JPH1127895A - Spindle motor - Google Patents

Spindle motor

Info

Publication number
JPH1127895A
JPH1127895A JP18215997A JP18215997A JPH1127895A JP H1127895 A JPH1127895 A JP H1127895A JP 18215997 A JP18215997 A JP 18215997A JP 18215997 A JP18215997 A JP 18215997A JP H1127895 A JPH1127895 A JP H1127895A
Authority
JP
Japan
Prior art keywords
bearing
radial
thrust
gap
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18215997A
Other languages
Japanese (ja)
Inventor
Ikunori Sakatani
郁紀 坂谷
Etsuo Maeda
悦生 前田
Katsuhiko Tanaka
克彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP18215997A priority Critical patent/JPH1127895A/en
Priority to US09/049,005 priority patent/US6172847B1/en
Publication of JPH1127895A publication Critical patent/JPH1127895A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a spindle motor having the small deflection of an irrotational synchronous constituent, is usable in an inverted position and has superior impact resistance. SOLUTION: In this motor, a cylindrical radial-receiving surface provided on a shaft member faces a radial bearing surface provided on a bearing member, via the radial bearing gap of a radial kinetic pressure bearing. A thrust-receiving surface provided on the shaft member faces a thrust-bearing surface provided on the bearing member to constitute a thrust bearing. A rotor fixed to one of the shaft members or bearing member faces a stator fixed to the other. In this case, the shaft member has a flange 3 positioned outside in a radial direction from the radial-receiving surface 1b. The end surfaces of the far side of the flange 3 from the thrush-bearing face each other via the bearing member and a gap in a shaft direction. A gap in a radial direction between the outside circumferential surface of the flange 3, and bearing member is larger than the radial bearing gap and equal to 0.5 mm or smaller. An axial load is applied to the thrust bearing by a magnetic attraction in an axial direction of the tare or larger of rotational members, provided with either one of the shaft member and bearing member and a rotor 10 and equal to 30N or smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報機器、映像機
器用スピンドルモータ、とくに磁気ディスク装置や光デ
ィスク装置等のディスク駆動装置に最適なスピンドルモ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle motor for information equipment and video equipment, and more particularly to a spindle motor most suitable for a disk drive such as a magnetic disk drive or an optical disk drive.

【0002】[0002]

【従来技術】従来、ディスク用スピンドルモータは、図
4のような構造となっている。すなわち、ディスクを搭
載可能なハブ42が2個の玉軸受43を介して、回転自
在に軸41に支持され、また軸41の下端部は基台47
に固定されている。ハブ42及びハブ42に搭載された
ディスク(図示せず)は、基台47とハブ42との間に
介挿されたモータM2により回転駆動される。モータM
2はハブ42に固定したロータ40と基台47に固定し
たステータ45とを有する。
2. Description of the Related Art Conventionally, a disk spindle motor has a structure as shown in FIG. That is, a hub 42 on which a disk can be mounted is rotatably supported on the shaft 41 via two ball bearings 43, and the lower end of the shaft 41 is
It is fixed to. The hub 42 and a disk (not shown) mounted on the hub 42 are rotationally driven by a motor M2 inserted between the base 47 and the hub 42. Motor M
2 has a rotor 40 fixed to the hub 42 and a stator 45 fixed to the base 47.

【0003】[0003]

【発明が解決しようとする課題】磁気ディスク装置で
は、高密度記録が進展しており、そこに使用されるスピ
ンドルモータには非回転同期成分の振れが小さいことが
求められている。
In the magnetic disk drive, high-density recording has been developed, and a spindle motor used therefor is required to have a small non-rotational synchronous component swing.

【0004】従来のスピンドルモータには、図4に示し
たような玉軸受43が用いられてきた。玉軸受43は、
非回転同期成分の振れが小さいことが要求される。しか
し、玉軸受43は玉通過振動や、軸受部品の形状誤差に
起因する振動を有しており、加工精度を向上させても非
回転同期成分の振れを所定値以下にすることは困難であ
る。
A ball bearing 43 as shown in FIG. 4 has been used in a conventional spindle motor. The ball bearing 43 is
It is required that the swing of the non-rotational synchronous component be small. However, the ball bearing 43 has ball passing vibration and vibration caused by a shape error of the bearing component, and it is difficult to reduce the runout of the non-rotational synchronous component to a predetermined value or less even if the processing accuracy is improved. .

【0005】一方、玉軸受43の替わりに非回転同期成
分の振れが小さい動圧軸受をラジアル軸受、スラスト軸
受の両方に使用した図5のような構造のスピンドルモー
タが検討されている。この例では、基台57に嵌合され
たスリーブ56の円筒状孔の内径面に設けたラジアル軸
受面56aと、軸51の外径面とでラジアル動圧軸受を
構成し、軸51の下端面51aとスラスト受け58の上
面58aでスラスト動圧軸受を構成してスラスト荷重を
支持している。
On the other hand, a spindle motor having a structure as shown in FIG. 5 in which a dynamic pressure bearing having a small runout of a non-rotational synchronous component is used for both a radial bearing and a thrust bearing instead of the ball bearing 43 is being studied. In this example, a radial dynamic pressure bearing is formed by a radial bearing surface 56 a provided on the inner diameter surface of the cylindrical hole of the sleeve 56 fitted to the base 57 and the outer diameter surface of the shaft 51. The end face 51a and the upper face 58a of the thrust receiver 58 constitute a thrust dynamic pressure bearing to support a thrust load.

【0006】また、回転するハブ52の内径面に固定し
たロータ50と基台57に固定したステータ55とが半
径方向に対向してモータM2を構成し、ハブ52を駆動
させている。なお、モータM2のロータ50とステータ
55とは軸方向にほぼ同一の位置に設けられている。
Further, the rotor 50 fixed to the inner diameter surface of the rotating hub 52 and the stator 55 fixed to the base 57 are opposed to each other in the radial direction to form a motor M2, and the hub 52 is driven. Note that the rotor 50 and the stator 55 of the motor M2 are provided at substantially the same position in the axial direction.

【0007】しかしながら、このように軸受を動圧軸受
にすると、スピンドルの非回転同期成分の振れは小さく
なるが、倒置状態や外部から軸が抜ける方向に衝撃が作
用すると軸51がスリーブ56より抜ける欠点があっ
た。そのため、図5に示すようにハブ52にストッパ6
0を設ける必要があったが、このような構造ではストッ
パ60の取り付けが困難であり、また、輸送時などの衝
撃によって、ストッパ60とストッパ60に軸方向に対
向するスリーブのフランジ部56bとがたびたび接触す
ると、摩耗粉が発生しやすいという問題があった。
However, when the bearing is a dynamic pressure bearing, the non-rotational synchronous component of the spindle is reduced in runout, but the shaft 51 comes out of the sleeve 56 when an impact is applied in an inverted state or in a direction in which the shaft comes off from the outside. There were drawbacks. Therefore, as shown in FIG.
However, it is difficult to attach the stopper 60 with such a structure, and the stopper 60 and the flange portion 56b of the sleeve axially facing the stopper 60 due to an impact during transportation or the like. There is a problem that abrasion powder is likely to be generated when the contact is frequently made.

【0008】本発明は、前記のような問題に着目し、非
回転同期成分の振れが小さく、倒置状態でも使用でき、
しかも耐衝撃性に優れたスピンドルモータを提供するこ
とを目的としている。
The present invention focuses on the above-described problem, and has a small non-rotational synchronous component swing, and can be used even in an inverted state.
Moreover, it is an object of the present invention to provide a spindle motor having excellent impact resistance.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に本発明に係るスピンドルモータは、軸部材に設けた円
筒状のラジアル受面と軸受部材に設けたラジアル軸受面
とはラジアル軸受隙間を介して対向してラジアル動圧軸
受を構成しており、軸部材に設けたスラスト受面と軸受
部材に設けたスラスト軸受面とが対向してスラスト軸受
を構成しており、軸部材及び軸受部材のいずれか一方に
固定したロータは他方に固定したステータに対向してい
る。
In order to achieve the above object, a spindle motor according to the present invention has a radial bearing gap between a cylindrical radial receiving surface provided on a shaft member and a radial bearing surface provided on a bearing member. A radial dynamic pressure bearing is opposed to the shaft member, and a thrust bearing surface provided on the shaft member and a thrust bearing surface provided on the bearing member face each other to constitute a thrust bearing. The rotor fixed to one of them faces the stator fixed to the other.

【0010】さらに本発明に係るスピンドルモータにお
いては、軸部材はラジアル受面より半径方向外方に位置
するフランジを有し、該フランジのスラスト軸受より遠
い側の端面は軸受部材と軸方向隙間を介して対向し、フ
ランジの外径面と軸受部材との間の半径方向隙間はラジ
アル軸受隙間より大きいと共に0.5mm以下であり、
スラスト軸受には軸部材及び軸受部材のうちのロータが
固定された部材とロータとを備えた回転部材の自重以上
であって30N以下の軸方向の磁気吸引力によってアキ
シアル荷重が付与されていることを特徴としている。
Further, in the spindle motor according to the present invention, the shaft member has a flange located radially outward from the radial receiving surface, and an end surface of the flange farther from the thrust bearing is provided with an axial clearance with the bearing member. The radial gap between the outer diameter surface of the flange and the bearing member is larger than the radial bearing gap and 0.5 mm or less,
An axial load is applied to the thrust bearing by a magnetic attraction force in the axial direction that is equal to or more than its own weight and equal to or less than 30 N, of the rotating member including the shaft member and the member to which the rotor is fixed, of the bearing member. It is characterized by.

【0011】本発明によると、回転部材をラジアル動圧
軸受とスラスト軸受で支持しているので、非回転同期成
分の振れが小さい。また、アキシアル方向に所定の磁気
吸引力を作用させているので、使用姿勢に制約がない。
しかも、フランジのスラスト軸受より遠い側の端面は軸
受部材と軸方向隙間を介して対向するので、軸部材が軸
受部材より抜けるようなことはない。
According to the present invention, since the rotating member is supported by the radial dynamic pressure bearing and the thrust bearing, the fluctuation of the non-rotation synchronous component is small. Further, since a predetermined magnetic attraction force is applied in the axial direction, there is no restriction on the use posture.
Moreover, the end surface of the flange farther from the thrust bearing faces the bearing member via the axial gap, so that the shaft member does not come off from the bearing member.

【0012】また、フランジの外径面とこれに対向する
軸受部材の内径面との間の半径方向隙間はラジアル軸受
隙間より大きいと共に0.5mm以下としているので、
軸部材が軸受部材より抜ける方向に外部衝撃が作用して
も、この隙間を通ってフランジの軸方向の一方の側から
他方の側へ潤滑流体が流動する際に隙間は潤滑流体の絞
りとして作用し、潤滑流体が流動する抵抗となるので、
軸部材が軸受部材に対して軸方向変位するのを妨げる。
その結果、数十ミリセコンド(例えば0.05〜0.0
6秒)程度以下の短時間の衝撃であれば、軸部材は軸受
部材に対してほとんど動くことはない。
Further, the radial gap between the outer diameter surface of the flange and the inner diameter surface of the bearing member opposed thereto is larger than the radial bearing clearance and 0.5 mm or less.
Even if an external impact acts in the direction in which the shaft member comes out of the bearing member, when the lubricating fluid flows from one axial side of the flange to the other through the gap, the gap acts as a throttle for the lubricating fluid. The resistance of the lubricating fluid to flow,
The shaft member is prevented from being axially displaced with respect to the bearing member.
As a result, tens of milliseconds (for example, 0.05 to 0.0
With a short impact of about 6 seconds or less, the shaft member hardly moves relative to the bearing member.

【0013】[0013]

【実施例】以下に本発明の実施例を示す。図1は、本発
明に係るスピンドルモータの第一の実施例における概略
縦断面図を示しており、軸受部材は軸1が嵌合するスリ
ーブ6、スリーブ6の下端部外周面に嵌合して固定され
る基台7、およびスリーブ6の円筒状孔をふさいで基台
7に固定されるスラスト板8とを備えている。また、軸
部材は、軸1と軸1の一方の軸端近傍に固定した環状の
フランジ3と軸1の他方の端部に固定したハブ2とを備
えており、ハブ2にはディスク20が搭載可能となって
いる。ハブ2にはロータ10が固定され、このロータ1
0はハブ2に固定したバックヨーク11とバックヨーク
11に固定された磁石12とを備えており、回転部材は
軸部材と軸部材に固定したロータ10とを備えている。
なお、軸部材に固定したロータ10は軸受部材に固定し
たステータ15と半径方向に対向してモータMを構成し
ている。
Examples of the present invention will be described below. FIG. 1 is a schematic longitudinal sectional view of a first embodiment of a spindle motor according to the present invention, in which a bearing member is fitted on a sleeve 6 on which the shaft 1 is fitted, and on an outer peripheral surface of a lower end of the sleeve 6. There is provided a base 7 to be fixed, and a thrust plate 8 fixed to the base 7 by covering a cylindrical hole of the sleeve 6. The shaft member includes a shaft 1, an annular flange 3 fixed near one shaft end of the shaft 1, and a hub 2 fixed to the other end of the shaft 1. It can be installed. A rotor 10 is fixed to the hub 2.
Reference numeral 0 denotes a back yoke fixed to the hub 2 and a magnet 12 fixed to the back yoke 11, and the rotating member includes a shaft member and a rotor 10 fixed to the shaft member.
The rotor 10 fixed to the shaft member radially faces the stator 15 fixed to the bearing member to constitute a motor M.

【0014】軸部材に軸方向に間をへだてて二ケ所に設
けた円筒状のラジアル受面1bは軸受部材に設けたラジ
アル軸受面6aとラジアル軸受隙間を介して対向してラ
ジアル動圧軸受をそれぞれ構成し、互いに対向するラジ
アル受面1bとラジアル軸受面6aとの少なくとも一方
図示の実施例ではラジアル軸受面6aにはヘリングボー
ン状の動圧発生用の溝6bが設けられている。軸1の軸
端に設けた平面状のスラスト受面1aとスラスト板8に
設けたスラスト軸受面8aとが対向してスラスト動圧軸
受を構成している。そして、互いに対向するスラスト受
面1aとスラスト軸受面8aとの少なくとも一方図示の
実施例ではスラスト軸受面8aにはスパイラル状の動圧
発生用の溝8bが設けられている。軸1には、フランジ
3を圧入または接着で固着しており、軸部材はラジアル
受面1bより半径方向外方に位置するフランジ3を有し
ている。
A cylindrical radial receiving surface 1b provided at two places on the shaft member with an axial space therebetween is opposed to a radial bearing surface 6a provided on the bearing member via a radial bearing gap to form a radial dynamic pressure bearing. In the embodiment shown, at least one of the radial receiving surface 1b and the radial bearing surface 6a which are respectively opposed to each other is provided with a herringbone-shaped groove 6b for generating dynamic pressure in the radial bearing surface 6a. A flat thrust receiving surface 1a provided on the shaft end of the shaft 1 and a thrust bearing surface 8a provided on the thrust plate 8 face each other to constitute a thrust dynamic pressure bearing. In the illustrated embodiment, at least one of the thrust receiving surface 1a and the thrust bearing surface 8a facing each other is provided with a spiral dynamic pressure generating groove 8b in the thrust bearing surface 8a. A flange 3 is fixed to the shaft 1 by press-fitting or bonding, and the shaft member has the flange 3 located radially outward from the radial receiving surface 1b.

【0015】スラスト板8をプラスチックの射出成形で
製造すると、動圧発生用の溝8bが成形により加工でき
るため、製造コストを下げられる。特にPPS(ポリフ
ェニレンサルファイド樹脂)をベースに、炭素繊維とテ
フロン(登録商標:ポリテトラフルオロエチレン)を添
加したプラスチックで射出成形で製造すると、摺動性、
強度、成形性に優れ、好ましい。
If the thrust plate 8 is manufactured by injection molding of plastic, the grooves 8b for generating dynamic pressure can be formed by molding, so that the manufacturing cost can be reduced. In particular, if PPS (polyphenylene sulfide resin) is used as a base and manufactured by injection molding with a plastic to which carbon fiber and Teflon (registered trademark: polytetrafluoroethylene) are added, slidability,
Excellent in strength and moldability, preferred.

【0016】さらに、アキシアル荷重が大きい場合に
は、プラスチックのスラスト板8を補強するために鋼板
の押さえと基台7との間にスラスト板8を挟むようにし
てもよい。また、動圧発生用の溝8bを省略してスラス
ト受面1aとスラスト軸受面8aとの少なくとも一方を
凸球面として、スラスト受面1aとスラスト軸受面8a
とが点接触するいわゆるピボット軸受としてもよい。
Further, when the axial load is large, the thrust plate 8 may be sandwiched between the holding of the steel plate and the base 7 in order to reinforce the plastic thrust plate 8. In addition, the groove 8b for generating dynamic pressure is omitted, and at least one of the thrust receiving surface 1a and the thrust bearing surface 8a is formed as a convex spherical surface, and the thrust receiving surface 1a and the thrust bearing surface 8a are formed.
A so-called pivot bearing that makes point contact with the bearing may be used.

【0017】一方、ラジアル動圧軸受には、銅系の材料
で製造されたスリーブ6を用いており、スリーブ6のラ
ジアル軸受面6aへの動圧発生用の溝6bの形成を容易
にしている。スリーブ6を銅系の材料を用いて製造する
ことで、ラジアル軸受面6aとステンレス鋼製の軸1の
ラジアル受面1bとの摺動性がよくなり、起動停止耐久
性に優れるようになる。なお、スリーブ6及びスラスト
板8は、基台7に直接固着されているので、組立が容易
でしかも信頼性に優れる。
On the other hand, a sleeve 6 made of a copper-based material is used for the radial dynamic pressure bearing, so that a groove 6b for generating dynamic pressure is easily formed on the radial bearing surface 6a of the sleeve 6. . By manufacturing the sleeve 6 using a copper-based material, the slidability between the radial bearing surface 6a and the radial receiving surface 1b of the stainless steel shaft 1 is improved, and the start / stop durability is improved. Since the sleeve 6 and the thrust plate 8 are directly fixed to the base 7, the assembling is easy and the reliability is excellent.

【0018】また、本実施例においてはモータMを構成
するロータ10の軸方向中心をステータ15の軸方向中
心に対して軸方向にずらせることにより、ロータ10と
ステータ15とには軸方向の磁気吸引力が働き、スラス
ト軸受には回転部材の自重以上且つ30N以下の軸方向
の磁気吸引力によってアキシアル荷重を作用させてい
る。なお、軸部材と軸受部材とのいずれか一方に磁石を
固定して、他方に磁石又は磁性体を固定することで、軸
部材と軸受部材とに作用される軸方向の磁気吸引力によ
ってスラスト軸受にアキシアル荷重を付与させてもよ
い。
In this embodiment, the axial center of the rotor 10 constituting the motor M is shifted in the axial direction with respect to the axial center of the stator 15, so that the rotor 10 and the stator 15 A magnetic attraction force acts, and an axial load is applied to the thrust bearing by an axial magnetic attraction force equal to or more than its own weight of the rotating member and equal to or less than 30N. By fixing a magnet to one of the shaft member and the bearing member, and fixing a magnet or a magnetic body to the other, the thrust bearing is actuated by an axial magnetic attraction applied to the shaft member and the bearing member. May be given an axial load.

【0019】スラスト軸受にアキシアル荷重が付与され
る軸方向の磁気吸引力の大きさは、回転部材の自重以上
であって30N以下であるが、より好ましくは回転部材
の自重の2倍以上、10N以下がよい。軸方向の磁気吸
引力が回転部材の自重より小さくては、倒置姿勢で使用
すると、軸部材のスラスト受面1aと軸受部材のスラス
ト軸受面8aとが接触しなくなり、フランジ3とスリー
ブ6とが軸方向に接触してしまう。30Nより大きくて
はスラスト軸受にかかるアキシアル荷重が大きく、起動
トルクが大きくなり、起動停止時の摩耗が問題となる。
軸方向の磁気吸引力を回転部材の自重の2倍以上にする
と、多少の外部衝撃がかかってもスラスト軸受面8aと
スラスト受面1aとの接触が保たれる。また10N以下
にすると、スラスト軸受にかかるアキシアル荷重が軽減
されるので、スラスト板8のスラスト軸受面8aにセラ
ッミク等の高価な材料を使わなくてもよくなり、コスト
を下げられる。
The magnitude of the magnetic attraction in the axial direction in which the axial load is applied to the thrust bearing is not less than the own weight of the rotating member and not more than 30 N, more preferably more than twice the own weight of the rotating member and 10 N. The following is good. If the magnetic attraction in the axial direction is smaller than the own weight of the rotating member, when the rotating member is used in the inverted position, the thrust receiving surface 1a of the shaft member and the thrust bearing surface 8a of the bearing member do not come into contact with each other. Contact in the axial direction. If it is larger than 30 N, the axial load applied to the thrust bearing is large, the starting torque becomes large, and wear at the time of starting and stopping becomes a problem.
When the magnetic attraction in the axial direction is twice or more the own weight of the rotating member, the contact between the thrust bearing surface 8a and the thrust receiving surface 1a is maintained even if some external impact is applied. When the thickness is set to 10 N or less, the axial load applied to the thrust bearing is reduced, so that it is not necessary to use an expensive material such as ceramic for the thrust bearing surface 8a of the thrust plate 8, and the cost can be reduced.

【0020】フランジ3はステンレス鋼製の軸1と一体
がよい。フランジ3は、軸1と別体の場合はアルミ合
金、ステンレス鋼、プラスチックなどの材料が用いられ
るが、線膨張係数が軸1と同一の材料の方が、温度変化
時にゆるまないので望ましい。なお、フランジ3を軸1
と同一のステンレス鋼にすると、軸受部材の銅系のスリ
ーブ6との摺動性がよいので望ましい。また、円盤状の
フランジを軸1の端面にネジ止めなどで取り付けてもよ
い。この場合は、円盤状のフランジの下端面がスラスト
軸受のスラスト受面となる。
The flange 3 is preferably integral with the shaft 1 made of stainless steel. When the flange 3 is separate from the shaft 1, a material such as an aluminum alloy, stainless steel, or plastic is used. However, a material having the same linear expansion coefficient as that of the shaft 1 is preferable because it does not loosen when the temperature changes. The flange 3 is connected to the shaft 1
It is desirable to use the same stainless steel because the sliding property of the bearing member with the copper-based sleeve 6 is good. Further, a disk-shaped flange may be attached to the end face of the shaft 1 by screwing or the like. In this case, the lower end surface of the disc-shaped flange serves as the thrust receiving surface of the thrust bearing.

【0021】またハブ2の軸受部材への対向面には、内
径面と底面即ち上面との境界部に内側の周溝2aを設け
ている。この内側の周溝2aにより、万が一軸1の外周
面から回転によりラジアル軸受隙間内の潤滑流体が飛散
しても、潤滑流体の表面張力によってこの内側の周溝2
aで捕捉されるので、ディスク20面にまで潤滑流体の
潤滑油が飛散することを防止できる。
An inner circumferential groove 2a is provided on the surface of the hub 2 facing the bearing member at the boundary between the inner diameter surface and the bottom surface, that is, the upper surface. Even if the lubricating fluid in the radial bearing gap is scattered by the rotation from the outer peripheral surface of the shaft 1 due to the inner circumferential groove 2a, the inner circumferential groove 2a is formed by the surface tension of the lubricating fluid.
As a result, the lubricating oil of the lubricating fluid can be prevented from scattering to the surface of the disk 20.

【0022】図2は、軸端部のフランジ3周辺の拡大図
である。フランジの外径面3aと、これを収納するため
に軸受部材に設けられた内周溝の内径面6dとの間の半
径方向隙間Rをラジアル軸受面6aとラジアル受面1b
との間のラジアル軸受隙間rより大きくし、且つ0.5
mm以下にしている。なお、半径方向隙間Rが0.5m
mより大きいと、潤滑流体が隙間Rを流動する抵抗が低
く、また半径方向隙間Rがラジアル軸受隙間の値以下の
場合はフランジの外径面3aと軸受部材とが接する可能
性がある。
FIG. 2 is an enlarged view around the flange 3 at the shaft end. The radial gap R between the outer diameter surface 3a of the flange and the inner diameter surface 6d of the inner peripheral groove provided in the bearing member for accommodating the flange is defined by the radial bearing surface 6a and the radial receiving surface 1b.
And larger than the radial bearing gap r between
mm or less. Note that the radial gap R is 0.5 m
If it is larger than m, the resistance of the lubricating fluid to flow through the gap R is low, and if the radial gap R is less than or equal to the value of the radial bearing gap, the outer diameter surface 3a of the flange may come into contact with the bearing member.

【0023】r<R≦0.5mmのため軸部材が軸受部
材より抜ける方向に外部衝撃が作用しても、この半径方
向隙間Rが油、グリース等の潤滑流体の絞りとして作用
し、隙間Rを流動する潤滑流体の流動抵抗となるので、
軸部材が軸受部材より抜ける方向に動くのを妨げる。そ
の結果、数十ミリセコンド程度以下の短時間の衝撃であ
れば、軸部材は軸受部材に対してほとんど動くことはな
い。なお、量産性及び加工コスト上実用性のある公差と
しては、フランジの外径面3aとラジアル受面1bとの
同軸度は0.005mmであり、ラジアル軸受面6aと
内周溝の内径面6dとの同軸度は0.005mmであ
り、フランジの外径面3aの外径寸法公差は0.01m
mであり、内周溝の内径面6dの内径寸法公差は0.0
1mmである。従って、これらの累積公差を考慮する
と、フランジの外径面3aと軸受部材との接触防止のた
めには半径方向隙間Rは0.03mmより大きいことが
好ましい。また、軸受性能上潤滑流体の粘度をあまり高
くすることは良くないので、潤滑流体の流動抵抗を得る
ためには、半径方向隙間Rの値は0.2mm以下が好ま
しい。
Since r <R ≦ 0.5 mm, even if an external impact acts in the direction in which the shaft member comes out of the bearing member, the radial gap R acts as a throttle for lubricating fluid such as oil and grease. Flow resistance of the lubricating fluid flowing through
The shaft member is prevented from moving in the direction in which it comes off from the bearing member. As a result, the shaft member hardly moves with respect to the bearing member if the impact is for a short time of about several tens of milliseconds or less. The tolerance that is practical in terms of mass productivity and processing cost is that the coaxiality between the outer diameter surface 3a of the flange and the radial receiving surface 1b is 0.005 mm, the radial bearing surface 6a and the inner diameter surface 6d of the inner circumferential groove. Is 0.005 mm, and the outer diameter dimension tolerance of the outer diameter surface 3a of the flange is 0.01 m.
m, and the inner diameter tolerance of the inner diameter surface 6d of the inner circumferential groove is 0.0
1 mm. Therefore, considering these accumulated tolerances, the radial gap R is preferably larger than 0.03 mm in order to prevent the contact between the outer diameter surface 3a of the flange and the bearing member. In addition, since it is not good to make the viscosity of the lubricating fluid too high in terms of bearing performance, in order to obtain the flow resistance of the lubricating fluid, the value of the radial gap R is preferably 0.2 mm or less.

【0024】また、フランジのスラスト軸受より遠い側
の端面3bは軸受部材のスリーブ6の対向する下面6c
と軸方向隙間hを介して対向し、この軸方向隙間hを
0.01mm以上且つ0.5mm以下に設定しているの
で、非常に大きな外部衝撃によって万が一軸部材が軸受
部材より抜ける方向に動いても、0.5mm以上動くこ
とはない。なお、ハブ2に取り付ける磁気ディスクに対
向するヘッドの損傷の防止を考慮した場合は、軸方向隙
間hは、0.1mm以下が好ましい。
The end face 3b of the flange farther from the thrust bearing is connected to the opposed lower surface 6c of the sleeve 6 of the bearing member.
And an axial gap h, and the axial gap h is set to 0.01 mm or more and 0.5 mm or less, so that a very large external impact causes the shaft member to move in a direction to come off from the bearing member. However, it does not move more than 0.5 mm. In consideration of preventing damage to the head facing the magnetic disk attached to the hub 2, the axial gap h is preferably 0.1 mm or less.

【0025】さらに、フランジの上側端面3bに動圧発
生用の溝を加工し、フランジの上側端面3bとスリーブ
の対向する下面6cとがスラスト動圧軸受を構成するこ
ともできる。この場合は、非常に大きな衝撃によって軸
部材が軸受部材に対して軸方向に動いた場合でも、この
衝撃をスラスト動圧軸受が支持するようになりフランジ
3と軸受部材の接触を防止できる。
Further, a groove for generating dynamic pressure may be formed in the upper end face 3b of the flange, and the upper end face 3b of the flange and the lower surface 6c of the sleeve facing each other may constitute a thrust dynamic pressure bearing. In this case, even when the shaft member moves in the axial direction with respect to the bearing member due to an extremely large impact, the thrust dynamic pressure bearing supports the impact, so that contact between the flange 3 and the bearing member can be prevented.

【0026】図3に第二の実施例を示す。なお、第一の
実施例と同一の機能を有する構成要素については同一の
参照符号を用いる。本実施例においては、基台7にはロ
ータ10と軸方向に対向する位置に吸引用の磁性体の環
状板16を固定し、軸方向隙間を介して対向するロータ
10と環状板16との間に軸方向の磁気吸引力を与えて
いる。この磁気吸引力はスラスト軸受にアキシアル荷重
を付与する。
FIG. 3 shows a second embodiment. Note that the same reference numerals are used for components having the same functions as in the first embodiment. In this embodiment, an annular plate 16 of a magnetic material for suction is fixed to the base 7 at a position facing the rotor 10 in the axial direction, and the rotor 10 and the annular plate 16 facing each other via the axial gap are fixed. A magnetic attraction in the axial direction is given between them. This magnetic attraction applies an axial load to the thrust bearing.

【0027】ロータ10の着磁パターンは、一般のモー
タ用の着磁パターンのままでよい。しかし、一般のモー
タ用のロータの磁石12の下端面に吸引用の着磁パター
ンを付加すると、ロータ磁石12と環状板16との間に
軸方向の磁気吸引力が生ずる。この場合は、ロータの磁
石12の下端面は外周部と内周部とのいずれか一方がN
極で他方がS極であると、磁性体の環状板16に発生す
る渦電流を少なくすることができ、モータMの損失を少
なくすることができるのでより好ましい。
The magnetization pattern of the rotor 10 may be the same as that of a general motor. However, when a magnetizing pattern for attraction is added to the lower end surface of the magnet 12 of a general motor rotor, an axial magnetic attraction is generated between the rotor magnet 12 and the annular plate 16. In this case, the lower end face of the magnet 12 of the rotor has N
It is more preferable that the other pole is the south pole because the eddy current generated in the annular plate 16 made of the magnetic material can be reduced and the loss of the motor M can be reduced.

【0028】なお、上記の第一及び第二の実施例では、
スラスト軸受とラジアル動圧軸受との間は軸受部材の内
面と外面とを連通する空気抜き穴を有しないので、軸受
部材と軸部材の間の隙間が密閉状態となり潤滑流体の保
持性に優れているので、長期間の使用に対しても信頼性
が向上するので好ましい。本実施例は、軸部材が回転す
る場合について述べているが、軸部材にステータが固定
されて軸受部材にステータに対向するロータが固定され
て軸受部材とロータとを備えた回転部材が回転する構造
でもよい。モータについては、ロータ10とステータ1
5との周面対向モータではなく平面対向モータを用いて
もよく、スラスト軸受は、スラスト受面1aに動圧発生
用の溝を設けてもよい。
In the first and second embodiments,
Since there is no air vent hole between the thrust bearing and the radial dynamic pressure bearing, which communicates the inner surface and the outer surface of the bearing member, the gap between the bearing member and the shaft member is in a sealed state, which is excellent in retaining lubricating fluid. Therefore, reliability is improved even for long-term use, which is preferable. In the present embodiment, the case where the shaft member rotates is described. However, the stator is fixed to the shaft member, the rotor facing the stator is fixed to the bearing member, and the rotating member including the bearing member and the rotor rotates. The structure may be used. For the motor, the rotor 10 and the stator 1
5 may be used instead of the circumferentially opposed motor, and the thrust bearing may be provided with a groove for generating dynamic pressure on the thrust receiving surface 1a.

【0029】また、スラスト板8の基台7またはスリー
ブ6への固定は、ねじ止めの代わりに基台7またはスリ
ーブ6にかしめた後、潤滑流体のもれを防ぐために接着
してもよい。また、軸部材と軸受部材との間に画成され
る隙間に用いる潤滑流体としては、温度粘度特性に優れ
た、すなわち温度変化に対して粘度変化の小さいフッ素
油例えば高粘度指数のフッ素油が好ましい。特に摺動性
と潤滑流体の保持性を改良するために、末端にカルボン
酸を有するパーフルオロアルキルポリエーテルを添加し
たフッ素油が好ましい。
In fixing the thrust plate 8 to the base 7 or the sleeve 6, instead of screwing, the thrust plate 8 may be adhered to the base 7 or the sleeve 6 to prevent leakage of the lubricating fluid. Further, as the lubricating fluid used in the gap defined between the shaft member and the bearing member, a fluorine oil excellent in temperature viscosity characteristics, that is, a fluorine oil having a small change in viscosity with respect to a temperature change, for example, a fluorine oil having a high viscosity index is used. preferable. In particular, in order to improve the slidability and the retention property of the lubricating fluid, a fluoro oil to which a perfluoroalkyl polyether having a carboxylic acid at a terminal is added is preferable.

【0030】[0030]

【発明の効果】本発明によると、回転部材をラジアル動
圧軸受とスラスト軸受で支持しているので、非回転同期
成分の振れが小さいスピンドルモータが得られる。ま
た、本発明によるスピンドルモータは、アキシアル方向
に所定の磁気吸引力を作用させているので使用姿勢の制
約がない。さらに軸部材にフランジを設けることで軸受
部材の軸部材に対する軸方向変位を少なくし、またフラ
ンジと軸受部材との間の半径方向隙間の潤滑流体の流動
抵抗を増加させているので耐衝撃性に優れている。
According to the present invention, since the rotating member is supported by the radial dynamic pressure bearing and the thrust bearing, a spindle motor having a small non-rotational synchronous component runout can be obtained. Further, the spindle motor according to the present invention exerts a predetermined magnetic attraction force in the axial direction, so that there is no restriction on the use posture. Furthermore, by providing a flange on the shaft member, the axial displacement of the bearing member with respect to the shaft member is reduced, and the flow resistance of the lubricating fluid in the radial gap between the flange and the bearing member is increased, so that the impact resistance is improved. Are better.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例に係るスピンドルモータ
の概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of a spindle motor according to a first embodiment of the present invention.

【図2】図一に示すスピンドルモータの軸端部周辺の拡
大図である。
FIG. 2 is an enlarged view around a shaft end of the spindle motor shown in FIG. 1;

【図3】本発明の第二の実施例に係るスピンドルモータ
の概略縦断面図である。
FIG. 3 is a schematic longitudinal sectional view of a spindle motor according to a second embodiment of the present invention.

【図4】従来技術による玉軸受を用いたスピンドルモー
タの概略縦断面図である。
FIG. 4 is a schematic longitudinal sectional view of a spindle motor using a ball bearing according to the prior art.

【図5】従来技術による動圧軸受を用いたスピンドルモ
ータの概略縦断面図である。
FIG. 5 is a schematic longitudinal sectional view of a spindle motor using a dynamic pressure bearing according to the related art.

【符号の説明】[Explanation of symbols]

1 、41、51 軸 1a、51a スラスト受面 1b ラジアル受面 2 、42、52 ハブ 2a 内側の周溝 3 フランジ 3a フランジの外径面 3b フランジの端面 6 、56 スリーブ 6a、56a ラジアル軸受面 6d 内周溝の内径面 56b フランジ部 6c 下面 7、47、57 基台 8 スラスト板 8a スラスト軸受面 10、50 ロータ 11 バックヨーク 12 磁石 15、55 ステータ 16 環状板 20 ディスク 43 玉軸受 60 ストッパ M 、M2 モータ h 軸方向隙間 R 半径方向隙間 r ラジアル軸受隙間 Reference numerals 1, 41, 51 Shafts 1a, 51a Thrust receiving surface 1b Radial receiving surface 2, 42, 52 Hub 2a Inner circumferential groove 3 Flange 3a Flange outer diameter surface 3b Flange end surface 6, 56 Sleeve 6a, 56a Radial bearing surface 6d Inner circumferential groove inner diameter surface 56b Flange portion 6c Lower surface 7, 47, 57 Base 8 Thrust plate 8a Thrust bearing surface 10, 50 Rotor 11 Back yoke 12 Magnet 15, 55 Stator 16 Ring plate 20 Disk 43 Ball bearing 60 Stopper M, M2 Motor h Axial gap R Radial gap r Radial bearing gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸部材に設けた円筒状のラジアル受面と
軸受部材に設けたラジアル軸受面とはラジアル軸受隙間
を介して対向してラジアル動圧軸受を構成しており、前
記軸部材に設けたスラスト受面と前記軸受部材に設けた
スラスト軸受面とが対向してスラスト軸受を構成してお
り、前記軸部材及び前記軸受部材のいずれか一方に固定
したロータは他方に固定したステータに対向しているス
ピンドルモータにおいて、 前記軸部材はラジアル受面より半径方向外方に位置する
フランジを有し、該フランジの前記スラスト軸受より遠
い側の端面は前記軸受部材と軸方向隙間を介して対向
し、前記フランジの外径面と前記軸受部材との間の半径
方向隙間は前記ラジアル軸受隙間より大きいと共に0.
5mm以下であり、前記スラスト軸受には前記軸部材及
び前記軸受部材のうちの前記ロータが固定された部材と
前記ロータとを備えた回転部材の自重以上であって30
N以下の軸方向の磁気吸引力によってアキシアル荷重が
付与されていることを特徴とするスピンドルモータ。
A radial bearing surface provided on a shaft member and a radial bearing surface provided on a bearing member opposing each other via a radial bearing gap to constitute a radial dynamic pressure bearing; The provided thrust receiving surface and the thrust bearing surface provided on the bearing member face each other to constitute a thrust bearing, and the rotor fixed to one of the shaft member and the bearing member is a stator fixed to the other. In the opposed spindle motor, the shaft member has a flange located radially outward from the radial receiving surface, and an end surface of the flange farther from the thrust bearing is separated from the bearing member by an axial gap. The opposed radial gap between the outer diameter surface of the flange and the bearing member is greater than the radial bearing gap and is equal to 0.1 mm.
5 mm or less, and the thrust bearing has a weight equal to or greater than the weight of a rotating member including the shaft member and the bearing member to which the rotor is fixed and the rotor.
A spindle motor, wherein an axial load is applied by a magnetic attraction force in an axial direction of N or less.
JP18215997A 1997-03-27 1997-07-08 Spindle motor Pending JPH1127895A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18215997A JPH1127895A (en) 1997-07-08 1997-07-08 Spindle motor
US09/049,005 US6172847B1 (en) 1997-03-27 1998-03-27 Rotational assembly for disc drive device having small runout and reduced axial displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18215997A JPH1127895A (en) 1997-07-08 1997-07-08 Spindle motor

Publications (1)

Publication Number Publication Date
JPH1127895A true JPH1127895A (en) 1999-01-29

Family

ID=16113396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18215997A Pending JPH1127895A (en) 1997-03-27 1997-07-08 Spindle motor

Country Status (1)

Country Link
JP (1) JPH1127895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134875A1 (en) * 2000-03-15 2001-09-19 Minebea Co., Ltd. A spindle motor for disk driving device with fluid bearing
US7029179B2 (en) 2001-10-24 2006-04-18 Sony Corporation Bearing unit, and motor using same
JP2007043893A (en) * 2005-06-30 2007-02-15 Victor Co Of Japan Ltd Motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134875A1 (en) * 2000-03-15 2001-09-19 Minebea Co., Ltd. A spindle motor for disk driving device with fluid bearing
US7029179B2 (en) 2001-10-24 2006-04-18 Sony Corporation Bearing unit, and motor using same
JP2007043893A (en) * 2005-06-30 2007-02-15 Victor Co Of Japan Ltd Motor

Similar Documents

Publication Publication Date Title
US6172847B1 (en) Rotational assembly for disc drive device having small runout and reduced axial displacement
US7015611B2 (en) Spindle motor and recording disk driving apparatus having the spindle motor
EP0392500B1 (en) Spindle motor
US8148862B2 (en) Bearing device, spindle motor and disk drive apparatus
WO2005117239A1 (en) Dynamic pressure bearing device and motor using the same
US6717308B2 (en) Electric spindle motor and method having magnetic starting/stopping device
US5210665A (en) Floppy disk apparatus having an improved disk rotating mechanism
JPH05240241A (en) Spindle motor
JPH0944985A (en) Disk driving device using dynamic pressure bearing device
US20070201779A1 (en) Hydrodynamic bearing motor
US6609829B2 (en) Hydrodynamic bearing for motor
JP2000291648A (en) Dynamic pressure-type bearing unit
US7591591B2 (en) Dynamic bearing device
WO2004079214A1 (en) Bearing unit and rotation and drive device
JPH11262214A (en) Spindle motor
JPH11280755A (en) Fluid bearing device and spindle motor using the same
JPH1127895A (en) Spindle motor
JP2006325329A (en) Spindle motor and recording disk driving device using same
JPH10267036A (en) Disc driving device
JP4080243B2 (en) Fluid dynamic bearing motor
JPH094641A (en) Dynamic pressure bearing
JPH102329A (en) Bearing device
JPH11103554A (en) Bearing unit for spindle motor
JPH11117934A (en) Bearing device with dynamic pressure groove
JP2005337341A (en) Dynamic pressure bearing device and motor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051128