JPH11278939A - Alumina-silicon carbide refractory - Google Patents

Alumina-silicon carbide refractory

Info

Publication number
JPH11278939A
JPH11278939A JP10082245A JP8224598A JPH11278939A JP H11278939 A JPH11278939 A JP H11278939A JP 10082245 A JP10082245 A JP 10082245A JP 8224598 A JP8224598 A JP 8224598A JP H11278939 A JPH11278939 A JP H11278939A
Authority
JP
Japan
Prior art keywords
silicon carbide
alumina
refractory
corrosion resistance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10082245A
Other languages
Japanese (ja)
Other versions
JP4163783B2 (en
Inventor
Nobuhiko Kaji
信彦 加治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP08224598A priority Critical patent/JP4163783B2/en
Publication of JPH11278939A publication Critical patent/JPH11278939A/en
Application granted granted Critical
Publication of JP4163783B2 publication Critical patent/JP4163783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an optimum constituent condition of an alumina-silicon carbide refractory free from chromium, and excellent in corrosion resistance and spalling resistance as the lining refractory of a melting furnace for dust and an industrial waste. SOLUTION: This alumina-silicon carbide refractory is obtained by kneading a blend comprising a silicon carbide powder of 10-60 wt.%, a mixed powder of Si and Al, and/or an alloy powder of the Si and the Al, of 0.5-8 wt.% expressed in terms of Si and 1-10 wt.% expressed in terms of Al, and mainly an alumina powder of the remainder, by using a resin, and compacting the kneaded blend. The refractory can be heat-treated at 90-400 deg.C after compacting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉内溶融物に対し
て優れた耐食性を示し、塵、産業廃棄物等の溶融炉の内
張りに好適に用いられるアルミナ−炭化珪素質耐火物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-silicon carbide refractory which exhibits excellent corrosion resistance to a molten material in a furnace and is suitably used for lining a melting furnace such as dust and industrial waste.

【0002】[0002]

【従来の技術】一般の家庭から出た塵や産業廃棄物の焼
却炉には、耐食性のためには高アルミナ耐火物が、ま
た、難付着性と高耐食性のためには炭化珪素質耐火物が
使用されている。
2. Description of the Related Art Incinerators for dust and industrial waste from general households are made of high alumina refractories for corrosion resistance, and silicon carbide refractories for low adhesion and high corrosion resistance. Is used.

【0003】近年、かかる焼却処理された後の焼却灰の
埋め立て地不足から、塵や廃棄物やそれらの焼却灰を一
気に溶融処理する方法が実現しつつある。しかしなが
ら、溶融炉の内張り耐火物の使用条件は、焼却炉と比較
して炉内温度が高く、かつ溶融物に接触するため厳しく
なる。そのため、一般的な高アルミナ耐火物では耐食性
が大幅に不足することになり、その改善策としてクロム
成分を含有せしめて耐食性を高めたクロム含有アルミナ
耐火物が採用されてきている。
[0003] In recent years, due to the lack of landfill for incinerated ash after incineration, a method of melting dust, waste, and incineration ash at once has been realized. However, the conditions for using the refractory lining of the melting furnace are stricter because the temperature in the furnace is higher than that of the incinerator, and the refractory comes into contact with the melt. For this reason, general high alumina refractories have a remarkable lack of corrosion resistance. As a remedy, chromium-containing alumina refractories containing a chromium component to increase the corrosion resistance have been adopted.

【0004】しかしながら、このクロム含有アルミナ耐
火物は、溶融炉の操業条件下において十分な耐食性を示
すものの、溶融炉への炉内装入物中にアルカリ成分が存
在する場合、六価クロムの発生を避けることができず環
境衛生上の問題を生じ、クロムフリー化が求められる。
[0004] However, although this chromium-containing alumina refractory exhibits sufficient corrosion resistance under the operating conditions of the melting furnace, it generates hexavalent chromium when an alkali component is present in the furnace interior of the melting furnace. It is unavoidable and poses a problem of environmental hygiene, and chromium-free is required.

【0005】一方、炭化珪素質耐火物としては、その結
合形態が粘土を使用したクレイボンド等の酸化物系や、
Siを使用して還元雰囲気で焼成したβ−SiCボン
ド、窒素雰囲気で焼成して得られる窒化珪素ボンド等が
知られている。しかしながら、これらの炭化珪素質耐火
物は、一般的な耐食性には優れているものの、塵や産業
廃棄物の溶融炉に使用する場合、溶融物にアルカリ成分
や、酸化鉄成分や溶融鉄が多く含まれているため、その
耐食性が損なわれる問題がある。
On the other hand, as a silicon carbide refractory, an oxide type such as a clay bond using a clay is used,
A β-SiC bond fired in a reducing atmosphere using Si, a silicon nitride bond obtained by firing in a nitrogen atmosphere, and the like are known. However, these silicon carbide refractories are generally excellent in corrosion resistance, but when used in a melting furnace for dust and industrial waste, the molten material often contains alkali components, iron oxide components, and molten iron. Since it is contained, there is a problem that its corrosion resistance is impaired.

【0006】このアルミナ−炭化珪素質耐火物は製銑用
高炉の内張としても使用されている。これは、炭化珪素
質耐火物にAlを添加し使用条件下の雰囲気中に存在す
る窒素を利用してAlNやSIALON等のボンドを形
成させるものであり、十分な耐食性を示す。しかしなが
ら、塵や産業廃棄物を溶融処理する溶融炉の炉内雰囲気
は、製銑用高炉より高温であること、溶融物にアルカリ
成分が含まれていること、間欠操業により適度の耐スポ
ーリング性が必要とされること等から、製銑用高炉で用
いられている耐火物をそのまま塵及び産業廃棄物の溶融
炉に適用することには無理がある。
This alumina-silicon carbide refractory is also used as a lining for a blast furnace for iron making. In this method, Al is added to a silicon carbide refractory and a bond such as AlN or SIALON is formed by using nitrogen existing in an atmosphere under use conditions, and shows sufficient corrosion resistance. However, the atmosphere inside the melting furnace that melts dust and industrial waste is hotter than that of the blast furnace for ironmaking, the molten material contains alkali components, and moderate spalling resistance due to intermittent operation. Therefore, it is impossible to apply the refractory used in the blast furnace for ironmaking to a melting furnace for dust and industrial waste as it is.

【0007】[0007]

【発明が解決しようとする課題】本発明の解決課題は、
比較的低温の処理条件下は勿論のこと、高温でかつ炉内
溶融物との接触条件下においても高耐食性を維持し、炉
内補修時などの間欠操業下でも十分な耐スポーリング性
を示す塵及び産業廃棄物溶融炉用の内張りに適したクロ
ムフリーの耐火物を得ることにある。
The problem to be solved by the present invention is as follows.
Maintains high corrosion resistance not only under relatively low temperature processing conditions, but also at high temperature and in contact with the furnace melt, and shows sufficient spalling resistance even during intermittent operation such as furnace repair. It is to obtain a chromium-free refractory suitable for lining for dust and industrial waste melting furnaces.

【0008】[0008]

【課題を解決するための手段】本発明は、製銑用高炉で
用いられ、溶銑との接触条件下においても高耐食性を示
すアルミナ−炭化珪素質耐火物に、所定量のSiC粉末
を添加して耐食性と耐スポーリング性を確保し、且つ、
所定量のAlの配合によって耐スポーリング性を確保し
ながら耐食性を大幅に向上し、さらに、所定量のSiの
添加によってAl添加に伴う消化の問題を耐食性、耐ス
ポーリング性の低下を防止しながら解消した。
According to the present invention, a predetermined amount of SiC powder is added to an alumina-silicon carbide refractory which is used in a blast furnace for iron making and has high corrosion resistance even under conditions of contact with hot metal. To ensure corrosion resistance and spalling resistance, and
The addition of a predetermined amount of Al significantly improves the corrosion resistance while ensuring the spalling resistance, and furthermore, the addition of the predetermined amount of Si prevents the digestion problem associated with the addition of Al from being reduced in the corrosion resistance and the spalling resistance. While resolved.

【0009】さらに、適正温度範囲で熱処理し、樹脂を
硬化させることで、十分に樹脂ボンドを形成し、使用中
の加熱によりカーボンボンドの形成を図り、塵及び産業
廃棄物溶融炉用内張り耐火物としての最適化を図ったも
のである。
[0009] Further, by heat-treating the resin in an appropriate temperature range and curing the resin, a resin bond is sufficiently formed, and a carbon bond is formed by heating during use. It has been optimized as

【0010】すなわち、本発明は炭化珪素粉末の使用量
が10〜60重量%であり、SiとAlとの混合粉末、
及び/又はSiとAiの合金粉末が、Siとして0.5
〜8重量%であり、かつ、Alとして1〜10重量%で
あり、残部が主にアルミナ粉末とからなる配合を樹脂を
使用して混練、成形してなり、あるいは、成形後、90
〜400℃で熱処理したアルミナ−炭化珪素質耐火物で
ある。
That is, in the present invention, the use amount of silicon carbide powder is 10 to 60% by weight, and a mixed powder of Si and Al is used.
And / or the alloy powder of Si and Ai is 0.5
About 8% by weight, and about 1 to 10% by weight as Al, with the balance being mainly composed of alumina powder kneaded and molded using a resin, or 90% after molding.
It is an alumina-silicon carbide refractory heat-treated at ~ 400 ° C.

【0011】炭化珪素粉末の使用量が10重量%未満で
あると炉内溶融物に多く含まれるアルカリ成分の影響を
受け、耐食性、耐スポーリング性共に不足する。炭化珪
素粉末の使用量が60重量%を越えると、溶融物に多く
含まれる酸化鉄成分や溶融鉄の影響を受け、耐食性が低
下する。
When the amount of the silicon carbide powder is less than 10% by weight, the corrosion resistance and the spalling resistance are insufficient due to the influence of the alkali component contained in the furnace melt. If the amount of the silicon carbide powder exceeds 60% by weight, the corrosion resistance is reduced due to the influence of the iron oxide component and the molten iron contained in the melt in large amounts.

【0012】配合するSiとAlとの混合粉末及び/又
はSiとAlとの合金粉末中のAlの使用量が、Alと
して1重量%未満であると、使用中に形成されるAlN
やSIALON等のボンド形成量が不足して耐食性が劣
ることになる。また、10重量%を越えるとボンドが過
剰に形成されて耐スポーリング性が劣る。
If the amount of Al in the mixed powder of Si and Al and / or the alloy powder of Si and Al to be blended is less than 1% by weight as Al, the AlN formed during use is reduced.
Insufficient amount of bond formation such as SALON and SIALON results in poor corrosion resistance. On the other hand, if it exceeds 10% by weight, the bond is excessively formed and the spalling resistance is poor.

【0013】同じく、配合するSiとAlとの混合粉末
及び/又はSiとAlとの合金粉末中のSiの使用量が
Siとして0.5重量%未満であると、使用中に形成さ
れるボンドがAlN主体となり、炉の補修時など炉の操
業の停止時間中の温度が低下している間の耐火物に消化
の問題を生じる。また、Siの使用量が8重量%を越え
ると、Si系のボンド生成量が多くなり耐食性が低下
し、同時に耐スポーリング性も低下する。
Similarly, if the amount of Si in the mixed powder of Si and Al and / or the alloy powder of Si and Al is less than 0.5% by weight as Si, the bond formed during use is Is mainly composed of AlN, which causes a problem of digestion of the refractory while the temperature is lowered during a furnace shutdown time such as when repairing the furnace. On the other hand, if the amount of Si exceeds 8% by weight, the amount of Si-based bonds generated increases, and the corrosion resistance decreases, and at the same time, the spalling resistance decreases.

【0014】AlとSiは、それぞれの所定量を混合物
として添加するだけではなく、合金として添加しても、
また、併用して添加してもSi成分とAl成分が所定量
含まれておりさえすればその効果に差異はない。
Al and Si may be added not only as a mixture in a predetermined amount but also as an alloy.
Even if they are added in combination, there is no difference in the effect as long as the Si component and the Al component are contained in predetermined amounts.

【0015】本発明のアルミナ−炭化珪素質耐火物は、
成形体のままの使用の他に、成形後熱処理しても使用で
きる。その熱処理温度が90℃以上で、バインダー樹脂
内での残存する揮発分のため使用中に耐火物の組織が劣
化し、耐食性が低下するのを防止できる。また、400
℃未満で熱処理することで、バインダー樹脂の分解を抑
え、耐火物の強度の不足と、耐食性の低下が防止でき
る。
The alumina-silicon carbide refractory of the present invention comprises:
In addition to using the molded article as it is, it can also be used by heat treatment after molding. When the heat treatment temperature is 90 ° C. or higher, it is possible to prevent the structure of the refractory from deteriorating during use due to the volatile components remaining in the binder resin, thereby preventing the corrosion resistance from lowering. Also, 400
By performing the heat treatment at a temperature lower than 0 ° C., the decomposition of the binder resin is suppressed, and the shortage of the strength of the refractory and the decrease in the corrosion resistance can be prevented.

【0016】バインダーとして樹脂を使用するのは、A
lやSiを使用しているため、熱処理時及び使用時の問
題発生を防止することにある。例えば、燐酸系や水ガラ
ス系バインダーを使用すると、金属との反応により混練
時に水素ガスを発生する。また粘土−水系では使用した
水とAlが熱処理中に反応し、水素ガスが発生する。バ
インダー樹脂としては、コスト、作業性などの条件から
フェノール樹脂、フラン樹脂、ピッチ変性フェノール樹
脂等が望ましいが、もちろんこれらに限定するものでは
なく、性状、作用においてこれらと同等の樹脂が使用可
能である。
The reason for using a resin as a binder is as follows.
Since l and Si are used, it is to prevent problems during heat treatment and use. For example, when a phosphoric acid-based or water glass-based binder is used, hydrogen gas is generated during kneading by reaction with a metal. In addition, in the clay-water system, used water and Al react during the heat treatment to generate hydrogen gas. As the binder resin, a phenol resin, a furan resin, a pitch-modified phenol resin, etc. are desirable in view of conditions such as cost and workability, but of course, the present invention is not limited to these, and resins having properties and functions equivalent to these can be used. is there.

【0017】[0017]

【発明の実施の形態】以下、実施例によって本発明の実
施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to examples.

【0018】表1から表3に示す割合の配合物を混練
し、成形圧が2トン/cm2で、形状が230×100
×65mmにオイルプレスで成形し、特に指定する場合
を除いては200℃で熱処理をして試作品を作成し、そ
の見かけ気孔率、圧縮強さ、それに侵食試験結果として
の溶損状態、さらにはスポーリングの剥落回数を調べ
た。
The compounds in the proportions shown in Tables 1 to 3 were kneaded, the molding pressure was 2 tons / cm 2 and the shape was 230 × 100.
It was molded by an oil press to a size of × 65 mm, and heat-treated at 200 ° C. to produce a prototype, unless otherwise specified, with its apparent porosity, compressive strength, and erosion state as a result of an erosion test. Examined the number of spalling spalls.

【0019】侵食試験は、特に指定する場合を除いてL
PGと空気によるバーナー加熱の横型回転侵食試験装置
を使用して、CaO/SiO2比(C/S比)が0.
4、Fe23が8.5重量%、アルカリ分が8.5重量
%の塵焼却灰溶融物を想定したスラグを投入し、160
0℃で30分毎にスラグを取り換え、そのサイクルを2
0回繰り返して実施した。この侵食試験のサイクルは、
20回連続ではなく、実験室の都合及び実操業における
連続運転でない場合の影響も考慮して、10回のサイク
ルの繰り返し試験実施後一旦完全に冷却し、解体するこ
となくそのまま翌日、再度10回のサイクルの侵食試験
を継続した後に溶損程度を評価した。
In the erosion test, L is used unless otherwise specified.
The CaO / SiO 2 ratio (C / S ratio) was set to 0.
4. Slag assuming a dust incineration ash melt containing 8.5% by weight of Fe 2 O 3 and 8.5% by weight of an alkali was added, and 160
Change the slag every 30 minutes at 0 ° C.
Repeated 0 times. This erosion test cycle is:
Considering the effects of non-continuous operation in the actual operation and the convenience of the laboratory instead of the continuous 20 times, once the test was repeated 10 times, it was completely cooled down, and then completely dismantled 10 times again the next day without dismantling. After the erosion test of the above cycle was continued, the degree of erosion was evaluated.

【0020】溶損指数は、Al23量が95重量%の焼
成アルミナれんがの溶損量(厚み減少寸法)を100と
して個々の耐火物の溶損量を指数化して求めた。溶損指
数が小さくなるほど耐食性が良好であることを示す。
The erosion index was determined by indexing the erosion amount of each refractory with the erosion amount (thickness reduction dimension) of the calcined alumina brick having an Al 2 O 3 content of 95% by weight as 100. The smaller the erosion index, the better the corrosion resistance.

【0021】スポーリングテストは、50×50×23
0mmの試料を切り出してカーボン粉末中に埋め込み1
500℃で再度熱処理した後に、1500℃の溶融銑鉄
中に90秒浸漬し、直ちに5秒水冷しその後空冷する処
理サイクルを15回繰り返して剥落発生時のサイクル回
数で評価した。発生時のサイクル回数が大きいほど耐ス
ポーリング性が良好であることを示す。溶融銑鉄中に浸
漬する前に高温で再度の熱処理を施すのは、再度の熱処
理を行うことにより、初期の熱処理後残存する揮発分を
取り除き、爆裂の発生を防止するためである。揮発分を
残した状態で溶融金属中に囲まれるような状態は、実際
の使用条件下では起こり得ない。
The spalling test was performed at 50 × 50 × 23.
A sample of 0 mm was cut out and embedded in carbon powder.
After heat-treating again at 500 ° C., the sample was immersed in molten pig iron at 1500 ° C. for 90 seconds, immediately cooled with water for 5 seconds, and then air-cooled. The cycle was repeated 15 times, and the number of cycles at the time of spalling was evaluated. The larger the number of cycles at the time of occurrence, the better the spalling resistance. The reason why the heat treatment is performed again at a high temperature before immersion in the molten pig iron is to remove the volatile components remaining after the initial heat treatment by performing the heat treatment again, thereby preventing explosion. A situation in which the volatile metal remains surrounded by the molten metal cannot occur under actual use conditions.

【0022】標準用に作成したAl23が95重量%の
焼成アルミナれんがの品質は、気孔率が14.6%、圧
縮強さが150MPa、溶損指数が100、剥落時のサ
イクル回数が5回である。
The calcined alumina brick made of 95% by weight of Al 2 O 3 having a porosity of 14.6%, a compressive strength of 150 MPa, an erosion index of 100, and the number of cycles at the time of spallation was made as a standard. 5 times.

【0023】[0023]

【表1】 表1は、炭化珪素粉末の添加量と特性の関係を示す。炭
化珪素粉末の添加量が10重量%を越えた実施例1の場
合を、炭化珪素粉末の添加量が10重量%未満の比較例
1の場合と比較すると、実施例1の耐食性は充分である
のに対して、比較例1は耐食性が低下している。これ
は、炭化珪素粉末の添加量が10重量%未満ではスラグ
中のアルカリ性分の影響によるものである。また、炭化
珪素粉末の添加量が60重量%以下の実施例5と60重
量%を越えた比較例2とを比較すると、実施例5の場合
は耐食性は充分であるのに対して、比較例2は耐食性が
低下している。このことは、炭化珪素粉末の添加量が6
0重量%を越えると、スラグ中の酸化鉄の影響のため耐
食性が低下することを意味する。また、実施例1と実施
例2、さらに、実施例3と実施例4とを比較すると、炭
化珪素粉末の粒度構成は最大粒子径を3mmとして比較
的自由に選べることが分かる。その他、同表に示すよう
に、炭化珪素粉末の添加量を適正範囲内にすることで耐
食性、耐スポーリング性ともに優れた耐火物が得られる
ことが判る。
[Table 1] Table 1 shows the relationship between the amount of silicon carbide powder added and the properties. When the case of Example 1 in which the addition amount of the silicon carbide powder exceeds 10% by weight is compared with the case of Comparative Example 1 in which the addition amount of the silicon carbide powder is less than 10% by weight, the corrosion resistance of Example 1 is sufficient. On the other hand, in Comparative Example 1, the corrosion resistance was reduced. This is due to the influence of the alkaline component in the slag when the addition amount of the silicon carbide powder is less than 10% by weight. Further, comparing Example 5 in which the addition amount of silicon carbide powder is 60% by weight or less and Comparative Example 2 in which the addition amount exceeds 60% by weight, the corrosion resistance in Example 5 is sufficient, Sample No. 2 has reduced corrosion resistance. This means that the amount of silicon carbide powder added was 6
If it exceeds 0% by weight, it means that the corrosion resistance is reduced due to the influence of iron oxide in the slag. Also, comparing Example 1 and Example 2, and further Example 3 and Example 4, it can be seen that the particle size configuration of the silicon carbide powder can be selected relatively freely with the maximum particle size being 3 mm. In addition, as shown in the table, it can be seen that by setting the addition amount of the silicon carbide powder within an appropriate range, a refractory excellent in both corrosion resistance and spalling resistance can be obtained.

【0024】[0024]

【表2】 表2は、Al粉末とSi粉末のそれぞれの添加量と耐火
物の特性の関係を示す。同表において、Siの添加量が
0.5重量%以上の実施例6と0.5重量%未満の比較
例3を対比すると、実施例6の場合は、侵食試験におい
て十分な耐食性を示し、また、スポーリングテストでも
何らの亀裂も発生しなかったのに対して、比較例3の場
合は、侵食試験後の侵食厚みの測定ができず、またスポ
ーリングテストでは試験前の再度の加熱処理時に亀裂が
発生したためテストを行うことができなかった。これ
は、Siの添加量が0.5重量%未満では、加熱中に生
じるAlNに対するSiによる消化防止効果が不足した
ことによる。また、Siの添加量の上限の8重量%に近
い実施例7と、8重量%を越える比較例4を対比する
と、実施例7の場合、耐食性、耐スポーリング性が共に
低下することもない。これに対して、比較例4の場合
は、耐食性、耐スポーリング性共に低下している。これ
は、Siの添加量が8重量%を越えるとβ−SiC等の
Si系ボンドが過剰に生成したことによる。さらに、A
lの添加量が1重量%を越える実施例8と1重量%未満
の比較例5を対比すると、実施例8の場合の耐食性は十
分であるのに対して、比較例5の場合は耐食性が低下し
ている。これはAlNのようなAl系ボンドの生成が不
足することによる。その他、表2に示すように、Alと
Siの添加量を適正範囲内にとることで、耐火物に消化
現象を生じさせることなく耐食性、耐スポーリング性と
もに優れた耐火物が得られることが判る。
[Table 2] Table 2 shows the relationship between the respective addition amounts of the Al powder and the Si powder and the characteristics of the refractory. In the same table, comparing Example 6 in which the addition amount of Si is 0.5% by weight or more and Comparative Example 3 in which the addition amount of Si is less than 0.5% by weight, Example 6 shows sufficient corrosion resistance in the erosion test, In addition, no crack was generated in the spalling test, but in the case of Comparative Example 3, the erosion thickness after the erosion test could not be measured. In the spalling test, the heat treatment was repeated before the test. The test could not be performed because of the cracks that sometimes occurred. This is because if the amount of Si added is less than 0.5% by weight, the effect of Si to prevent digestion of AlN generated during heating is insufficient. Further, comparing Example 7 which is close to the upper limit of 8% by weight of the added amount of Si with Comparative Example 4 which exceeds 8% by weight, in Example 7, neither the corrosion resistance nor the spalling resistance is reduced. . On the other hand, in the case of Comparative Example 4, both the corrosion resistance and the spalling resistance decreased. This is because excessive Si-based bonds such as β-SiC were formed when the amount of Si added exceeded 8% by weight. Furthermore, A
When comparing Example 8 in which the addition amount of l exceeds 1% by weight and Comparative Example 5 in which the addition amount is less than 1% by weight, the corrosion resistance in Example 8 is sufficient, whereas the corrosion resistance in Comparative Example 5 is low. Is declining. This is because the generation of Al-based bonds such as AlN is insufficient. In addition, as shown in Table 2, by setting the addition amounts of Al and Si within an appropriate range, it is possible to obtain a refractory excellent in both corrosion resistance and spalling resistance without causing digestion of the refractory. I understand.

【0025】[0025]

【表3】 表3は、Alの添加量の上限である10重量%を越えた
場合の影響を実施例9と比較例6とによって示し、ま
た、他はAlとSiの添加の形態の特性に及ぼす影響に
ついての調査結果を示す。
[Table 3] Table 3 shows the effect when the amount of Al added exceeds the upper limit of 10% by weight in Example 9 and Comparative Example 6, and the other effects on the characteristics of the form of the addition of Al and Si. The results of the survey are shown.

【0026】まず、実施例9と比較例6との対比におい
て、実施例9はAlの添加量が10重量%以下の例の9
重量%であり、耐スポーリング性は優れたものとなる
が、比較例6はAlの添加量が10重量%を越えた例の
11重量%であり、この場合は耐スポーリング性が低下
している。これはAl系ボンドの生成が過剰となること
による。
First, in comparison with Example 9 and Comparative Example 6, Example 9 shows that Example 9 in which the addition amount of Al was 10% by weight or less was 9%.
%, And the spalling resistance is excellent, but Comparative Example 6 is 11% by weight of the example in which the addition amount of Al exceeds 10% by weight. In this case, the spalling resistance is reduced. ing. This is because the generation of Al-based bonds becomes excessive.

【0027】また、実施例10はAlとSiを合金の形
で添加したものであり、また、実施例11はAl単体と
AlとSiとの合金を混合して添加した例を示す。とも
に、ボンドの形成にはいささかの支障もなく機能を発す
ることが分かる。さらに、同表3によって、添加するA
l粉末とSi粉末それぞれの粒度構成が適当範囲で変化
しても、またAlとSiの混合物の形で添加しても合金
の形でも、もしくはその併用の形でも、添加効果に差異
は見られない。
Example 10 shows an example in which Al and Si are added in the form of an alloy, and Example 11 shows an example in which Al alone and an alloy of Al and Si are mixed and added. In both cases, it can be seen that the function is produced without any difficulty in forming the bond. Further, according to Table 3, the amount of added A
There is a difference in the effect of addition when the particle size composition of the l powder and the Si powder is changed within an appropriate range, and when added in the form of a mixture of Al and Si, in the form of an alloy, or in the form of a combination thereof. Absent.

【0028】[0028]

【表4】 表4は、耐火物の熱処理温度が特性に与える影響を調べ
た結果である。
[Table 4] Table 4 shows the results of examining the effect of the heat treatment temperature of the refractory on the properties.

【0029】表1の実施例3の素地を、耐火物の硬化状
態を比較する目的で、表4に示した温度で熱処理を施し
た。
The substrate of Example 3 in Table 1 was heat-treated at the temperatures shown in Table 4 for the purpose of comparing the cured state of the refractory.

【0030】まず、比較例7に示すように、熱処理温度
が90℃より低い80℃の場合には取り扱い時の強度が
不足傾向となる。これは、樹脂の硬化が不十分であるこ
とによる。また樹脂ボンドが未発達のまま使用時に高温
にさらされると、カーボンボンドが十分にできないため
に耐食性が低下する。この熱処理温度が90℃以上で4
00℃までの範囲内にある実施例14から実施例16の
場合には取り扱い時の強度も耐食性も優れたものとな
る。また、比較例8に示すように、450℃で熱処理す
ると、硬化後の樹脂の分解が進行し、気孔率が上昇し、
強度が低下する。その結果、取り扱い時の強度も不足
し、耐食性も低下する。
First, as shown in Comparative Example 7, when the heat treatment temperature is 80 ° C., which is lower than 90 ° C., the strength during handling tends to be insufficient. This is due to insufficient curing of the resin. Also, if the resin bond is exposed to high temperatures during use without development, the corrosion resistance is reduced because the carbon bond cannot be sufficiently formed. When the heat treatment temperature is 90 ° C. or higher, 4
In the case of Examples 14 to 16 in the range up to 00 ° C., the strength and the corrosion resistance during handling are excellent. Further, as shown in Comparative Example 8, when heat treatment was performed at 450 ° C., decomposition of the cured resin progressed, and the porosity increased,
Strength decreases. As a result, the strength at the time of handling is insufficient, and the corrosion resistance is also reduced.

【0031】成形方法については、オイルプレスに限定
するものではなく、フリクションプレス、ランマープレ
ス、C.I.P等の中から、れんが成形個数、形状、能
率を考慮して適宜選択すればよい。
The molding method is not limited to an oil press, but may be a friction press, a rammer press, a C.I. I. It may be appropriately selected from P and the like in consideration of the number, shape and efficiency of the brick.

【0032】成形圧についても、成形能率、成形体の品
質を考慮して適宜選択すればよい。
The molding pressure may be appropriately selected in consideration of the molding efficiency and the quality of the molded product.

【0033】[0033]

【発明の効果】本発明によって、比較的低温の条件下は
勿論のこと、高温でかつ炉内溶融物との接触条件下にお
いても高耐食性を維持し、炉内補修時などの間欠操業下
でも十分な耐スポーリング性を示す、塵及び産業廃棄物
溶融炉用の内張りに適したクロムフリーの耐火物が得ら
れる。
According to the present invention, high corrosion resistance is maintained not only under relatively low temperature conditions, but also at high temperature and under conditions of contact with the molten material in the furnace. A chromium-free refractory with sufficient spalling resistance and suitable for lining dust and industrial waste melting furnaces is obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素粉末が10〜60重量%と、S
iとAlの混合粉末、及び/又はSiとAlの合金の粉
末がSiとして0.5〜8重量%とAlとして1〜10
重量%と、残部が主としてアルミナ粉末とからなる配合
物を樹脂を使用して混練し、成形したことを特徴とする
アルミナ−炭化珪素質耐火物。
1. The method according to claim 1, wherein the silicon carbide powder contains 10 to 60% by weight of
0.5 to 8% by weight of Si and 1 to 10% of Al
Alumina-silicon carbide refractories obtained by kneading and molding a mixture consisting of weight percent and the remainder mainly composed of alumina powder using a resin.
【請求項2】 混練、成形後、90〜400℃で熱処理
したことを特徴とする請求項1のアルミナ−炭化珪素質
耐火物。
2. The alumina-silicon carbide refractory according to claim 1, wherein after kneading and molding, heat treatment is performed at 90 to 400 ° C.
【請求項3】 その用途が塵及び産業廃棄物溶融炉の内
張り用であることを特徴とする請求項1または請求項2
に記載のアルミナ−炭化珪素質耐火物。
3. The method according to claim 1, wherein the use is for lining of a melting furnace for dust and industrial waste.
2. The alumina-silicon carbide refractory described in 1. above.
JP08224598A 1998-03-27 1998-03-27 Alumina-silicon carbide refractories Expired - Fee Related JP4163783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08224598A JP4163783B2 (en) 1998-03-27 1998-03-27 Alumina-silicon carbide refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08224598A JP4163783B2 (en) 1998-03-27 1998-03-27 Alumina-silicon carbide refractories

Publications (2)

Publication Number Publication Date
JPH11278939A true JPH11278939A (en) 1999-10-12
JP4163783B2 JP4163783B2 (en) 2008-10-08

Family

ID=13769052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08224598A Expired - Fee Related JP4163783B2 (en) 1998-03-27 1998-03-27 Alumina-silicon carbide refractories

Country Status (1)

Country Link
JP (1) JP4163783B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478143B1 (en) * 2000-12-20 2005-03-22 재단법인 포항산업과학연구원 Oil injection materials for blast furnace by using spent refractories containing carbon
JP2017095317A (en) * 2015-11-26 2017-06-01 東京窯業株式会社 Unburned high alumina brick containing silicon carbide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073304B (en) * 2013-01-16 2014-04-30 郑州大学 Process for preparing ZrB2-SiC composite powder with electric melting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478143B1 (en) * 2000-12-20 2005-03-22 재단법인 포항산업과학연구원 Oil injection materials for blast furnace by using spent refractories containing carbon
JP2017095317A (en) * 2015-11-26 2017-06-01 東京窯業株式会社 Unburned high alumina brick containing silicon carbide

Also Published As

Publication number Publication date
JP4163783B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
KR100297091B1 (en) Chrome-free brick
JP5192970B2 (en) Basic plate refractories for sliding nozzle devices
JP6615276B1 (en) Chromia brick
JP4163783B2 (en) Alumina-silicon carbide refractories
JP4328053B2 (en) Magnesia-spinel brick
JPH11278940A (en) Alumina-silicon carbide refractory
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP2003171182A (en) Carbon-containing unburned brick
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP5822081B2 (en) Mud material for closing blast furnace exit hole
JP5578680B2 (en) Carbon-containing refractories
JP3617012B2 (en) Waste melting furnace
JPH0585805A (en) Carbon-containing fire-resistant material
JP2018021226A (en) Lining method of converter injection wall
JP2005335966A (en) Graphite-containing castable refractory
JP3088095B2 (en) Alumina-chromium refractory
JP3875054B2 (en) Refractory composition for ash melting furnace
JPH04280858A (en) Production of unburned magnesia-carbon brick
JP2000263014A (en) Method for using aluminum dross residual ash and alumina magnesia castable refractory material
JP2765458B2 (en) Magnesia-carbon refractories
JPH06263523A (en) Production of carbon-containing unburned brick
JPH07291710A (en) Graphite containing refractory
JPS63166751A (en) Carbon-containing basic refractory brick
JP2001139366A (en) Magnesia-carbon unburned refractory brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees