it is precision molded with ceramic,
When economics are the main, crushed stones shall be used. 2 is a valve configuration for high-temperature waste gas, and 3 is a valve configuration for high-temperature preheated air. Each is connected to a high-temperature waste gas generation port and a high-temperature preheated air supply port. Reference numeral 4 denotes a high-temperature waste gas mushroom valve, which is in a closed state, and 5 is a high-temperature preheated air mushroom valve, which is in an open state. So now we have hot preheated air,
This is a state in which the heat is generated by heat release from the heat storage body 1. The preheated air rises in the regenerator 1 to a high temperature, passes through the hot preheated air mushroom valve 5, and exits from the right outlet. When a certain heat radiation time elapses and the air temperature falls below a specified value, this valve closes, and conversely, the hot waste gas mushroom valve 4 opens, and the hot waste gas flows in from the left inlet and passes through the valve to store heat. The body 1 flows down, reheats, raises the temperature, and stores heat. Reference numeral 6 denotes a high-temperature waste gas stem, which is also made of ceramic because it comes into contact with the high-temperature waste gas. Reference numeral 7 denotes a high-temperature preheated air valve stem, which is also made of ceramic because it comes into contact with the high-temperature preheated air. Numeral 8 denotes a servo air piston, which is also made of ceramic because the temperature becomes high due to the heat conduction of the high-temperature waste gas. Reference numeral 9 also denotes a servo air piston, which is also made of ceramic because the temperature becomes high due to the heat conduction of the high-temperature preheated air. Reference numerals 10 and 11 denote servo air cylinders, which are also made of ceramics because they become high in temperature due to heat conduction in a high temperature environment. In addition, the entire surrounding area is covered with a heat insulating material to prevent heat radiation and save energy. Although only a pair of valves are shown in this figure, it is naturally necessary to combine a plurality of pairs of valves with their phases shifted evenly for continuous operation. The low temperature inlet valve is provided symmetrically below. Because of this low temperature, ordinary steel valves are sufficient. Numeral 12 is a servo air pipe, which places a thin pipe at a long distance, so that a ceramic pipe is sufficient for a place close to the cylinder, but a normal steel pipe is sufficient for other places. Numeral 13 denotes a solenoid valve which sends double-acting servo air to a servo air cylinder to open and close the valve. However, since the solenoid valve is installed in a distant place without the influence of high heat, a normal solenoid valve can be used.
【0006】[0006]
【発明の効果】高温の廃ガスを利用する高効率の安定し
た蓄熱式熱交換器が標準的に実現できて、高い省エネ効
果が得られる。ダイオキシンの発生防止の廃棄物高温焼
却などにも有利に利用され、空気予熱器の従来の欠点を
解決したものとして、高温の分野のみならず低温の分野
にも応用範囲が広い。As described above, a high-efficiency and stable regenerative heat exchanger utilizing high-temperature waste gas can be realized as a standard, and a high energy-saving effect can be obtained. It is advantageously used for high-temperature incineration of waste to prevent the generation of dioxins, and has a wide application range not only in the field of high temperature but also in the field of low temperature as a solution to the conventional disadvantages of air preheaters.
【図1】本発明の全体構成図を示す。FIG. 1 shows an overall configuration diagram of the present invention.
1 蓄熱体 2 高温廃ガス用弁構成 3 高温予熱空気用弁構成 4 高温廃ガス茸弁 5 高温予熱空気茸弁 6 高温廃ガス弁幹 7 高温予熱空気弁幹 8 サーボ空気ピストン 9 サーボ空気ピストン 10 サーボ空気シリンダー 11 サーボ空気シリンダー 12 サーボ空気配管 13 電磁弁 REFERENCE SIGNS LIST 1 heat storage unit 2 high-temperature waste gas valve configuration 3 high-temperature preheat air valve configuration 4 high-temperature waste gas mushroom valve 5 high-temperature preheat air mushroom valve 6 high-temperature waste gas valve stem 7 high-temperature preheat air valve stem 8 servo air piston 9 servo air piston 10 Servo air cylinder 11 Servo air cylinder 12 Servo air piping 13 Solenoid valve
Claims (1)
した複動式空気圧ピストン、シリンダーも同様セラミッ
クとし、作動用電磁弁は長い配管で隔離したコンパク
ト、耐熱、断熱を計った高温ガス切替弁。1. A mushroom valve made of ceramic, a double-acting pneumatic piston and cylinder directly connected to the valve stem are also made of ceramic, and a solenoid valve for operation is a compact, heat-resistant and heat-insulated high-temperature gas separated by a long pipe. Switching valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8304898A JPH11280921A (en) | 1998-03-30 | 1998-03-30 | High temperature gas selector valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8304898A JPH11280921A (en) | 1998-03-30 | 1998-03-30 | High temperature gas selector valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11280921A true JPH11280921A (en) | 1999-10-15 |
Family
ID=13791324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8304898A Pending JPH11280921A (en) | 1998-03-30 | 1998-03-30 | High temperature gas selector valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11280921A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011149635A1 (en) | 2010-05-28 | 2011-12-01 | Exxonmobil Chemical Patents Inc. | Reactor with reactor head and integrated valve |
JP2013530038A (en) * | 2010-05-28 | 2013-07-25 | エクソンモービル アップストリーム リサーチ カンパニー | Integrated adsorber head and valve design and associated swing adsorption method |
US9017457B2 (en) | 2011-03-01 | 2015-04-28 | Exxonmobil Upstream Research Company | Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto |
US9675925B2 (en) | 2014-07-25 | 2017-06-13 | Exxonmobil Upstream Research Company | Apparatus and system having a valve assembly and swing adsorption processes related thereto |
US9713787B2 (en) | 2014-12-10 | 2017-07-25 | Exxonmobil Upstream Research Company | Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same |
US9751041B2 (en) | 2015-05-15 | 2017-09-05 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US9861929B2 (en) | 2015-05-15 | 2018-01-09 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10080991B2 (en) | 2015-09-02 | 2018-09-25 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10220346B2 (en) | 2015-10-27 | 2019-03-05 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10220345B2 (en) | 2015-09-02 | 2019-03-05 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10328382B2 (en) | 2016-09-29 | 2019-06-25 | Exxonmobil Upstream Research Company | Apparatus and system for testing swing adsorption processes |
US10434458B2 (en) | 2016-08-31 | 2019-10-08 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10512893B2 (en) | 2014-12-23 | 2019-12-24 | Exxonmobil Upstream Research Company | Structured adsorbent beds, methods of producing the same and uses thereof |
US10603626B2 (en) | 2016-09-01 | 2020-03-31 | Exxonmobil Upstream Research Company | Swing adsorption processes using zeolite structures |
US11148091B2 (en) | 2016-12-21 | 2021-10-19 | Exxonmobil Upstream Research Company | Self-supporting structures having active materials |
US11260339B2 (en) | 2016-03-18 | 2022-03-01 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US11318410B2 (en) | 2018-12-21 | 2022-05-03 | Exxonmobil Upstream Research Company | Flow modulation systems, apparatus, and methods for cyclical swing adsorption |
US11376545B2 (en) | 2019-04-30 | 2022-07-05 | Exxonmobil Upstream Research Company | Rapid cycle adsorbent bed |
-
1998
- 1998-03-30 JP JP8304898A patent/JPH11280921A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011149635A1 (en) | 2010-05-28 | 2011-12-01 | Exxonmobil Chemical Patents Inc. | Reactor with reactor head and integrated valve |
US20110291051A1 (en) * | 2010-05-28 | 2011-12-01 | Frank Hershkowitz | Reactor With Reactor Head And Integrated Valve |
CN102917784A (en) * | 2010-05-28 | 2013-02-06 | 埃克森美孚化学专利公司 | Reactor with reactor head and integrated valve |
JP2013530038A (en) * | 2010-05-28 | 2013-07-25 | エクソンモービル アップストリーム リサーチ カンパニー | Integrated adsorber head and valve design and associated swing adsorption method |
US8524159B2 (en) | 2010-05-28 | 2013-09-03 | Exxonmobil Chemical Patents Inc. | Reactor with reactor head and integrated valve |
US9047439B2 (en) | 2010-05-28 | 2015-06-02 | Exxonmobil Chemical Patents Inc. | Reactor with reactor head and integrated valve |
US9067168B2 (en) | 2010-05-28 | 2015-06-30 | Exxonmobil Upstream Research Company | Integrated adsorber head and valve design and swing adsorption methods related thereto |
US9017457B2 (en) | 2011-03-01 | 2015-04-28 | Exxonmobil Upstream Research Company | Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto |
US9593778B2 (en) | 2011-03-01 | 2017-03-14 | Exxonmobil Upstream Research Company | Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto |
US9675925B2 (en) | 2014-07-25 | 2017-06-13 | Exxonmobil Upstream Research Company | Apparatus and system having a valve assembly and swing adsorption processes related thereto |
US9713787B2 (en) | 2014-12-10 | 2017-07-25 | Exxonmobil Upstream Research Company | Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same |
US10512893B2 (en) | 2014-12-23 | 2019-12-24 | Exxonmobil Upstream Research Company | Structured adsorbent beds, methods of producing the same and uses thereof |
US9861929B2 (en) | 2015-05-15 | 2018-01-09 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US9751041B2 (en) | 2015-05-15 | 2017-09-05 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10080992B2 (en) | 2015-09-02 | 2018-09-25 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10124286B2 (en) | 2015-09-02 | 2018-11-13 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10220345B2 (en) | 2015-09-02 | 2019-03-05 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10080991B2 (en) | 2015-09-02 | 2018-09-25 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10220346B2 (en) | 2015-10-27 | 2019-03-05 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US11260339B2 (en) | 2016-03-18 | 2022-03-01 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10434458B2 (en) | 2016-08-31 | 2019-10-08 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
US10603626B2 (en) | 2016-09-01 | 2020-03-31 | Exxonmobil Upstream Research Company | Swing adsorption processes using zeolite structures |
US11318413B2 (en) | 2016-09-01 | 2022-05-03 | Exxonmobil Upstream Research Company | Swing adsorption processes using zeolite structures |
US10328382B2 (en) | 2016-09-29 | 2019-06-25 | Exxonmobil Upstream Research Company | Apparatus and system for testing swing adsorption processes |
US11148091B2 (en) | 2016-12-21 | 2021-10-19 | Exxonmobil Upstream Research Company | Self-supporting structures having active materials |
US11318410B2 (en) | 2018-12-21 | 2022-05-03 | Exxonmobil Upstream Research Company | Flow modulation systems, apparatus, and methods for cyclical swing adsorption |
US11376545B2 (en) | 2019-04-30 | 2022-07-05 | Exxonmobil Upstream Research Company | Rapid cycle adsorbent bed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11280921A (en) | High temperature gas selector valve | |
CN106705077B (en) | Burned waste gas device | |
DE69934492D1 (en) | STABILIZED LIFT VALVE ASSEMBLY | |
CN201724547U (en) | Heat-accumulation lead melting furnace | |
JP2001221365A (en) | Opening/closing valve for high temperature | |
CN101871727B (en) | Heat-storage lead-melting furnace | |
US4877013A (en) | Hot blast stove installation | |
JPS63259385A (en) | Heat regenerator | |
JP4229502B2 (en) | Thermal storage radiant tube burner | |
KR0118983B1 (en) | Combustion air preheating method of furnace | |
JP3207359B2 (en) | Industrial furnace waste heat utilization equipment | |
CN110873531A (en) | Gas type energy-saving crucible furnace | |
CN220471642U (en) | RTO device for recovering heat energy by heat pipe | |
JPS62126252A (en) | Stirling engine | |
CN2139256Y (en) | Waste heat full-self-recovery type industrial furnace | |
CN100402964C (en) | Method for avoiding dew point corrosion of heat pipe heat exchanger and a heat pipe heat exchanger | |
JPH06273083A (en) | Rotary valve type high temperature air preheater | |
JP3880725B2 (en) | Thermal storage radiant tube burner | |
JP3747481B2 (en) | Combustion control device in regenerative burner device | |
CN1626681B (en) | High temperature hot blast furnace | |
WO2023236948A1 (en) | High-temperature pyrolysis apparatus suitable for ultra-wide concentration range | |
KR200276858Y1 (en) | Temperature homogenizer for regenerative burner_ | |
CN207716854U (en) | A kind of metal smelting-furnace | |
JPH0619941Y2 (en) | Heat storage type radiant tube burner device | |
CN2207523Y (en) | Ceramic heat exchanger |