JPH11279723A - Production of structural member made of heat resistant aluminum alloy - Google Patents

Production of structural member made of heat resistant aluminum alloy

Info

Publication number
JPH11279723A
JPH11279723A JP8694798A JP8694798A JPH11279723A JP H11279723 A JPH11279723 A JP H11279723A JP 8694798 A JP8694798 A JP 8694798A JP 8694798 A JP8694798 A JP 8694798A JP H11279723 A JPH11279723 A JP H11279723A
Authority
JP
Japan
Prior art keywords
structural member
alloy
forging
temperature
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8694798A
Other languages
Japanese (ja)
Other versions
JP3837230B2 (en
Inventor
Yasushi Takahashi
恭 高橋
Kousuke Doi
航介 土居
Hiroyuki Horimura
弘幸 堀村
Masahiro Sawai
政弘 沢井
Kazuhisa Nagamori
和久 永森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Tanaka Seimitsu Kogyo Co Ltd
Original Assignee
Honda Motor Co Ltd
Tanaka Seimitsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Tanaka Seimitsu Kogyo Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP08694798A priority Critical patent/JP3837230B2/en
Publication of JPH11279723A publication Critical patent/JPH11279723A/en
Application granted granted Critical
Publication of JP3837230B2 publication Critical patent/JP3837230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce a sound structural member having excellent heat resistance. SOLUTION: As the stock, the one composed of a heat resistant Al alloy in which the average grains size d1 of Al crystals composing the matrix is regulated to d1 <=1,000 nm, and furthermore, the average grains size d2 of intermetallic compds. dispersed into the matrix is regulated to d2 <=500 nm is prepd. The stock is subjected to forging in such a manner that, respectively, the forging temp. T1 is set to 200 deg.C<=T1 <=400 deg.C, and the die temp. T2 is set to 0.5T1 <=T2 <=0.9T1 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱Al合金製構造
部材の製造方法に関する。
The present invention relates to a method for manufacturing a heat-resistant aluminum alloy structural member.

【0002】[0002]

【従来の技術】一般的に、耐熱Al合金は高い変形抵抗
を有するため、その合金よりなる素材に鍛造加工を施す
場合には、素材の鍛造温度T1 を450℃≦T1 ≦60
0℃といったように高めなければならない。
2. Description of the Related Art Generally, a heat-resistant Al alloy has a high deformation resistance. Therefore, when forging a material made of the alloy, the forging temperature T 1 of the material is set to 450 ° C. ≦ T 1 ≦ 60.
It must be increased to 0 ° C.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鍛造温
度T1 を前記のように高く設定すると、Al合金の耐熱
性等の特性が損われたり、素材が金型に焼付く等の不具
合を生じ易くなるので、それらを回避するための条件管
理が非常に複雑となり、その結果、生産性の低下を招来
する、といった問題を生じた。
However [0007], when the forging temperatures T 1 is set higher as the, or impaired properties such as heat resistance of the Al alloy, easy material to occur troubles baking Ku such as the mold Therefore, the condition management for avoiding them becomes very complicated, and as a result, there arises a problem that productivity is reduced.

【0004】[0004]

【課題を解決するための手段】本発明は、特定の金属組
織を備えた耐熱Al合金素材を選択することにより鍛造
温度T1 の低下を実現すると共にその鍛造温度T1 に金
型温度T2 を相関させることにより塑性加工を成就さ
せ、これにより、優れた耐熱性を有する健全な構造部材
を能率良く得ることが可能な前記製造方法を提供するこ
とを目的とする。前記目的を達成するため本発明によれ
ば、素材として、マトリックスを構成するAl結晶の平
均粒径d1 がd1 ≦1000nmであり、また前記マト
リックスに分散する金属間化合物の平均粒径d2 がd2
≦500nmである耐熱Al合金より構成されたものを
用意し、この素材に、鍛造温度T1 を200℃≦T1
400℃に、また金型温度T2 を前記鍛造温度T1 との
関係において、0.5T1≦T2 ≦0.9T1 にそれぞ
れ設定して鍛造加工を施す耐熱Al合金製構造部材の製
造方法が提供される。
The present invention SUMMARY OF], the forging temperature T 1 of the mold temperature T 2 while realizing the reduction of the forging temperatures T 1 by selecting the heat-resistant Al alloy material having a specific metal structure It is an object of the present invention to provide the above-mentioned manufacturing method capable of achieving a plastic working by correlating with the above, thereby efficiently obtaining a sound structural member having excellent heat resistance. According to the present invention, in order to achieve the above object, according to the present invention, as a raw material, the average particle diameter d 1 of Al crystals constituting the matrix is d 1 ≦ 1000 nm, and the average particle diameter d 2 of the intermetallic compound dispersed in the matrix is Is d 2
A material composed of a heat-resistant Al alloy having a temperature of ≦ 500 nm is prepared, and the forging temperature T 1 is set to 200 ° C. ≦ T 1
Manufacture of a heat-resistant Al alloy structural member to be forged at 400 ° C. and the mold temperature T 2 set to 0.5T 1 ≦ T 2 ≦ 0.9T 1 in relation to the forging temperature T 1. A method is provided.

【0005】前記のような微細金属組織を備えたAl合
金は、本出願人の一方が、先に提案した特開平8−12
0378号公報に記載した通り優れた耐熱性を有する。
An Al alloy having a fine metal structure as described above is disclosed by one of the present applicants in Japanese Patent Application Laid-Open No.
It has excellent heat resistance as described in Japanese Patent No. 0378.

【0006】このAl合金より構成された素材に、前記
鍛造温度T1 の範囲において鍛造加工を施すと、その素
材は粒界すべりに起因した良好な塑性変形性を示す。そ
の反面、加工硬化が発生しないことから部分的な変形が
発生してそれが集中し易く、割れの原因となる。そこ
で、金型温度T2 を、鍛造温度T1 よりも低い前記範囲
に設定するもので、これにより素材の金型接触部側の変
形抵抗を内部のそれよりも高めて、前記のような部分的
な変形の集中を回避することが可能である。このように
して健全な耐熱Al合金製構造部材を能率良く得ること
ができる。ただし、鍛造温度T1 がT1 <200℃で
は、素材が温度降下を起し易いため構造部材の品質が一
定せず、一方、T1 >400℃では前記従来法同様に、
構造部材の生産性低下を招来する。また金型温度T2
2 <0.5T1 では素材の金型接触部側が、その温度
降下に起因して割れを生じ易く、一方、T2 >0.9T
1 では素材の金型への焼付きおよび割れが発生し易くな
る。
When a material made of this Al alloy is subjected to forging in the range of the forging temperature T 1 , the material shows good plastic deformability due to grain boundary sliding. On the other hand, since no work hardening occurs, partial deformation occurs, which tends to concentrate, causing cracks. Therefore, the mold temperature T 2, the forging temperatures T 1 used to set the lower the range than by thereby higher than that of the internal resistance to deformation of the mold contact portion side of the material, parts such as the It is possible to avoid the concentration of temporary deformation. Thus, a sound heat-resistant Al alloy structural member can be efficiently obtained. However, forging temperature T 1 is T 1 <At 200 ° C., the material is not constant quality of the structural member is liable cause temperature drop, whereas, T 1> 400 the prior art Similarly in ° C.,
This leads to a decrease in productivity of structural members. The mold temperature T 2 is T 2 <mold contact portion of the material in the 0.5 T 1 is prone to cracking due to its temperature drop, whereas, T 2> 0.9 T
In the case of 1 , the material is easily seized to the mold and cracked.

【0007】構造部材の耐摩耗性向上のためには、素材
にそれに分散するようにセラミック粒子を含有させる。
この場合、セラミック粒子の平均粒径d3 は1.5μm
≦d 3 ≦10μmに、またその含有量cは0.5vol
%≦c≦20vol%にそれぞれ設定される。セラミッ
ク粒子としては、アルミナ粒子、窒化ケイ素粒子、炭化
ケイ素粒子、窒化アルミニウム粒子等が用いられる。た
だし、セラミック粒子の平均粒径d3 がd3 <1.5μ
mでは部材の耐摩耗性向上効果が得られず、一方、d3
>10μmでは素材の鍛造加工性が悪化する。また含有
量cがc<0.5vol%ではセラミック粒子を添加す
る意義が無く、一方、c>20vol%では素材の鍛造
加工性が悪化する。
[0007] In order to improve the wear resistance of structural members, materials
Contains ceramic particles so as to be dispersed therein.
In this case, the average particle diameter d of the ceramic particlesThreeIs 1.5 μm
≦ d Three≦ 10 μm and the content c is 0.5 vol
% ≦ c ≦ 20 vol%. Ceramic
Alumina particles, silicon nitride particles, carbonized particles
Silicon particles, aluminum nitride particles and the like are used. Was
However, the average particle diameter d of the ceramic particlesThreeIs dThree<1.5μ
With m, the effect of improving the wear resistance of the member cannot be obtained, while dThree
If it is> 10 μm, the forgeability of the raw material is deteriorated. Also contained
When the amount c is c <0.5 vol%, ceramic particles are added.
There is no significance, on the other hand, forging of the material at c> 20vol%
Workability deteriorates.

【0008】前記Al合金の組成の第1例は、化学式A
bal TM4-7 0.5-3 で表わされる。これら数値の単
位は原子%であり、これは以下の化学式において同じで
ある。合金元素TMはFeおよびNiから選択される少
なくとも一種であり、また合金元素XはTi、Zr、M
gおよび希土類元素から選択される少なくとも一種であ
る。
A first example of the composition of the Al alloy is represented by a chemical formula A
1 bal TM 4-7 X 0.5-3 . The unit of these numerical values is atomic%, which is the same in the following chemical formula. The alloy element TM is at least one selected from Fe and Ni, and the alloy element X is Ti, Zr, M
g and at least one selected from rare earth elements.

【0009】前記合金元素TMはAl合金の耐熱性を向
上させる効果を有する。ただし、TM<4原子%ではT
Mを添加する意義が無く、一方、TM>7原子%では金
属間化合物が増加して構造部材の靱性が低下する。また
前記合金元素Xは金属間化合物の微細化を促進する効果
を有する。ただし、X<0.5原子%ではXを添加する
意義が無く、一方、X>3原子%ではAlX系金属間化
合物が生成されるため構造部材の靱性が低下する。
The alloy element TM has an effect of improving the heat resistance of the Al alloy. However, when TM <4 atomic%, T
There is no significance in adding M. On the other hand, when TM> 7 at%, the intermetallic compound increases and the toughness of the structural member decreases. Further, the alloy element X has an effect of promoting the miniaturization of the intermetallic compound. However, when X <0.5 atomic%, there is no significance in adding X, while when X> 3 atomic%, the toughness of the structural member is reduced because an AlX-based intermetallic compound is generated.

【0010】前記Al合金の組成の第2例は、化学式A
bal TM4-7 0.5-3 Si1-3 で表わされる。前記合
金元素TMおよびXの添加理由等は前記と同じである。
前記合金元素Siは金属組織を微細化する効果を有す
る。ただし、Si<1原子%ではSiを添加する意義が
無く、一方、Si>3原子%では初晶Siが晶出するた
め構造部材の靱性が低下する。
A second example of the composition of the Al alloy is represented by a chemical formula A
1 bal TM 4-7 X 0.5-3 Si 1-3 . The reasons for adding the alloy elements TM and X are the same as described above.
The alloy element Si has an effect of refining the metal structure. However, when Si <1 at%, there is no significance in adding Si, while when Si> 3 at%, the toughness of the structural member is reduced since primary Si is crystallized.

【0011】[0011]

【発明の実施の形態】〔I〕 素材の製造 (1) 例1について エアアトマイズ法の適用下でAl91Fe6 Ti1
2 の組成を有するAl合金粉末を製造し、次いでその
Al合金粉末に分級処理を施して、粒径90μm以下の
Al合金粉末を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [I] Production of material (1) Example 1 Al 91 Fe 6 Ti 1 S under the application of the air atomizing method
An Al alloy powder having a composition of i 2 was produced, and then the Al alloy powder was subjected to a classification treatment to obtain an Al alloy powder having a particle size of 90 μm or less.

【0012】 Al合金粉末(粒径90μm以下)を
用い、圧力400MPaの条件でCIPを行うことによ
り、直径55mm、長さ55mmのビレットを成形した。
A billet having a diameter of 55 mm and a length of 55 mm was formed by using an Al alloy powder (particle size of 90 μm or less) and performing CIP under a pressure of 400 MPa.

【0013】 ビレットを530℃のマッフル炉内に
設置し、Arガス雰囲気中に15分間保持して脱ガス処
理を行い、またそのビレットを押出し温度である530
℃まで昇温した。
The billet is placed in a muffle furnace at 530 ° C., degassed by being kept in an Ar gas atmosphere for 15 minutes, and the billet is extruded at a temperature of 530 ° C.
The temperature was raised to ° C.

【0014】 ビレットに間接押出し加工を施して、
直径16mmの素材の例1を得た。加工条件は、コンテナ
温度400℃、ダイス温度450℃、コンテナの内径5
6mm、ダイス孔内径16mm、押出し速度0.5〜1.0
cm/sec に設定された。
The billet is subjected to indirect extrusion,
Example 1 of a material having a diameter of 16 mm was obtained. Processing conditions are: container temperature 400 ° C, die temperature 450 ° C, container inner diameter 5
6mm, Die hole inner diameter 16mm, Extrusion speed 0.5-1.0
cm / sec was set.

【0015】この例1において、密度は略100%であ
り、またTEM(透過型電子顕微鏡)にて金属組織観察
を行ったところ、マトリックスを構成するAl結晶の平
均粒径d1 はd1 =500nmであり、またマトリック
スに分散する金属間化合物の平均粒径d2 はd2 =20
0nmであることが判明した。
In Example 1, the density was about 100%, and when the metal structure was observed with a TEM (transmission electron microscope), the average particle diameter d 1 of Al crystals constituting the matrix was d 1 = The average particle size d 2 of the intermetallic compound dispersed in the matrix is d 2 = 20.
It was found to be 0 nm.

【0016】(2) 例2について 例1の製造に用いたAl合金粉末(粒径90μm以下)
と同様のAl合金粉末に、平均粒径d3 がd3 =3μm
のアルミナ粒子よりなる粉末を、その含有量cがc=5
vol%となるように加え、次いでそれらをミキサに投
入して十分に混合した。
(2) Example 2 Al alloy powder used in the production of Example 1 (particle size: 90 μm or less)
The average particle diameter d 3 is d 3 = 3 μm in the same Al alloy powder as
Of alumina particles having a content c = 5
vol%, and then they were charged to a mixer and mixed well.

【0017】その後、混合粉末を用いて、例1の場合と
同様に前記〜の各工程を順次経て素材の例2を得
た。この例2における密度、マトリックスを構成するA
l結晶の平均粒径d1 および金属間化合物の平均粒径d
2 は、例1のそれらと同じであった。
After that, using the mixed powder, the same procedure as in Example 1 was repeated to sequentially carry out the above-mentioned steps to obtain Example 2 of the raw material. Density in Example 2 and A constituting the matrix
1 crystal average particle diameter d 1 and intermetallic compound average particle diameter d
2 were the same as those of Example 1.

【0018】(3) 例3について エアアトマイズ法の適用下でAl78.5Si17Fe
2.5 Ni1 Cu0.5 Mg 0.5 の組成を有するAl合金粉
末を製造し、次いでそのAl合金粉末に分級処理を施し
て、粒径90μm以下のAl合金粉末を得た。
(3) Example 3 Under the application of the air atomizing method,78.5Si17Fe
2.5Ni1Cu0.5Mg 0.5Alloy powder having the composition of
Powder and then classify the Al alloy powder
Thus, an Al alloy powder having a particle size of 90 μm or less was obtained.

【0019】その後、Al合金粉末(粒径90μm以
下)を用いて、例1の場合と同様に、前記〜の各工
程を順次経て素材の例3を得た。
Thereafter, as in the case of Example 1, using the Al alloy powder (having a particle size of 90 μm or less), each of the above-mentioned steps was successively performed to obtain a material example 3.

【0020】この例3における密度は略100%であ
り、またマトリックスを構成するAl結晶の平均粒径d
1 はd1 =5μmであり、さらに金属間化合物の平均粒
径d2はd2 =1μmであった。
The density in Example 3 is approximately 100%, and the average grain size d of the Al crystals constituting the matrix is
1 was d 1 = 5 μm, and the average particle diameter d 2 of the intermetallic compound was d 2 = 1 μm.

【0021】(4) 例4について 例3の製造に用いたAl合金粉末(粒径90μm以下)
と同様のAl合金粉末に、平均粒径d3 がd3 =3μm
のアルミナ粒子よりなる粉末を、その含有量cがc=5
vol%となるように加え、次いでそれらをミキサに投
入して十分に混合した。
(4) Example 4 Al alloy powder used in the production of Example 3 (particle size: 90 μm or less)
The average particle diameter d 3 is d 3 = 3 μm in the same Al alloy powder as
Of alumina particles having a content c = 5
vol%, and then they were charged to a mixer and mixed well.

【0022】その後、混合粉末を用いて、例1の場合と
同様に、前記〜の各工程を順次経て素材の例4を得
た。この例4における密度、マトリックスを構成するA
l結晶の平均粒径d1 および金属間化合物の平均粒径d
2 は、例3のそれらと同じであった。
After that, using the mixed powder, in the same manner as in Example 1, the above-mentioned steps (1) to (4) were successively performed to obtain Material Example 4. Density in Example 4, A constituting matrix
1 crystal average particle diameter d 1 and intermetallic compound average particle diameter d
2 were the same as those in Example 3.

【0023】〔II〕 限界すえ込み率の測定 この測定に当っては、図1(a)に示すように金敷1上
に、所定の鍛造温度T 1 に加熱された円形断面の試験片
Tpを立て、次いで図1(b)に示すように、すえ込み
ラム2により試験片Tpを加圧して、変形した試験片T
pに割れが発生したとき加圧を止めた。そして、試験片
Tpにおいて、すえ込み前の長さをL1とし、また割れ
が発生したときの長さをL2 として、限界すえ込み率ε
(%)を、ε={(L1 −L2 )/L1 }×100の式
より求めた。試験片Tpは素材の例1〜4から作製さ
れ、その直径は8mmに、また長さは10mmにそれぞれ設
定された。
[II] Measurement of marginal swaging ratio In this measurement, as shown in FIG.
The predetermined forging temperature T 1Specimen with circular cross section heated to
Tp is set, and then swaging is performed as shown in FIG.
The test piece Tp is deformed by pressing the test piece Tp with the ram 2.
When cracks occurred in p, the pressurization was stopped. And the test piece
In Tp, the length before swaging is L1And then crack
L is the length whenTwoAs the limit swaging rate ε
(%), Ε = {(L1-LTwo) / L1} × 100 formula
I asked more. The test piece Tp was prepared from the material examples 1-4.
With a diameter of 8 mm and a length of 10 mm.
Was decided.

【0024】図2は測定結果を示す。図2から、実施例
において用いられる例1,2は、例3,4に比べて各鍛
造温度T1 における限界すえ込み率εが高く、良好な塑
性変形性を有することが判る。特に、鍛造温度T1 が2
00℃≦T1 ≦400℃の範囲においては、例1,2の
限界すえ込み率εは50%以上と高く、しかもそれらの
塑性変形性は略一定である。したがって、例1,2につ
いては、この温度T1範囲での鍛造加工による構造部材
の量産が期待される。
FIG. 2 shows the measurement results. From Figure 2, Examples 1 and 2 used in the examples, the high limit upsetting ratio ε is at each forging temperatures T 1 compared to Examples 3 and 4, it is found to have good plastic deformability. In particular, forging temperature T 1 is 2
In the range of 00 ° C. ≦ T 1 ≦ 400 ° C., the critical swaging ratio ε of Examples 1 and 2 is as high as 50% or more, and their plastic deformability is substantially constant. Therefore, for Examples 1 and 2, mass production of structural members by forging in this temperature T 1 range is expected.

【0025】〔III 〕 鍛造温度T1 と金型温度T2
関係 図3において、密閉鍛造加工用金型3は上型4と下型5
とよりなる。下型5は、上側の大径凹部6と、それと同
軸上に在る下側の小径凹部7とを有し、小径凹部7底面
に開口するピン孔8にノックアウトピン9が摺動自在に
嵌合される。上型4は下型5の大径凹部6に摺動自在に
嵌合するようになっている。
[III] Relationship between Forging Temperature T 1 and Mold Temperature T 2 In FIG. 3, the closed forging mold 3 is composed of an upper mold 4 and a lower mold 5.
And The lower die 5 has an upper large-diameter concave portion 6 and a lower small-diameter concave portion 7 coaxially with the upper concave portion 6, and a knockout pin 9 is slidably fitted in a pin hole 8 opened in the bottom surface of the small-diameter concave portion 7. Are combined. The upper mold 4 is slidably fitted in the large-diameter recess 6 of the lower mold 5.

【0026】上、下型4,5には、それぞれ図示しない
複数のカートリッジヒータが備えられており、それらカ
ートリッジヒータによって上、下型4,5の温度、つま
り金型温度T2 が精度良く調節される。下型5におい
て、大径凹部6の内径D1 =23mm、深さH1 =15m
m;小径凹部7の内径D2 =15.6mm、深さH2 =5m
mである。
[0026] Moreover, the lower mold 4, 5 is provided with a plurality of cartridge heaters (not shown) respectively, above by their cartridge heater, the temperature of the lower mold 4, 5, i.e. the mold temperature T 2 is accurately adjusted Is done. In the lower mold 5, the inner diameter D 1 = 23 mm for the large-diameter portion 6, the depth H 1 = 15 m
m; inner diameter D 2 of small-diameter recess 7 = 15.6 mm, depth H 2 = 5 m
m.

【0027】この金型3を用い、次のような手順で密閉
鍛造を行って鍛造温度T1 と金型温度T2 との関係を調
べた。
Using the mold 3, closed forging was performed in the following procedure to examine the relationship between the forging temperature T 1 and the mold temperature T 2 .

【0028】(a) 素材の例1より、直径15mm、長
さ11mmの複数の試験片Tpを作製した。
(A) A plurality of test pieces Tp having a diameter of 15 mm and a length of 11 mm were prepared from the material example 1.

【0029】(b) 各試験片Tpに、二硫化モリブデ
ンを塗布する潤滑処理を施した。
(B) Each test piece Tp was subjected to a lubrication treatment for applying molybdenum disulfide.

【0030】(c) 各試験片Tpを電気炉内に設置し
て所定温度に加熱し、また金型3も所定温度に加熱し
た。
(C) Each test piece Tp was placed in an electric furnace and heated to a predetermined temperature, and the mold 3 was also heated to a predetermined temperature.

【0031】(d) 図3に示すように、試験片Tpを
下型5に、その小径凹部7内に立てて設置した。この場
合、試験片Tpの略半分が大径凹部6内に突き出てい
る。
(D) As shown in FIG. 3, the test piece Tp was set up on the lower mold 5 in the small-diameter recess 7. In this case, approximately half of the test piece Tp protrudes into the large-diameter recess 6.

【0032】(e) 予め上型4の下降位置を決める、
つまりすえ込み率を所定値に設定し、上型4を下降させ
て密閉鍛造加工を行った。したがって大径凹部6内にお
いて成形された、各鍛造品10の大径円盤部11の外径
は鎖線で示すように段階的に変化する。
(E) The lowering position of the upper mold 4 is determined in advance.
That is, the upsetting ratio was set to a predetermined value, and the upper die 4 was lowered to perform closed forging. Therefore, the outer diameter of the large-diameter disk portion 11 of each forged product 10 formed in the large-diameter recess 6 changes stepwise as indicated by a chain line.

【0033】(f) 図4に示すように、鍛造品10の
大径円盤部11の外周面について割れ12の有無を調
べ、割れ12が発生している場合には、その時の大径円
盤部11の外径Dを求めた。したがって、この外径Dが
大きい程、塑性変形性が良いことになる。
(F) As shown in FIG. 4, the outer peripheral surface of the large-diameter disk portion 11 of the forged product 10 is checked for the presence or absence of cracks 12, and if a crack 12 has occurred, the large-diameter disk portion at that time is examined. Eleven outer diameters D were determined. Therefore, the larger the outer diameter D, the better the plastic deformability.

【0034】図5〜7は、金型温度T2 を常温(25
℃)、130℃、170℃にそれぞれ設定した場合にお
ける、鍛造温度(常温を含む)T1 と、割れ発生時の外
径Dとの関係を示す。図中、「○」印は、前記外径D=
23mmにおいて割れが発生しなかったことを、また
「△」印は、前記外径D=22mmにおいて割れが発生し
たことを、さらに「×」印は前記外径D≦21mmにおい
て割れが発生したことをそれぞれ示す。
FIGS. 5 to 7 show that the mold temperature T 2 is set to the normal temperature (25 ° C.).
C.), 130 ° C., and 170 ° C., respectively, showing the relationship between the forging temperature (including normal temperature) T 1 and the outer diameter D at the time of occurrence of cracks. In the figure, the mark “○” indicates the outer diameter D =
No cracks were generated at 23 mm, "△" indicates that cracks occurred at the outer diameter D = 22 mm, and "x" indicates that cracks occurred at the outer diameter D≤21 mm. Are respectively shown.

【0035】図5において、金型温度T2 が常温(25
℃)の場合には、鍛造温度T1 を25〜500℃の範囲
で変化させても、全ての大径円盤部11に割れ12が発
生した。
In FIG. 5, the mold temperature T 2 is set to normal temperature (25
In the case of ° C.) can be varied forging temperatures T 1 in the range of 25 to 500 ° C., 12 cracked all the large diameter disc portion 11 has occurred.

【0036】図6において、金型温度T2 を130℃に
設定した場合には、鍛造温度T1 を25〜500℃の範
囲で変化させると、鍛造温度T1 =200℃において割
れ12の無い大径円盤部11が成形され、それ以外の鍛
造温度T1 では大径円盤部11に割れ12が発生した。
In FIG. 6, when the mold temperature T 2 is set to 130 ° C., when the forging temperature T 1 is changed in the range of 25 to 500 ° C., no crack 12 occurs at the forging temperature T 1 = 200 ° C. large diameter disc portion 11 is molded, other forging temperature T 12 cracks the large diameter disc portion 11, the first has occurred.

【0037】図7において、金型温度T2 を170℃に
設定した場合には、鍛造温度T1 を25〜500℃の範
囲で変化させると、鍛造温度T1 =200,300℃に
おいて割れ12の無い大径円盤部11が成形され、それ
以外の鍛造温度T1 では大径円盤部11に割れ12が発
生した。
In FIG. 7, when the mold temperature T 2 is set to 170 ° C., when the forging temperature T 1 is changed in the range of 25 to 500 ° C., the crack 12 at the forging temperature T 1 = 200,300 ° C. is the large diameter disc portion 11 is formed with no, 12 occurs cracking forging temperatures T 1 in the large diameter disc portion 11 otherwise.

【0038】前記同様に、鍛造温度T1 および金型温度
2 をそれぞれ変化させて密閉鍛造加工を行い、前記同
様に大径円盤部11の外周面について割れ12の有無を
調べ、また前記外径Dを求めたところ、図8の結果を得
た。図中、「○」、「△」、「×」印の意味は前記と同
じである。
In the same manner as described above, the forging temperature T 1 and the mold temperature T 2 are respectively changed to perform closed forging, and the outer peripheral surface of the large-diameter disk portion 11 is checked for cracks 12 in the same manner as described above. When the diameter D was determined, the result of FIG. 8 was obtained. In the figure, the meanings of the marks “○”, “△”, and “×” are the same as described above.

【0039】図8から明らかなように、試験片Tp、し
たがって素材の例1に、鍛造温度T 1 を200℃≦T1
≦400℃に、また金型温度T2 をその鍛造温度T1
の関係において、0.5T1 ≦T2 ≦0.9T1 にそれ
ぞれ設定して鍛造加工を施すと、割れ12の無い鍛造品
(構造部材)10を得ることができる。
As is apparent from FIG. 8, the test piece Tp is
Therefore, in Example 1 of the material, the forging temperature T 1At 200 ° C ≦ T1
≤ 400 ° C and mold temperature TTwoThe forging temperature T1When
0.5T1≤TTwo≤0.9T1Into it
When forging is performed with each setting, a forged product without cracks 12
(Structural member) 10 can be obtained.

【0040】素材の例2について、前記同様の考察を行
ったところ、鍛造温度T1 と金型温度T2 との間に前記
同様の関係が成立することが確認された。素材の例3,
4は、金型温度に関係なく、鍛造温度T1 ≦400℃に
おいて割れを生じた。
The same considerations as described above were conducted for Example 2 of the material, and it was confirmed that the same relationship as described above was established between the forging temperature T 1 and the mold temperature T 2 . Material example 3,
No. 4 cracked at a forging temperature T 1 ≦ 400 ° C. regardless of the mold temperature.

【0041】素材の例1,2に、それぞれMgを0.5
原子%添加した二種の素材について、前記同様の考察を
行ったところ、鍛造温度T1 と金型温度T2 との間に前
記同様の関係が成立することが確認された。
In each of the material examples 1 and 2, 0.5
When the same considerations were made for the two types of materials to which atomic% was added, it was confirmed that the same relationship as described above was established between the forging temperature T 1 and the mold temperature T 2 .

【0042】〔IV〕 エンジン用バルブスプリングリテ
ーナ 素材として、前記例2と同一材質で、且つ直径25mmの
押出し材を製造し、その素材を用いて、図9に示すよう
にバルブスプリング当接部13の外径D3 がD 3 =22
mmのバルブスプリングリテーナ(構造部材)14を鍛造
加工により製造した。鍛造条件は、鍛造温度T1 :30
0℃、金型温度T2 :220℃(約0.73T1 )に設
定された。
[IV] Valve spring retainer for engine
The same material as in Example 2 above and having a diameter of 25 mm
The extruded material is manufactured and the material is used as shown in FIG.
Outer diameter D of the valve spring contact portion 13ThreeIs D Three= 22
Forged valve spring retainer (structural member) 14 mm
Manufactured by processing. Forging conditions are forging temperature T1: 30
0 ° C, mold temperature TTwo: 220 ° C (about 0.73T)1)
Was decided.

【0043】この鍛造品14を、前記素材から総削り加
工により得られた切削品と比較したところ、鍛造品14
は、強度、耐摩耗性、耐衝撃性について切削品と同等、
若しくはそれ以上に優れていることが判明した。また鍛
造品14はベンチ耐久テストおよび実走耐久テストにお
いても十分な耐久性を示し、極めて高い実用性を有する
ことが判明した。
When this forged product 14 was compared with a cut product obtained by total cutting from the above-mentioned material, the forged product 14
Has the same strength, wear resistance and impact resistance as
Or better. Also, the forged product 14 exhibited sufficient durability in bench durability tests and actual running durability tests, and was found to have extremely high practicality.

【0044】さらに鍛造品14は、その重量が鋼製のも
のの略半分であることから、鍛造品14を鋼製のものと
交換することによって、エンジンの回転限界が約500
rpm向上し、またパワーおよび燃費に対する効果も大き
いことが確認された。
Furthermore, since the weight of the forged product 14 is substantially half that of a steel product, replacing the forged product 14 with a steel product can reduce the engine rotation limit to about 500.
It was confirmed that the rpm was improved and the effect on power and fuel consumption was great.

【0045】前記鍛造加工は、その鍛造温度T1 が比較
的低いことから、鋼の冷間鍛造加工に近いサイクルタイ
ムで鍛造品、したがってバルブスプリングリテーナ14
を製造することができ、その上、実質歩留りも、約92
%から99%以上といったように大幅に向上し得ること
も確認された。これらは、バルブスプリングリテーナ1
4の量産を図る上で極めて有効である。
In the forging process, since the forging temperature T 1 is relatively low, the forged product, that is, the valve spring retainer 14, has a cycle time close to the cold forging process of steel.
Can be manufactured, and the substantial yield is about 92%.
It was also confirmed that a significant improvement such as% to 99% or more could be achieved. These are the valve spring retainer 1
This is extremely effective in mass-producing the No. 4.

【0046】前記例2と同一材質の素材を用い、鍛造加
工を行うことによって、エンジン用バルブリフタおよび
ピストンを試作したところ、バルブスプリングリテーナ
14と同様の好結果が得られ、本発明が耐熱性・耐摩耗
性Al合金よりなる構造部材の製造に有効であることが
確認された。
When a valve lifter and a piston for an engine were prototyped by forging using the same material as in Example 2, good results similar to those of the valve spring retainer 14 were obtained. It has been confirmed that it is effective in manufacturing a structural member made of a wear-resistant Al alloy.

【0047】[0047]

【発明の効果】本発明によれば、前記のように特定の金
属組織を備えた耐熱Al合金素材を選択することによ
り、鍛造温度T1 の低下を実現すると共にその鍛造温度
1 に金型温度T2 を相関させることにより塑性加工を
成就させ、これにより優れた耐熱性を有する健全な構造
部材を能率良く得ることが可能な前記製造方法を提供す
ることができる。
According to the present invention, by selecting the heat-resistant Al alloy material having a specific metal structure as described above, the mold on the forging temperatures T 1 it is possible to realize a reduction in the forging temperatures T 1 By correlating the temperature T 2 , plastic working can be achieved, thereby providing the manufacturing method capable of efficiently obtaining a sound structural member having excellent heat resistance.

【0048】また本発明によれば、前記素材に特定量の
セラミック粒子を含有させることによって、優れた耐熱
性だけでなく良好な耐摩耗性を備えた健全な構造部材を
能率良く得ることが可能な前記製造方法を提供すること
ができる。
According to the present invention, a sound structural member having not only excellent heat resistance but also good wear resistance can be efficiently obtained by including a specific amount of ceramic particles in the material. The above-mentioned manufacturing method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】限界すえ込み率の測定方法を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing a method of measuring a limit swaging ratio.

【図2】鍛造温度T1 と限界すえ込み率εとの関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a forging temperature T 1 and a limit upsetting ratio ε.

【図3】密閉鍛造加工用金型と、試験片および鍛造品と
の関係を示す要部縦断面図である。
FIG. 3 is a longitudinal sectional view of an essential part showing a relationship between a closed forging die, a test piece and a forged product.

【図4】鍛造品の正面図である。FIG. 4 is a front view of a forged product.

【図5】金型温度T2 :常温において、鍛造温度T
1 と、割れ発生時の外径Dとの関係を示すグラフであ
る。
FIG. 5: Mold temperature T 2 : Forging temperature T at normal temperature
6 is a graph showing a relationship between 1 and an outer diameter D when a crack occurs.

【図6】金型温度T2 :130℃において、鍛造温度T
1 と、割れ発生時の外径Dとの関係を示すグラフであ
る。
FIG. 6 shows a forging temperature T at a mold temperature T 2 of 130 ° C.
6 is a graph showing a relationship between 1 and an outer diameter D when a crack occurs.

【図7】金型温度T2 :170℃において、鍛造温度T
1 と、割れ発生時の外径Dとの関係を示すグラフであ
る。
FIG. 7: Forging temperature T at mold temperature T 2 : 170 ° C.
6 is a graph showing a relationship between 1 and an outer diameter D when a crack occurs.

【図8】鍛造温度T1 と金型温度T2 との関係を示すグ
ラフである。
FIG. 8 is a graph showing a relationship between a forging temperature T 1 and a mold temperature T 2 .

【図9】エンジン用バルブスプリングリテーナの正面図
である。
FIG. 9 is a front view of an engine valve spring retainer.

フロントページの続き (51)Int.Cl.6 識別記号 FI B22F 3/17 C22C 1/05 C C22C 1/05 21/00 E 21/00 C22F 1/00 601 // C22F 1/00 601 603 603 604 604 627 627 651B 651 683 683 694B 694 B22F 3/02 101C (72)発明者 堀村 弘幸 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 沢井 政弘 富山県富山市新庄町455番地 田中精密工 業株式会社内 (72)発明者 永森 和久 富山県富山市新庄町455番地 田中精密工 業株式会社内Continued on the front page (51) Int.Cl. 6 Identification symbol FI B22F 3/17 C22C 1/05 C C22C 1/05 21/00 E 21/00 C22F 1/00 601 // C22F 1/00 601 603 603 604 604 627 627 651B 651 683 683 694B 694 B22F 3/02 101C (72) Inventor Hiroyuki Horimura 1-4-1, Chuo, Wako-shi, Saitama Pref. Honda Research Institute, Inc. (72) Inventor Masahiro Sawai Toyama, Toyama 455 Shinjo-cho, Tanaka-shi (72) Inventor Kazuhisa Nagamori 455 Shinjo-cho, Toyama-shi, Toyama Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 素材として、マトリックスを構成するA
l結晶の平均粒径d 1 がd1 ≦1000nmであり、ま
た前記マトリックスに分散する金属間化合物の平均粒径
2 がd2 ≦500nmである耐熱Al合金より構成さ
れたものを用意し、この素材に、鍛造温度T1 を200
℃≦T1 ≦400℃に、また金型温度T2 を前記鍛造温
度T1 との関係において、0.5T1 ≦T2 ≦0.9T
1 にそれぞれ設定して鍛造加工を施すことを特徴とする
耐熱Al合金製構造部材の製造方法。
1. A material comprising a matrix A
Average grain size d of 1 crystal 1Is d1≦ 1000 nm
Mean particle size of the intermetallic compound dispersed in the matrix
dTwoIs dTwoConsists of heat-resistant Al alloy with ≦ 500 nm
The forging temperature T1To 200
℃ ≦ T1≤ 400 ° C and mold temperature TTwoThe forging temperature
Degree T10.5T1≤TTwo≤0.9T
1It is characterized by setting for each and performing forging processing
A method for manufacturing a heat-resistant Al alloy structural member.
【請求項2】 前記素材は、それに分散するセラミック
粒子を含有し、そのセラミック粒子の平均粒径d3
1.5μm≦d3 ≦10μmであり、また含有量cは
0.5vol%≦c≦20vol%である、請求項1記
載の耐熱Al合金製構造部材の製造方法。
2. The raw material contains ceramic particles dispersed therein, the average particle diameter d 3 of the ceramic particles is 1.5 μm ≦ d 3 ≦ 10 μm, and the content c is 0.5 vol% ≦ c The method for producing a heat-resistant Al alloy structural member according to claim 1, wherein ≤ 20 vol%.
【請求項3】 前記Al合金の組成は、Albal TM
4-7 0.5-3 (数値の単位は原子%、TMはFeおよび
Niから選択される少なくとも一種、XはTi、Zr、
Mgおよび希土類元素から選択される少なくとも一種)
である、請求項1または2記載の耐熱Al合金製構造部
材の製造方法。
3. The composition of the Al alloy is Al bal TM
4-7 X 0.5-3 (The unit of the numerical value is atomic%, TM is at least one selected from Fe and Ni, X is Ti, Zr,
At least one selected from Mg and rare earth elements)
The method for producing a heat-resistant Al alloy structural member according to claim 1 or 2, wherein:
【請求項4】 前記Al合金の組成は、Albal TM
4-7 0.5-3 Si1-3(数値の単位は原子%、TMはF
eおよびNiから選択される少なくとも一種、XはT
i、Zr、Mgおよび希土類元素から選択される少なく
とも一種)である、請求項1または2記載の耐熱Al合
金製構造部材の製造方法。
4. The composition of the Al alloy is Al bal TM
4-7 X 0.5-3 Si 1-3 (The unit of numerical value is atomic%, TM is F
at least one selected from e and Ni, X is T
3. The method for manufacturing a heat-resistant Al alloy structural member according to claim 1, wherein the structural member is at least one selected from i, Zr, Mg, and a rare earth element).
【請求項5】 前記構造部材は、エンジンのバルブスプ
リングリテーナ、バルブリフタおよびピストンの少なく
とも一種である、請求項1,2,3または4記載の耐熱
Al合金製構造部材の製造方法。
5. The method for manufacturing a heat-resistant Al alloy structural member according to claim 1, wherein the structural member is at least one of a valve spring retainer, a valve lifter, and a piston of an engine.
JP08694798A 1998-03-31 1998-03-31 Method for producing heat-resistant Al alloy structural member Expired - Fee Related JP3837230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08694798A JP3837230B2 (en) 1998-03-31 1998-03-31 Method for producing heat-resistant Al alloy structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08694798A JP3837230B2 (en) 1998-03-31 1998-03-31 Method for producing heat-resistant Al alloy structural member

Publications (2)

Publication Number Publication Date
JPH11279723A true JPH11279723A (en) 1999-10-12
JP3837230B2 JP3837230B2 (en) 2006-10-25

Family

ID=13901074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08694798A Expired - Fee Related JP3837230B2 (en) 1998-03-31 1998-03-31 Method for producing heat-resistant Al alloy structural member

Country Status (1)

Country Link
JP (1) JP3837230B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511098A (en) * 2006-10-27 2010-04-08 ナノテク・メタルズ,インコーポレイテッド High temperature nanocomposite aluminum alloy and method thereof
JP2013103238A (en) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal Corp Method of evaluating surface machining crack susceptibility and device therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511098A (en) * 2006-10-27 2010-04-08 ナノテク・メタルズ,インコーポレイテッド High temperature nanocomposite aluminum alloy and method thereof
KR101285561B1 (en) * 2006-10-27 2013-07-15 나노텍 메탈스, 인코포레이티드 Atomized picoscale composite aluminum alloy and method therefor
US8961647B2 (en) 2006-10-27 2015-02-24 Orrvilon, Inc. Atomized picoscale composition aluminum alloy and method thereof
US9551048B2 (en) 2006-10-27 2017-01-24 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof
US10202674B2 (en) 2006-10-27 2019-02-12 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof
US10676805B2 (en) 2006-10-27 2020-06-09 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof
JP2013103238A (en) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal Corp Method of evaluating surface machining crack susceptibility and device therefor

Also Published As

Publication number Publication date
JP3837230B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US7422644B2 (en) Thin parts made of β or quasi-β titanium alloys; manufacture by forging
JP3559717B2 (en) Manufacturing method of engine valve
EP0533918B1 (en) Superalloy forging process and related composition
US5124121A (en) Titanium base alloy for excellent formability
JPS60228659A (en) Malleable improvement for nickel base superalloy
CN1009741B (en) Nickel base superalloy articles and method for making
EP0997544B1 (en) Process for producing particle-reinforced titanium alloy
US5571345A (en) Thermomechanical processing method for achieving coarse grains in a superalloy article
JPH07179974A (en) Aluminum alloy and its production
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JPH09508670A (en) Superalloy forging method and related composition
JPH05269539A (en) Production of exhaust valve for internal combustion engine
JPH0885838A (en) Ni-base superalloy
JP5382977B2 (en) Method for producing silicon-containing alloy of niobium and wrought material containing niobium
JPH06293933A (en) Wear resistant aluminum alloy and its production
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
CN1012182B (en) Improved forgeability in nickel superalloys
EP3815809B1 (en) Blind rivet nut and manufacturing method therefor
JP3837230B2 (en) Method for producing heat-resistant Al alloy structural member
WO2009102233A1 (en) Method for pressing blanks made of nanostructural titanium alloys
JPH0828493A (en) Manufacture of aluminum alloy-made scroll
JP2004538361A (en) Method of manufacturing high load capacity member made of TiAl alloy
JP3871805B2 (en) Method for producing Al-based composite member
JP4512299B2 (en) Method for producing Ni-based alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Effective date: 20060405

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A521 Written amendment

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060705

A61 First payment of annual fees (during grant procedure)

Effective date: 20060731

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees