JPH11279782A - Production of high-pressure gaseous hydrogen - Google Patents

Production of high-pressure gaseous hydrogen

Info

Publication number
JPH11279782A
JPH11279782A JP10083495A JP8349598A JPH11279782A JP H11279782 A JPH11279782 A JP H11279782A JP 10083495 A JP10083495 A JP 10083495A JP 8349598 A JP8349598 A JP 8349598A JP H11279782 A JPH11279782 A JP H11279782A
Authority
JP
Japan
Prior art keywords
water
hydrogen gas
pressure
cathode chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10083495A
Other languages
Japanese (ja)
Other versions
JP3397235B2 (en
Inventor
Ko Hatakeyama
耕 畠山
Hajime Kawasaki
始 川崎
Takeyoshi Den
建順 傳
Kenji Nishimura
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP08349598A priority Critical patent/JP3397235B2/en
Publication of JPH11279782A publication Critical patent/JPH11279782A/en
Application granted granted Critical
Publication of JP3397235B2 publication Critical patent/JP3397235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to suppress liquid resistance without adding a large amt. of electrolyte and to easily produce gaseous hydrogen of a high pressure with high electrolytic efficiency. SOLUTION: Water is supplied to an anode chamber 16 and cathode chamber 17, respectively, which are partitioned by an insulative diaphragm 14 which is permeable to H<+> ions and OH<-> ions but have poor air permeability. An electrolysis is effected by maintaining the water of the anode chamber 16 and the cathode chamber 17 in a subcritical state and superctritical state, respectively. Either or both of the pressure or temp. of the water contg. the gaseous hydrogen in the subcritical state or superctritical state generated in the anode chamber 17 is lowered, by which the gaseous hydrogen of the high pressure is taken out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は亜臨界状態又は超臨
界状態の水を電気分解して高圧水素ガスを製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-pressure hydrogen gas by electrolyzing subcritical or supercritical water.

【0002】[0002]

【従来の技術】電気分解による水素の製造は古くから行
われている。水を電解する場合、導電性が悪いため、従
来法では水の導電性を高めるために多量の電解質(例え
ば数〜数十%の水酸化ナトリウム、水酸化カリウム等の
アルカリ)を水に添加した後、室温〜百数十℃の温度、
常圧〜10気圧の圧力で通電して水素ガスを製造してい
る。
2. Description of the Related Art The production of hydrogen by electrolysis has been performed for a long time. In the case of electrolyzing water, the conductivity is poor. Therefore, in the conventional method, a large amount of electrolyte (for example, several to several tens% of alkali such as sodium hydroxide and potassium hydroxide) is added to water to increase the conductivity of water. After that, the temperature from room temperature to one hundred and several tens of degrees C.
Electricity is applied at a pressure of normal pressure to 10 atm to produce hydrogen gas.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来方法
では電解によって発生する水素ガスは水中及び電極表面
において気泡として存在し、この気泡が液抵抗(液体の
電気抵抗値)を増大させて電解効率を低下させる問題が
ある。また多量の電解質を添加する必要があるため、製
造コストが増大する不都合がある。更に高圧の水素ガス
を製造する場合には、電解で生じた水素ガスを加圧する
必要がある。本発明の目的は、多量の電解質を添加せず
に液抵抗を抑制することができ、高い電解効率で容易に
高圧の水素ガスを製造する方法を提供することにある。
However, in the above-mentioned conventional method, hydrogen gas generated by electrolysis exists as bubbles in water and on the electrode surface, and these bubbles increase the liquid resistance (electrical resistance value of the liquid) and increase the electrolytic efficiency. There is a problem that lowers. Further, since a large amount of electrolyte needs to be added, there is a disadvantage that the production cost increases. When producing a high-pressure hydrogen gas, it is necessary to pressurize the hydrogen gas generated by the electrolysis. An object of the present invention is to provide a method for easily producing high-pressure hydrogen gas with high electrolysis efficiency, which can suppress the liquid resistance without adding a large amount of electrolyte.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は図
1に示すように、H+イオン及びOH-イオンを透過する
が通気性の乏しい絶縁性隔膜14で仕切られた陽極室1
6と陰極室17にそれぞれ水を供給する工程と、陽極室
16及び陰極室17の水をそれぞれ亜臨界状態又は超臨
界状態にして電気分解を行う工程と、陰極室17で生じ
た亜臨界状態又は超臨界状態の水素ガスとを含む水の圧
力又は温度のいずれか一方又は双方を低下させることに
より高圧の水素ガスを取出す工程とを含む高圧水素ガス
の製造方法である。亜臨界状態又は超臨界状態の水は通
常の水よりも優れた拡散能力を有し、電極表面での物質
移動が速やかに起るため、陰極室17の電極表面で発生
した水素ガスは速やかに電解液である水と均一相を形成
する。この結果、上記電極表面で発生する水素ガスの気
泡量及び電解液中で発生する水素ガスの気泡量が低下
し、液抵抗が抑制される。また高温によって反応速度が
大きくなるため、電解効率が向上する。更に電解後、特
別の加圧手段を設けることなく高圧の水素ガスが得られ
る。
According to the first aspect of the present invention, as shown in FIG. 1, an anode chamber 1 partitioned by an insulating diaphragm 14 which transmits H + ions and OH - ions but has poor air permeability.
6, a step of supplying water to the cathode chamber 17; a step of performing electrolysis with the water in the anode chamber 16 and the cathode chamber 17 in a subcritical state or a supercritical state, respectively; Or a step of extracting high-pressure hydrogen gas by lowering one or both of pressure and temperature of water containing hydrogen gas in a supercritical state. Water in a subcritical or supercritical state has a better diffusion capacity than ordinary water, and mass transfer on the electrode surface occurs quickly, so that hydrogen gas generated on the electrode surface of the cathode chamber 17 is quickly discharged. A uniform phase is formed with water as an electrolyte. As a result, the amount of hydrogen gas bubbles generated on the electrode surface and the amount of hydrogen gas bubbles generated in the electrolytic solution are reduced, and the liquid resistance is suppressed. Further, the reaction speed is increased by the high temperature, so that the electrolytic efficiency is improved. Further, after electrolysis, high-pressure hydrogen gas can be obtained without providing any special pressurizing means.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、高圧の水素ガスを取出した残液を冷却した
後、陽極室16及び陰極室17に供給する水に加える高
圧水素ガスの製造方法である。高圧の水素ガスを取出し
た残液は電解液の一部として再利用される。
The invention according to claim 2 is the invention according to claim 1, wherein the high-pressure hydrogen added to the water supplied to the anode chamber 16 and the cathode chamber 17 after cooling the residual liquid from which high-pressure hydrogen gas has been removed It is a method for producing gas. The residual liquid from which the high-pressure hydrogen gas has been removed is reused as a part of the electrolytic solution.

【0006】[0006]

【発明の実施の形態】本発明において、水の亜臨界状態
とは200〜374℃の温度でかつ160〜215kg
/cm2の圧力にある水の状態を意味する。また水の超
臨界状態とは374〜400℃の温度でかつ215〜3
00kg/cm2の圧力にある水の状態を意味する。亜
臨界状態における温度及び圧力の下限値未満では、反応
が遅く、電解効率が良くない。また超臨界状態における
温度及び圧力の上限値を超えると反応容器に負荷がかか
り過ぎ、これも効率的でない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the subcritical state of water is a temperature of 200 to 374 ° C. and 160 to 215 kg.
Means the state of water at a pressure of / cm 2 . The supercritical state of water is a temperature of 374 to 400 ° C. and 215 to 3
It means the state of water at a pressure of 00 kg / cm 2 . If the temperature and pressure in the subcritical state are lower than the lower limits, the reaction is slow and the electrolysis efficiency is not good. If the temperature and pressure in the supercritical state exceed the upper limits, the reaction vessel is overloaded, which is not efficient.

【0007】本発明の高圧水素ガスの製造方法を実施す
る場合には、例えば図1に示すような装置が用いられ
る。先ず水(H2O)がバルブ11を介して水槽12に
供給される。この水槽12に貯えられた水は反応容器1
3に供給される。反応容器13は絶縁性隔膜14により
仕切られた陽極室16と陰極室17を有する。具体的に
は反応容器13の陽極室16には水槽12の水がバルブ
18aを介してポンプ19aで加圧され、かつプレヒー
タ21aで加熱されて亜臨界状態又は超臨界状態となっ
て圧送される。一方陰極室17には水槽12の水がバル
ブ18bを介してポンプ19bで加圧され、かつプレヒ
ータ21bで加熱されて亜臨界状態又は超臨界状態とな
って圧送される。反応容器13の周囲には陽極室16及
び陰極室17内の水を加熱するヒータ23が設けられ、
これにより反応容器13内において水は亜臨界状態又は
超臨界状態を維持する。陽極室16に挿入された陽極2
6及び陰極室17に挿入された陰極27はそれぞれ電源
28に接続される。
When the method for producing high-pressure hydrogen gas of the present invention is carried out, for example, an apparatus as shown in FIG. 1 is used. First, water (H 2 O) is supplied to a water tank 12 via a valve 11. The water stored in the water tank 12 is used for the reaction vessel 1
3 is supplied. The reaction vessel 13 has an anode chamber 16 and a cathode chamber 17 separated by an insulating diaphragm 14. Specifically, the water in the water tank 12 is pressurized by the pump 19a via the valve 18a and heated by the preheater 21a to the anode chamber 16 of the reaction vessel 13 to be brought into a subcritical state or a supercritical state, and is pumped. . On the other hand, the water in the water tank 12 is pressurized by the pump 19b via the valve 18b and heated by the preheater 21b to the cathode chamber 17 to be brought into a subcritical state or a supercritical state to be pumped. Around the reaction vessel 13, a heater 23 for heating water in the anode chamber 16 and the cathode chamber 17 is provided,
Thereby, water maintains a subcritical state or a supercritical state in the reaction vessel 13. Anode 2 inserted in anode chamber 16
The cathode 6 and the cathode 27 inserted into the cathode chamber 17 are connected to a power supply 28, respectively.

【0008】この陽極26及び陰極27を構成する電極
の材料としては白金、チタン、タンタル、鉄系等の金属
及び固体電解質等を用いることができる。電極の形状は
板、棒、網等のような形状でもよい。また超臨界水は通
常の水より優れた拡散能を有するため、多孔質の電極を
用いた場合には電極の有効反応表面積が広がり反応効率
が増加する利点がある。また絶縁性隔膜14としてはH
+イオン及びOH-イオンを透過するが通気性の乏しい、
例えばシリカ、アルミナ等の多孔質セラミックが用いら
れる。これらの絶縁体はミクロン単位の孔径を有する多
孔質膜であって、水は通過させるが、生成した水素ガス
や酸素ガスは殆ど通過させない性質を有する。この状態
において陽極26及び陰極27に通電すると、次式で示
すように水は電気分解されて陰極室17では水素ガス
(H2ガス)が、陽極室16では酸素ガス(O2ガス)が
それぞれ発生する。陽極室16と陰極室17は絶縁性隔
膜14により隔離しているため、発生した水素ガスと酸
素ガスが混ざり合うことはない。
As the material of the electrodes constituting the anode 26 and the cathode 27, metals such as platinum, titanium, tantalum and iron, solid electrolytes and the like can be used. The shape of the electrode may be a plate, a bar, a net, or the like. In addition, since supercritical water has better diffusivity than ordinary water, when a porous electrode is used, there is an advantage that the effective reaction surface area of the electrode increases and the reaction efficiency increases. Further, as the insulating diaphragm 14, H
Permeates + ions and OH - ions but has poor air permeability.
For example, porous ceramics such as silica and alumina are used. These insulators are porous membranes having a pore size of a micron unit, and have a property of allowing water to pass therethrough, but hardly allowing generated hydrogen gas and oxygen gas to pass therethrough. When electricity is supplied to the anode 26 and the cathode 27 in this state, water is electrolyzed as shown by the following formula, and hydrogen gas (H 2 gas) is supplied to the cathode chamber 17 and oxygen gas (O 2 gas) is supplied to the anode chamber 16. Occur. Since the anode chamber 16 and the cathode chamber 17 are separated by the insulating diaphragm 14, the generated hydrogen gas and oxygen gas do not mix.

【0009】陰極室17: 2H2O + 2e-
2OH- + H2↑ 陽極室16: 2OH- → H2O + 2e-
1/2O2↑ 陰極室17で発生した水素ガスを含む水は反応容器13
から取出され、減圧弁29を介して水素と水の分離槽3
1に送られる。ここでは減圧弁29で圧力を降下するこ
とにより水と高圧の水素ガスに分離される。分離された
高圧の水素ガスはバルブ32を介して高圧水素貯蔵槽3
3に送られて保存される。水素と水の分離槽31で水素
ガスから分離された水は冷却器34で冷却された後、ポ
ンプ36で加圧されて水槽12に回収され、反応容器1
3の電解液として再利用される。
[0009] The cathode chamber 17: 2H 2 O + 2e -
2OH - + H 2 ↑ anode chamber 16: 2OH - → H 2 O + 2e - +
The water containing hydrogen gas generated in the 1/2 O 2 ↑ cathode chamber 17 is supplied to the reaction vessel 13.
Of hydrogen and water through the pressure reducing valve 29
Sent to 1. Here, the pressure is reduced by the pressure reducing valve 29 to separate the water into high-pressure hydrogen gas. The separated high-pressure hydrogen gas is supplied to the high-pressure hydrogen storage tank 3 via a valve 32.
3 and stored. The water separated from the hydrogen gas in the hydrogen / water separation tank 31 is cooled by a cooler 34, then pressurized by a pump 36 and collected in the water tank 12, and
3 is reused as the electrolyte.

【0010】一方、陽極室16で発生した酸素ガスを含
む水は反応容器13から取出され、分配弁37の一方及
び減圧弁38を介して酸素と水の分離槽39に送られ
る。ここでは減圧弁38で圧力を降下することにより水
と酸素ガスに分離される。分配弁37の他方を通過した
酸素ガスを含む水は飽和酸素含有水槽41に送られて保
存される。この水槽41の飽和酸素含有水は石炭の液化
などに利用される。分離された高圧の酸素ガスはバルブ
42を介して高圧酸素貯蔵槽43に送られて保存され、
分離槽39で酸素ガスから分離された水はバルブ44を
介して水槽12に回収され、反応容器13の電解液とし
て再利用される。
On the other hand, water containing oxygen gas generated in the anode chamber 16 is taken out of the reaction vessel 13 and sent to an oxygen / water separation tank 39 via one of the distribution valves 37 and the pressure reducing valve 38. Here, the pressure is reduced by the pressure reducing valve 38 to separate the water and oxygen gas. The water containing oxygen gas that has passed through the other side of the distribution valve 37 is sent to and stored in the saturated oxygen-containing water tank 41. The saturated oxygen-containing water in the water tank 41 is used for liquefaction of coal and the like. The separated high-pressure oxygen gas is sent to and stored in a high-pressure oxygen storage tank 43 via a valve 42,
The water separated from the oxygen gas in the separation tank 39 is collected in the water tank 12 via the valve 44, and is reused as the electrolyte in the reaction vessel 13.

【0011】[0011]

【発明の効果】以上述べたように、本発明によれば、H
+イオン及びOH-イオンを透過するが通気性の乏しい絶
縁性隔膜で仕切られた陽極室と陰極室にそれぞれ水を供
給し、陽極室及び陰極室の水をそれぞれ亜臨界状態又は
超臨界状態にして電気分解を行い、陰極室で生じた亜臨
界状態又は超臨界状態の水素ガスとを含む水の圧力又は
温度のいずれか一方又は双方を低下させることにより高
圧の水素ガスを取出すようにしたので、電極表面で発生
する水素ガスの気泡量及び電解液中で発生する水素ガス
の気泡量が低下し、液抵抗が抑制される。また従来法の
ように多量の電解質を加えることなく、電解効率を向上
させることができる。また電解後に特別の加圧手段を設
けることなく、高圧の水素ガスが得られる。
As described above, according to the present invention, H
Water is supplied to the anode compartment and the cathode compartment, respectively, which are separated by an insulating membrane that is permeable to + ions and OH - ions but has poor air permeability. Therefore, high pressure hydrogen gas is taken out by lowering one or both of the pressure and the temperature of the water containing the subcritical or supercritical hydrogen gas generated in the cathode chamber. In addition, the amount of hydrogen gas bubbles generated on the electrode surface and the amount of hydrogen gas bubbles generated in the electrolytic solution are reduced, and the liquid resistance is suppressed. Further, the electrolysis efficiency can be improved without adding a large amount of electrolyte unlike the conventional method. Also, high-pressure hydrogen gas can be obtained without providing any special pressurizing means after electrolysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高圧水素ガスの製造装置の構成図。FIG. 1 is a configuration diagram of an apparatus for producing high-pressure hydrogen gas of the present invention.

【符号の説明】[Explanation of symbols]

14 絶縁性隔膜 16 陽極室 17 陰極室 14 Insulating diaphragm 16 Anode compartment 17 Cathode compartment

フロントページの続き (72)発明者 傳 建順 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内 (72)発明者 西村 建二 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内Continuing on the front page (72) Inventor Ken-Jun 1002, 6-headed Mukaiyama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Pref. 1002, 6-headed, Mukaiyama-cho, 14-cho, Naka Energy Research Laboratory, Mitsubishi Materials Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 H+イオン及びOH-イオンを透過するが
通気性の乏しい絶縁性隔膜(14)で仕切られた陽極室(16)
と陰極室(17)にそれぞれ水を供給する工程と、 前記陽極室(16)及び陰極室(17)の水をそれぞれ亜臨界状
態又は超臨界状態にして電気分解を行う工程と、 前記陰極室(17)で生じた亜臨界状態又は超臨界状態の水
素ガスを含む水の圧力又は温度のいずれか一方又は双方
を低下させることにより高圧の水素ガスを取出す工程と
を含む高圧水素ガスの製造方法。
An anode compartment (16) partitioned by an insulating diaphragm (14) permeable to H + ions and OH - ions but poor in air permeability.
And a step of supplying water to the cathode chamber (17), and a step of performing electrolysis in the anode chamber (16) and the water in the cathode chamber (17) in a subcritical state or a supercritical state, respectively, and the cathode chamber Extracting a high-pressure hydrogen gas by reducing one or both of the pressure and temperature of water containing the subcritical or supercritical hydrogen gas generated in (17). .
【請求項2】 高圧の水素ガスを取出した残液を冷却し
た後、陽極室(16)及び陰極室(17)に供給する水に加える
請求項1記載の高圧水素ガスの製造方法。
2. The method for producing high-pressure hydrogen gas according to claim 1, wherein the remaining liquid from which the high-pressure hydrogen gas has been taken out is cooled and then added to water supplied to the anode chamber (16) and the cathode chamber (17).
JP08349598A 1998-03-30 1998-03-30 Method for producing high-pressure hydrogen gas Expired - Fee Related JP3397235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08349598A JP3397235B2 (en) 1998-03-30 1998-03-30 Method for producing high-pressure hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08349598A JP3397235B2 (en) 1998-03-30 1998-03-30 Method for producing high-pressure hydrogen gas

Publications (2)

Publication Number Publication Date
JPH11279782A true JPH11279782A (en) 1999-10-12
JP3397235B2 JP3397235B2 (en) 2003-04-14

Family

ID=13804073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08349598A Expired - Fee Related JP3397235B2 (en) 1998-03-30 1998-03-30 Method for producing high-pressure hydrogen gas

Country Status (1)

Country Link
JP (1) JP3397235B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025251A1 (en) * 2001-09-13 2003-03-27 Sony Corporation Hydrogen gas manufacturing and filling equipment and electrochemical equipment
US7166753B2 (en) 2002-04-12 2007-01-23 Suntory Limited Process for production of hydrogen and carbonyl compounds by reacting sub- or super-critical water with alcohols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025251A1 (en) * 2001-09-13 2003-03-27 Sony Corporation Hydrogen gas manufacturing and filling equipment and electrochemical equipment
US7166753B2 (en) 2002-04-12 2007-01-23 Suntory Limited Process for production of hydrogen and carbonyl compounds by reacting sub- or super-critical water with alcohols

Also Published As

Publication number Publication date
JP3397235B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP5897512B2 (en) Method for electrolytic concentration of heavy water
US4235863A (en) Method of and cell for generating hydrogen
CN102834163A (en) Electrochemical carbon monoxide production
US4455203A (en) Process for the electrolytic production of hydrogen peroxide
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
CA2405570A1 (en) Electrolytic cell and method for electrolysis
WO1998040535A1 (en) Electrolytic ozone-generating apparatus and the process for manufacturing the same
CN101525754B (en) Method for preparing solid state powder of potassium ferrate by adopting one-step method and electricity chemistry method
CN105154910A (en) Process for producing alkali
JP3304563B2 (en) Electrolytic ozone generator
US4581105A (en) Electrochemical cell operating near the critical point of water
JP2001271193A (en) Synthesis of tetramethylammonium hydroxide
US20080060936A1 (en) Ozone producing system
JPH07126880A (en) Method for electrolyzing brine and electrolytic cell
TWI406972B (en) Ozone producing system
US20200378015A1 (en) Electrochemical production of a gas comprising co with intermediate cooling of the electrolyte flow
JPH11279782A (en) Production of high-pressure gaseous hydrogen
JP4671398B2 (en) Water decomposition method and apparatus, and water decomposition catalyst
JP5376152B2 (en) Sulfuric acid electrolysis method
TW202319587A (en) Alkaline electrolysis arrangement with deaerator and method therefor
Abe et al. Hydrogen production by high temperature, high pressure water electrolysis, results of test plant operation
JPH0153201B2 (en)
US7128824B2 (en) Method for electrolysis of aqueous solutions of hydrogen chloride
JP2699793B2 (en) Method for producing hydrogen peroxide
JPH11152591A (en) Electrolytic method of salt water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees