JPH11279605A - Thermoelectric semiconductor material and production thereof - Google Patents

Thermoelectric semiconductor material and production thereof

Info

Publication number
JPH11279605A
JPH11279605A JP10347593A JP34759398A JPH11279605A JP H11279605 A JPH11279605 A JP H11279605A JP 10347593 A JP10347593 A JP 10347593A JP 34759398 A JP34759398 A JP 34759398A JP H11279605 A JPH11279605 A JP H11279605A
Authority
JP
Japan
Prior art keywords
tube
bismuth
powder
semiconductor material
thermoelectric semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10347593A
Other languages
Japanese (ja)
Other versions
JP3278140B2 (en
Inventor
Hisaaki Imaizumi
久朗 今泉
Hiroaki Yamaguchi
博明 山口
Masataka Yamanashi
正孝 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Komatsu Ltd
Original Assignee
Komatsu Ltd
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Komatsu Electronic Metals Co Ltd filed Critical Komatsu Ltd
Priority to JP34759398A priority Critical patent/JP3278140B2/en
Publication of JPH11279605A publication Critical patent/JPH11279605A/en
Application granted granted Critical
Publication of JP3278140B2 publication Critical patent/JP3278140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a thermoelectric semiconductor material having easy doping control and high producing yield by uniformizing uni-conductive type solid-solution of bismuth telluride and bismuth selenide containing impurities and sintering with a hot-press. SOLUTION: Bismuth, tellirium and sellenium are blended in a prescribed ratio and antimony iodide for adjusting carrier concn. is added to this blended material, and this mixture is charged into a quartz tube and the air in the tube is exhausted with a vacuum pump and the tube is sealed. After combining by stirring in the tube while heating this qualtz tube, the qualty tube is shifted in the zone at just below the solidified point, and rapidly cooled. An ingot obtd. by rapidly cooling is crushed with a stamp-mill, etc., and screened with a sieve of 200 mesh and a sieve of 400 mesh and selected to the oversize of the 400 mesh sieve and matched to the powder having in the range of 37-74 μgrain diameter. The powder matching the grain diameter is hot-pressed by using a carbon-die with the hot-press method in vacuum or inert gas to form the powder sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱電半導体材料および
その製造方法に関する。
The present invention relates to a thermoelectric semiconductor material and a method for producing the same.

【0002】[0002]

【従来技術およびその問題点】ペルチェ効果、あるいは
エッチングスハウゼン効果を利用した電子冷却素子、あ
るいはゼーベック効果を利用した熱電発電素子は、構造
が簡単でかつ取扱いが容易で安定な特性を維持できるこ
とから、広範囲にわたる利用が注目されている。
2. Description of the Related Art A thermoelectric generator using the Peltier effect or the Etching-Shausen effect or a thermoelectric generator using the Seebeck effect has a simple structure, is easy to handle, and can maintain stable characteristics. , Widespread use is attracting attention.

【0003】ところで、従来、超電導素子の冷却には極
低温が必要であるため液体ヘリウムによる冷却しか方法
がなく、冷却コストおよび使用場所等の面で制限が多か
った。ところが最近、超電導材料の目ざましい発達によ
り臨界温度の高いものが得られるようになり、必要温度
が上昇し、電子冷却素子による冷却で、超電導素子を駆
動できるようになってきている。
Heretofore, cooling of a superconducting element requires an extremely low temperature, so there is only a method of cooling with liquid helium, and there have been many limitations in terms of cooling cost, use place, and the like. However, recently, a remarkable development of a superconducting material has made it possible to obtain a material having a high critical temperature, the required temperature has been increased, and the superconducting element can be driven by cooling by an electronic cooling element.

【0004】この電子冷却に用いる熱電材料のうちn型
半導体として用いられる代表的なものに、テルル化ビス
マス(Bi2Te3)に5モル%のセレン化ビスマス(Bi2
Se3)を添加すると共に電子濃度の調整のための不純物
を添加した溶液に、温度勾配を与えながら溶液全体の温
度を除々に引き下げるいわゆるノーマルフリージング法
により形成される単結晶インゴットもしくは結晶粒径の
大きい多結晶インゴットがある。
Among the thermoelectric materials used for the electronic cooling, a typical one used as an n-type semiconductor is bismuth telluride (Bi2Te3) with 5 mol% of bismuth selenide (Bi2
A single crystal ingot or a crystal having a large grain size formed by a so-called normal freezing method in which a temperature gradient is gradually applied to a solution to which Se3) is added and an impurity for adjusting an electron concentration is added. There are polycrystalline ingots.

【0005】ところで、熱電材料の良否は、物質固有の
定数である熱起電力αと電気伝導率σと熱伝導率Kによ
って表わされる性能指数Z(=α2σ/K)の大小で決
まる。
The quality of a thermoelectric material is determined by the magnitude of a figure of merit Z (= α2σ / K) represented by thermoelectric power α, electric conductivity σ, and heat conductivity K, which are constants inherent to the material.

【0006】すなわち、Zが大きいほど性能が良いわけ
であるが、テルル化ビスマス(Bi2Te3),セレン化ビ
スマス(Bi2Se3)および両者の固溶体について多くの
研究報告例が発表されている。その一例を図3(a)お
よび(b)に示す。この図からも明らかなように、テル
ル化ビスマスとセレン化ビスマスのモル比が80:20
ないし75:25のとき熱伝導率Kが最小となりα2σ
および自由電子の質量に対する電子の有効質量の比m*
/mが大きくなる。これは、テルル化ビスマス、セレン
化ビスマス両者の結晶対称性が同じで格子定数がわずか
に異なることにより、固溶体にすると結晶にわずかな歪
が生じ、それによってフォノンの散乱、電子の有効質量
m*の変化が生じるためと考えられている。
[0006] That is, although the higher the Z, the better the performance, many research reports have been published on bismuth telluride (Bi2Te3), bismuth selenide (Bi2Se3) and solid solutions of both. One example is shown in FIGS. 3 (a) and 3 (b). As is clear from this figure, the molar ratio of bismuth telluride to bismuth selenide is 80:20.
To 75:25, the thermal conductivity K becomes minimum and α2σ
And the ratio of the effective mass of electrons to the mass of free electrons, m *
/ M increases. This is because both bismuth telluride and bismuth selenide have the same crystal symmetry and slightly different lattice constants, so that a solid solution causes a slight strain in the crystal, which causes scattering of phonons, effective mass of electrons m * It is thought that the change occurs.

【0007】しかしながら、図4に示す如く固溶体の状
態図から明らかなように、セレン化ビスマスの含有率を
高めると偏析が起り、一本の単結晶インゴットの中で目
的とする組成の部分はごくわずかしか得られないという
問題があった。現在の技術では、セレン化ビスマスの含
有率を5%以上にしたものを工業製品として得るのは不
可能な状態であった。
However, as is apparent from the phase diagram of the solid solution as shown in FIG. 4, when the content of bismuth selenide is increased, segregation occurs, and the portion of the target composition in one single crystal ingot is very small. There was a problem that only a small amount could be obtained. With the current technology, it was impossible to obtain a product having a bismuth selenide content of 5% or more as an industrial product.

【0008】更に、テルル化ビスマス、セレン化ビスマ
スの結晶は著しい劈開性を有しており、インゴットから
熱電素子を得るためのスライシング、ダイシング工程等
を経ると、割れや欠けの為に歩留りが極めて低くなるこ
とが実用化をはばむ大きな問題となっていた。
Further, the crystals of bismuth telluride and bismuth selenide have remarkable cleavability, and after slicing or dicing for obtaining a thermoelectric element from an ingot, the yield is extremely high due to cracking or chipping. The lowering has been a major problem that will delay practical application.

【0009】一方、結晶としてではなく、粉末焼結体と
して用いると劈開性の問題はなくなるが、焼結密度が上
がらず、半田付けを行なうと内部に半田がしみ込み性能
低下を引き起こすという問題がある。
On the other hand, the use of a powdered sintered body instead of a crystal eliminates the problem of cleavage, but the sintering density does not increase, and the solder penetrates into the interior when soldering, causing a problem of reduced performance. is there.

【0010】更に、粉末の場合、ドーピング制御が困難
であり一定量の不純物を添加してもキャリア濃度が一定
にならないという問題があった。
Further, in the case of powder, there is a problem that it is difficult to control doping, and even if a certain amount of impurity is added, the carrier concentration is not constant.

【0011】本発明は、前記実情に鑑みてなされたもの
で、ドーピング制御が容易で製造歩留りの高い熱電半導
体材料を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a thermoelectric semiconductor material which can be easily controlled for doping and has a high production yield.

【0012】[0012]

【課題を解決するための手段】そこで本発明では、粒径
の均一なテルル化ビスマス−セレン化ビスマス固溶体粉
末からなる粉末焼結体によって熱電半導体材料を構成し
ている。
Accordingly, in the present invention, a thermoelectric semiconductor material is constituted by a powder sintered body composed of a bismuth telluride-bismuth selenide solid solution powder having a uniform particle size.

【0013】また、本発明の方法では、目的とする組成
となるようにビスマス、テルル、セレンを加熱溶融せし
めた後、急冷してインゴットを形成してこれを粉砕し、
粒径を揃えた後、加圧焼結するようにしている。
In the method of the present invention, bismuth, tellurium, and selenium are heated and melted so as to obtain a desired composition, and then quenched to form an ingot, which is pulverized.
After the particle diameters are adjusted, pressure sintering is performed.

【0014】[0014]

【作用】本発明では、単結晶ではなく、粉末焼結体で構
成されているため、組成比を自由に選択でき、性能指数
Zの高いものを得ることができる。又粒径を揃えること
により、ドーピング制御が容易となる。これは、粒径が
揃うと粒界の分布も均一となり、粒界から発生すると考
えられる電子も一定となるため、電子濃度の再現性もよ
くなるものと考えられる。
According to the present invention, the composition is not a single crystal but a powder sintered body, so that the composition ratio can be freely selected and a high figure of merit Z can be obtained. Further, by adjusting the particle diameter, doping control becomes easy. This is presumably because, when the particle diameters are uniform, the distribution of the grain boundaries becomes uniform, and electrons considered to be generated from the grain boundaries become constant, so that the reproducibility of the electron concentration is improved.

【0015】また、粒径を揃えることにより、焼結密度
が上がり、半田付工程においても半田のしみ込みによる
性能低下もない。
Further, by arranging the particle diameters, the sintering density is increased, and the performance does not decrease due to the penetration of the solder in the soldering step.

【0016】加えて、単結晶あるいは多結晶のインゴッ
トをそのまま用いた場合らに比べ、割れ等による製造歩
留りの低下も大幅に低減される。
In addition, as compared with a case where a single crystal or polycrystalline ingot is used as it is, a decrease in manufacturing yield due to cracks or the like is greatly reduced.

【0017】[0017]

【実施例】以下、本発明の実施例について、図面を参照
しつつ詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】まず、ビスマスBi 313.50g、テルルT
e 272.77g、セレンSe 8.883gを秤量し、更にキャ
リア濃度を調整するためにヨウ化アンチモン0.0837g
(0.02モルパーセント)を添加し、この混合物を石英管
内に投入した後、真空ポンプによって管内の空気を排
気,封入する。
First, 313.50 g of bismuth Bi, tellurium T
272.77 g of e and 8.883 g of selenium Se, and 0.0837 g of antimony iodide for further adjusting the carrier concentration
(0.02 mol%), and the mixture is charged into a quartz tube, and then the air in the tube is evacuated and sealed by a vacuum pump.

【0019】この管を650℃に加熱し3時間にわたり
石英管内を撹拌しつつ化合させた後、凝固点直下である
560℃の領域に石英管を移動し急冷する。
After heating the tube to 650 ° C. and stirring the quartz tube for 3 hours while stirring, the quartz tube is moved to a region of 560 ° C. immediately below the freezing point and rapidly cooled.

【0020】次に、この急冷インゴットをスタンプミ
ル、ボールミル等で粉砕した後、200メッシュおよび
400メッシュの篩にかけ400メッシュの篩上に残っ
たものを選び、粒径37〜74μm程度の粉末に揃え
る。
Next, the quenched ingot is pulverized by a stamp mill, a ball mill, or the like, and then sieved through a 200-mesh or 400-mesh sieve. .

【0021】このようにして粒径の揃えられた粉末を真
空中または不活性ガス中でホットプレス法によりカーボ
ンダイスを用いてホットプレスし、粉末焼結体を形成す
る。
The powder having a uniform particle size is hot-pressed in a vacuum or an inert gas by a hot press method using a carbon die to form a powder sintered body.

【0022】この後、この粉末焼結体を3ミリ角6ミリ
長のチップに分断し、n型のBiTeSeを形成する。
Thereafter, the powder sintered body is divided into chips of 3 mm × 6 mm length to form n-type BiTeSe.

【0023】このようにして形成されたn型のBiTe
Se1を、性能テストのために同寸法の単結晶p型Bi
TeSe2と接続してp−n素子対3を形成し、これを
図2に示す如く真空容器4内に設置する。ここで5は電
極としての銅板、6は水冷銅ブロック、7は絶縁部材、
8は電子循環恒温槽、9は定電流電源である。そして、
このp−n素子対の発熱側の温度TH を23℃に保ちつ
つp−n素子対に電流を流し、冷却側の温度Tcを測定
する。この冷却特性は図1の曲線a1に示す通りであ
り、最大温度差△Tmax=TH−TC=70.4℃を記録し
た。また、曲線a2には、このp−n素子対の発熱側の
温度TH を3℃に保持したときの、冷却側の温度TC を
示す。
The n-type BiTe thus formed is
Se1 was converted to single-crystal p-type Bi of the same size for performance testing.
A pn element pair 3 is formed by connecting with TeSe2, and this is set in a vacuum vessel 4 as shown in FIG. Here, 5 is a copper plate as an electrode, 6 is a water-cooled copper block, 7 is an insulating member,
8 is an electronic circulating thermostat, 9 is a constant current power supply. And
While maintaining the temperature TH on the heat generation side of the pn element pair at 23 ° C., a current is applied to the pn element pair, and the temperature Tc on the cooling side is measured. This cooling characteristic was as shown by the curve a1 in FIG. 1, and the maximum temperature difference ΔTmax = TH−TC = 70.4 ° C. was recorded. The curve a2 shows the cooling-side temperature TC when the temperature TH on the heating side of the pn element pair is maintained at 3 ° C.

【0024】比較のために、n型素子の方も単結晶Bi
TeSeで形成したp−n素子対についての同様の冷却
特性を測定した結果を曲線b1に示す。この曲線b1か
らも明らかなように最大温度差は△Tmax=56.05℃とな
っている。又b2は同様に発熱側の温度TH を3℃にし
たときの冷却側の温度TC を示す。これら曲線a1,a
2,b1,b2の比較からも本発明実施例のn型BiT
eSe(焼結体)によれば冷却性能の優れた熱電素子を
形成することが可能となることがわかる。
For comparison, the n-type element is also a single crystal Bi
A curve b1 shows the result of measuring the same cooling characteristics of the pn element pair formed of TeSe. As is clear from the curve b1, the maximum temperature difference is ΔTmax = 56.05 ° C. Similarly, b2 indicates the cooling-side temperature TC when the heating-side temperature TH is set to 3 ° C. These curves a1, a
2, b1, b2 also shows that the n-type BiT
It can be seen that eSe (sintered body) makes it possible to form a thermoelectric element having excellent cooling performance.

【0025】また、このn型焼結体は機械的強度も大き
く、半田付特性も良好であった。
The n-type sintered body had high mechanical strength and good soldering characteristics.

【0026】また、Bi2Te3 : Bi2Se3= 9:1の
組成比で同様の実験を行なった場合、本発明の焼結体か
らなるn型BiTeSeと、単結晶p型BiTeSeと
で構成したp−n素子対の発熱側温度を23℃にしたと
き最大温度差△Tmaxは65℃であった。これによって
も冷却性能が優れていることがわかる。ここで、前述し
た組成のものよりも△Tmax が小さいのは、Bi2Te3と
Bi2Se3の組成比を変えたのにハロゲンの添加量を変え
なかったため、電子濃度の最適値からずれたためと考え
られる。(ここでセレン化ビスマスはn型、テルル化ビ
スマスはp型の材料であるため、セレン化ビスマスの比
率を増大せしめるにつれて、添加するドナー不純物を減
少させなければならない。)なお、本発明実施例の方法
においては、材料を石英管内で加熱溶融し化合せしめた
後、凝固点よりもわずかに低い温度まで急冷するという
方法をとっている。
When a similar experiment was carried out with a composition ratio of Bi2Te3: Bi2Se3 = 9: 1, a pn device composed of an n-type BiTeSe made of the sintered body of the present invention and a single-crystal p-type BiTeSe was used. When the exothermic side temperature of the pair was 23 ° C., the maximum temperature difference ΔTmax was 65 ° C. This also shows that the cooling performance is excellent. Here, it is considered that the reason why ΔTmax is smaller than that of the above-described composition is that, although the composition ratio of Bi2Te3 and Bi2Se3 was changed, the addition amount of halogen was not changed, and the electron concentration deviated from the optimum value. (Because bismuth selenide is an n-type material and bismuth telluride is a p-type material, as the ratio of bismuth selenide is increased, the amount of donor impurities to be added must be reduced.) Incidentally, the examples of the present invention In the above method, the material is heated and melted in a quartz tube and combined, and then rapidly cooled to a temperature slightly lower than the freezing point.

【0027】従来は偏析を逸れるため、常温程度まで急
冷するという方法がとられている。この場合、微結晶と
なるために粒界が増大し過ぎ、ドーピング制御が困難に
なることがあったが、本発明実施の方法によれば、適切
な粒度を得ることが可能となる。
Conventionally, a method of rapidly cooling to about normal temperature has been adopted in order to avoid segregation. In this case, the grain boundaries are excessively increased due to the formation of microcrystals, so that doping control is sometimes difficult. However, according to the method of the present invention, it is possible to obtain an appropriate grain size.

【0028】また、この粉末焼結体の組成比は、Bi2
(Te1-X SeX )3 としたとき、0.05<X<0.3 とす
るのが望ましい。X>0.3 であると偏析が起り、目的構
成のものは、わずかしかできず、0.05>Xであると、熱
伝導率Kが大きくなり十分大きい性能指数Zを得ること
ができない。
The composition ratio of the powder sintered body is Bi 2
When (Te1-x Sex) 3, it is preferable that 0.05 <X <0.3. If X> 0.3, segregation occurs, and only a small amount of the target composition can be formed. If 0.05> X, the thermal conductivity K increases and a sufficiently large figure of merit Z cannot be obtained.

【0029】更に、キャリア濃度を調整するために添加
するハロゲンの量は1020cm-3以下であるのが望まし
い。
Further, the amount of halogen added for adjusting the carrier concentration is desirably 1020 cm-3 or less.

【0030】更にまた、粉末焼結体中の粉末粒径を37
〜74μm程度に揃えたが、10〜200μmの範囲内
で適宜領域を選択すればよい。10μm以下であると、
粒界が非常に多くなるためにドーピング制御が困難とな
る上、粒界でのキャリアの散乱により移動度が低下する
ことにより、特性が低下する。また、粉末の凝集が起り
易くなり扱いが困難である。
Further, the particle size of the powder in the powder sintered body is set to 37.
The range is set to about 74 μm, but an appropriate area may be selected within the range of 10 to 200 μm. When it is 10 μm or less,
Since the number of grain boundaries is very large, doping control becomes difficult, and the mobility is reduced due to scattering of carriers at the grain boundaries, so that the characteristics are deteriorated. In addition, the powder tends to agglomerate and is difficult to handle.

【0031】また、200μm以上であると、十分な機
械的強度および十分な焼結密度を得ることができない。
On the other hand, if the thickness is 200 μm or more, sufficient mechanical strength and sufficient sintered density cannot be obtained.

【0032】[0032]

【発明の効果】以上説明してきたように、本発明によれ
ば粒径の均一なテルル化ビスマス−セレン化ビスマス固
溶体の粉末焼結体から構成しているため、ドーピング制
御が容易で、性能指数が高く、製造歩留りの高い熱電半
導体を得ることが可能となる。
As described above, according to the present invention, since the powdery sintered body of the bismuth telluride-bismuth selenide solid solution having a uniform particle diameter is used, the doping control is easy and the performance index is improved. And a thermoelectric semiconductor with a high production yield can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例のn型BiTeSeを用いて形成
した熱電素子と単結晶のn型BiTeSeを用いて形成
した熱電素子の冷却特性を示す比較図
FIG. 1 is a comparison diagram showing cooling characteristics of a thermoelectric element formed using n-type BiTeSe and a thermoelectric element formed using single-crystal n-type BiTeSe according to an embodiment of the present invention.

【図2】同冷却特性の測定装置を示す図FIG. 2 is a diagram showing an apparatus for measuring the cooling characteristics.

【図3】図3(a)はBi2Te3とBi2Se3の組成比と性
能指数との関係を示す図で図3(b)はBi2Te3とBi2
Se3の組成比と性能指数との関係を示す図
FIG. 3A is a diagram showing the relationship between the composition ratio of Bi2Te3 and Bi2Se3 and the figure of merit, and FIG. 3B is a diagram showing the relationship between Bi2Te3 and Bi2.
Diagram showing the relationship between the composition ratio of Se3 and the figure of merit

【図4】固溶体の状態図FIG. 4 is a phase diagram of a solid solution.

【符号の説明】[Explanation of symbols]

1…n型BiTeSe 2…単結晶p型BiTeSe 3…熱電素子 4…真空容器 DESCRIPTION OF SYMBOLS 1 ... n-type BiTeSe 2 ... single crystal p-type BiTeSe 3 ... thermoelectric element 4 ... vacuum container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22C 12/00 C22C 12/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // C22C 12/00 C22C 12/00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の不純物を含むテルル化ビスマ
ス(Bi2Te3)−セレン化ビスマス(Bi2Se3)固溶体
粉末の粒径を10〜200ミクロンの範囲に均一化する
粒径調整工程と、 粒径の均一となった固溶体粉末をホットプレスにより焼
結せしめる焼結工程とを含むことを特徴とする熱電半導
体材料の製造方法。
1. A particle size adjusting step for uniformizing the particle size of a bismuth telluride (Bi2Te3) -bismuth selenide (Bi2Se3) solid solution powder containing impurities of one conductivity type to a range of 10 to 200 microns. A sintering step of sintering the homogeneous solid solution powder by hot pressing.
【請求項2】 粒径が均一で、一導電型の不純物を含む
テルル化ビスマス(Bi2Te3)−セレン化ビスマス(B
i2Se3)固溶体粉末を、ホットプレスにより焼結させた
粉末焼結体からなり、 前記固溶体の粒径が10〜200ミクロンの範囲にある
ことを特徴とする熱電半導体材料。
2. Bismuth telluride (Bi2Te3) -bismuth selenide (B) having a uniform particle size and containing impurities of one conductivity type.
i2Se3) A thermoelectric semiconductor material comprising a powder sintered body obtained by sintering a solid solution powder by hot pressing, wherein the particle diameter of the solid solution is in the range of 10 to 200 microns.
【請求項3】 前記固溶体粉末の粒径は、37〜74ミ
クロンの範囲にあることを特徴とする特許請求の範囲第
2項記載の熱電半導体材料。
3. The thermoelectric semiconductor material according to claim 2, wherein the particle diameter of said solid solution powder is in the range of 37 to 74 microns.
【請求項4】 前記固溶体粉末は、次式Bi2(Te 1-x
Se x)3 (0.05<x<0.3)に示す組成を有するものである
ことを特徴とする特許請求の範囲第2項記載の熱電半導
体材料。
4. The solid solution powder according to the following formula Bi2 (Te 1-x
3. The thermoelectric semiconductor material according to claim 2, wherein the thermoelectric semiconductor material has a composition represented by (Sex) 3 (0.05 <x <0.3).
【請求項5】前記不純物は1020cm-3以下で添加される
ハロゲン原子であることを特徴とする特許請求の範囲第
2項記載の熱電半導体材料。
5. The thermoelectric semiconductor material according to claim 2, wherein said impurity is a halogen atom added at 1020 cm −3 or less.
JP34759398A 1998-12-07 1998-12-07 Thermoelectric semiconductor material and method of manufacturing the same Expired - Fee Related JP3278140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34759398A JP3278140B2 (en) 1998-12-07 1998-12-07 Thermoelectric semiconductor material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34759398A JP3278140B2 (en) 1998-12-07 1998-12-07 Thermoelectric semiconductor material and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62192238A Division JPH0832588B2 (en) 1987-07-31 1987-07-31 Thermoelectric semiconductor material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11279605A true JPH11279605A (en) 1999-10-12
JP3278140B2 JP3278140B2 (en) 2002-04-30

Family

ID=18391275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34759398A Expired - Fee Related JP3278140B2 (en) 1998-12-07 1998-12-07 Thermoelectric semiconductor material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3278140B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002412A (en) * 2019-04-22 2019-07-12 武汉科技大学 A kind of preparation method of preferred orientation N-shaped bismuth telluride-base polycrystalline bulk thermoelectric material
CN114551706A (en) * 2022-02-21 2022-05-27 北京航空航天大学 P-type bismuth antimony selenide thermoelectric material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002412A (en) * 2019-04-22 2019-07-12 武汉科技大学 A kind of preparation method of preferred orientation N-shaped bismuth telluride-base polycrystalline bulk thermoelectric material
CN114551706A (en) * 2022-02-21 2022-05-27 北京航空航天大学 P-type bismuth antimony selenide thermoelectric material and preparation method thereof
CN114551706B (en) * 2022-02-21 2022-10-21 北京航空航天大学 P-type bismuth antimony selenide thermoelectric material and preparation method thereof

Also Published As

Publication number Publication date
JP3278140B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US5448109A (en) Thermoelectric module
Rosi et al. Materials for thermoelectric refrigeration
JP3845803B2 (en) High performance thermoelectric materials and methods for their preparation
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP2829415B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
KR101995917B1 (en) Power factor enhanced thermoelectric material and method of producing same
JP2005072391A (en) N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
JP2016526302A (en) High performance P-type thermoelectric material having reversible phase transition and method for producing the same
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP2847123B2 (en) Manufacturing method of thermoelectric material
JP2000106460A (en) Thermoelectric semiconductor material and manufacture thereof
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
KR101959448B1 (en) Thermoelectric materials, thermoelectric device and method for manufacturing the same
CN105970070A (en) P-type alpha-MgAgSbSn thermoelectric material with high optimum value and preparation method
JP3278140B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JPH10209508A (en) Thermoelectric transducer and its manufacture
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JPH0856020A (en) Thermoelectric material and thermionic element
JP2887468B2 (en) Manufacturing method of thermoelectric semiconductor material
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof
JP2729964B2 (en) Thermoelectric material for low temperature
KR101555687B1 (en) Method for producing thermoelectric materials and thermoelectric materials produced thereof
KR102135245B1 (en) A thermoelectric material and process for preparing the same
JP2002118299A (en) Manufacturing method of thermoelement

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000208

LAPS Cancellation because of no payment of annual fees