JPH11278855A - Quartz glass crucible for pulling up silicon single crystal and its production - Google Patents

Quartz glass crucible for pulling up silicon single crystal and its production

Info

Publication number
JPH11278855A
JPH11278855A JP10087436A JP8743698A JPH11278855A JP H11278855 A JPH11278855 A JP H11278855A JP 10087436 A JP10087436 A JP 10087436A JP 8743698 A JP8743698 A JP 8743698A JP H11278855 A JPH11278855 A JP H11278855A
Authority
JP
Japan
Prior art keywords
quartz glass
transparent layer
crucible
glass crucible
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10087436A
Other languages
Japanese (ja)
Other versions
JP4054434B2 (en
Inventor
Shunzo Shimai
駿蔵 島井
Kozo Kitano
浩三 北野
Masaru Shinpo
優 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP08743698A priority Critical patent/JP4054434B2/en
Publication of JPH11278855A publication Critical patent/JPH11278855A/en
Application granted granted Critical
Publication of JP4054434B2 publication Critical patent/JP4054434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Abstract

PROBLEM TO BE SOLVED: To improve single crystallization ratio by imparting a specific compressive stress to a transparent layer of a crucible composed of the transparent layer on the inner surface side and an opaque layer, which is on the outer periphery of the transparent layer and in which many bubbles are present, to suppress the incorporation of the bubbles into a silicon melt. SOLUTION: The crucible is formed from the 2 layers and has the transparent layer 3 on the inner surface side 2 and the opaque layer, which has many bubbles, for example about 8000-12000/cm<3> bubbles having 1.0-250 μm particle diameter and 32-38 MPa breaking strength, on the outer periphery of the transparent layer 2. The compressive stress 30-50% of the rupture strength of the opaque layer 5 is imparted to the transparent layer 2. The thickness of the transparent layer 3 is controlled to >=1 mm and >=60% of that of the opaque layer 5. As a result, micro-bubbles existing in the transparent layer 3 expands to large bubbles and the incorporation of the bubbles to a molten silicon with the dissolution of the transparent layer 3 of the inner surface side 2 is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコン単結晶引上
げ用石英ガラスルツボおよびその製造方法に係わり、特
にシリコン単結晶引上げの高歩留りが得られる石英ガラ
スルツボおよびその製造方法に関する。
The present invention relates to a quartz glass crucible for pulling a silicon single crystal and a method of manufacturing the same, and more particularly to a quartz glass crucible capable of obtaining a high yield of pulling a silicon single crystal and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体デバイスの基板に用いられるシリ
コン単結晶は、一般にチョクラルスキー法(CZ法)で
製造されており、このCZ法は石英ガラスルツボ内に多
結晶シリコン原料を装填し、装填されたシリコン原料を
周囲から加熱して溶融し、上方から吊り下げた種結晶を
シリコン融液に接触してから引き上げるものである。
2. Description of the Related Art A silicon single crystal used for a substrate of a semiconductor device is generally manufactured by a Czochralski method (CZ method). In the CZ method, a polycrystalline silicon raw material is loaded into a quartz glass crucible and loaded. The obtained silicon raw material is heated and melted from the surroundings, and the seed crystal suspended from above is brought into contact with the silicon melt and then pulled up.

【0003】従来よりCZ法用ルツボとして、内面側に
透明層を有し、この透明層の外周に不透明層を有する2
層の石英ガラスルツボが用いられている。
Conventionally, a crucible for the CZ method has a transparent layer on the inner surface side and an opaque layer on the outer periphery of the transparent layer.
A layer of quartz glass crucible is used.

【0004】不透明層には直径10〜250μmの気泡
が8000〜12000個/cm3程度存在するので、
見掛上不透明となっており、この不透明層はルツボ外周
に配置されたヒータからの熱をルツボ中のシリコン融液
に均一に伝達する役目をなす。
In the opaque layer, there are about 8000 to 12000 bubbles / cm 3 having a diameter of 10 to 250 μm.
It is apparently opaque, and this opaque layer serves to uniformly transfer heat from a heater arranged on the outer periphery of the crucible to the silicon melt in the crucible.

【0005】一方、透明層はこの層中の気泡を皆無にす
る努力が従来よりなされているが、現段階では、完全に
なくすることは達成できておらず、0.05〜0.5容
積%程度の気泡が残存してしまうのが現状である。
On the other hand, in the transparent layer, efforts have been made to eliminate air bubbles in this layer, but at this stage, complete elimination has not been achieved, and 0.05 to 0.5 volume At present, about% of bubbles remain.

【0006】例えば顕微鏡での観察では気泡が確認され
ないものであったとしても、気泡核となるものが存在
し、シリコン単結晶の引上げを行い石英ルツボに熱が加
わると、この気泡核から気泡が形成され、内面側の透明
層の溶解とともに気泡がシリコン融液中に混入し、引き
上げられるシリコン単結晶中に気泡が取込まれ、結晶転
位による結晶欠陥(有転位化)の原因となり、単結晶化
率(DF率)を低下させる要因となり問題があった。
[0006] For example, even if no bubbles are confirmed by observation with a microscope, there are still some that become bubble nuclei. When silicon single crystal is pulled and heat is applied to the quartz crucible, bubbles are generated from these bubble nuclei. The bubbles are formed, and the bubbles are mixed into the silicon melt together with the dissolution of the transparent layer on the inner surface side. The bubbles are taken into the silicon single crystal being pulled up, causing crystal defects (dislocations) due to crystal dislocations. There is a problem that this is a factor that lowers the conversion rate (DF rate).

【0007】上述のようにCZ法によるシリコン単結晶
引上げ歩留りは、石英ガラスルツボの品質によって大き
な影響を受け、特に石英ガラスルツボの内表面の気泡の
存在に影響を受けている。
As described above, the yield of pulling a silicon single crystal by the CZ method is greatly affected by the quality of the quartz glass crucible, and particularly affected by the presence of bubbles on the inner surface of the quartz glass crucible.

【0008】[0008]

【発明が解決しようとする課題】そこでDF率を低下さ
せず単結晶引き上げの高歩留まりが得られる石英ガラス
ルツボおよびその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a quartz glass crucible capable of obtaining a high yield of pulling a single crystal without lowering the DF ratio and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、内面側に透明層を有
し、この透明層の外周に多数の気泡が存在する不透明層
を有する2層で形成された石英ガラスルツボにおいて、
前記透明層に前記不透明層の破壊強度の30〜50%の
圧縮応力を持たせたことを特徴とするシリコン単結晶引
上げ用石英ガラスルツボであることを要旨としている。
Means for Solving the Problems In order to achieve the above object, the invention of claim 1 of the present application has an opaque layer having a transparent layer on the inner surface side and having a large number of bubbles around the transparent layer. In a quartz glass crucible formed of two layers having
The gist is a quartz glass crucible for pulling a silicon single crystal, wherein the transparent layer has a compressive stress of 30 to 50% of the breaking strength of the opaque layer.

【0010】本願請求項2の発明は上記不透明層の破壊
強度が32〜38MPaであることを特徴とする請求項
1に記載のシリコン単結晶引上げ用石英ガラスルツボで
あることを要旨としている。
According to a second aspect of the present invention, there is provided a quartz glass crucible for pulling a silicon single crystal according to the first aspect, wherein the opaque layer has a breaking strength of 32 to 38 MPa.

【0011】本願請求項3の発明は上記透明層の厚さが
少なくとも1mmであり、この透明層の厚さが不透明層
の厚さの60%以下であることを特徴とする請求項1に
記載のシリコン単結晶引上げ用石英ガラスルツボである
ことを要旨としている。
According to a third aspect of the present invention, the thickness of the transparent layer is at least 1 mm, and the thickness of the transparent layer is 60% or less of the thickness of the opaque layer. It is a gist of a quartz glass crucible for pulling a silicon single crystal.

【0012】本願請求項4の発明は石英粉がルツボ状体
に充填されたルツボ成形型を用意し、前記ルツボ状体の
内面側から前記石英粉を加熱するシリコン単結晶引上げ
用石英ガラスルツボの製造方法において、前記ルツボ成
形用型の加熱後石英ガラスルツボの内面側と外面側とで
冷却条件を変えることを特徴とするシリコン単結晶引上
げ用石英ガラスルツボの製造方法であることを要旨とし
ている。
According to a fourth aspect of the present invention, there is provided a crucible mold in which a quartz powder is filled in a crucible-like body, and a quartz glass crucible for pulling a silicon single crystal which is heated from the inner side of the crucible-like body. In the manufacturing method, it is a method of manufacturing a quartz glass crucible for pulling a silicon single crystal, wherein cooling conditions are changed between an inner surface side and an outer surface side of the quartz glass crucible after heating the crucible forming mold. .

【0013】本願請求項5の発明は上記石英粉の加熱終
了後、石英ガラスルツボの内面側領域に不活性ガスを流
入させ、内面側から強制冷却することを特徴とする請求
項4に記載のシリコン単結晶引上げ用石英ガラスルツボ
の製造方法であることを要旨としている。
According to a fifth aspect of the present invention, after the heating of the quartz powder is completed, an inert gas is introduced into an inner surface region of the quartz glass crucible and forced cooling is performed from the inner surface side. The gist is to provide a method for manufacturing a quartz glass crucible for pulling a silicon single crystal.

【0014】本願請求項6の発明は上記不活性ガスの流
入速度が100〜300リットル/分であり、かつ上記
強制冷却時間が5〜10分間であり、その後放冷するこ
とを特徴とする請求項5に記載のシリコン単結晶引上げ
用石英ガラスルツボの製造方法であることを要旨として
いる。
The invention of claim 6 of the present application is characterized in that the flow rate of the inert gas is 100 to 300 liter / min, the forcible cooling time is 5 to 10 minutes, and then the cooling is performed. Item 5 is a method for manufacturing a quartz glass crucible for pulling a silicon single crystal according to Item 5.

【0015】[0015]

【発明の実施の形態】以下、本発明に係わる石英ガラス
ルツボの実施の形態およびその製造方法について添付図
面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a quartz glass crucible according to the present invention and a method for manufacturing the same will be described below with reference to the accompanying drawings.

【0016】図1は本発明に係わる石英ガラスルツボ1
で、石英ガラスルツボ1の内面側2に透明層3を有し、
石英ガラスルツボ1の外面側4に気泡が存在する不透明
層5を有する2層で形成されている。
FIG. 1 shows a quartz glass crucible 1 according to the present invention.
A transparent layer 3 on the inner surface 2 of the quartz glass crucible 1;
The quartz glass crucible 1 is formed of two layers having an opaque layer 5 having bubbles on the outer surface 4 thereof.

【0017】不透明層5は、直径10〜250μmの気
泡が8000〜12000個/cm3程度存在し見掛上
不透明で、32〜38MPaの破壊強度を有する。
The opaque layer 5 is apparently opaque with bubbles having a diameter of 10 to 250 μm of about 8000 to 12000 bubbles / cm 3 and has a breaking strength of 32 to 38 MPa.

【0018】透明層3は、不透明層5の破壊強度の30
〜50%の圧縮応力を持ち、実質上0.05〜0.5容
積%程度の気泡を含み、顕微鏡で観察で確認できない気
泡核が存在している。
The transparent layer 3 has a breaking strength of 30 of the opaque layer 5.
It has a compressive stress of about 50%, contains bubbles of about 0.05 to 0.5% by volume substantially, and has bubble nuclei that cannot be confirmed by microscopic observation.

【0019】また透明層3の厚さは少なくとも1mmで
あり、かつこの透明層3の厚さが不透明層5の厚さの6
0%以下である。
The thickness of the transparent layer 3 is at least 1 mm, and the thickness of the transparent layer 3 is 6 times the thickness of the opaque layer 5.
0% or less.

【0020】上述の透明層3の圧縮圧力が、不透明層5
の破壊強度の30%未満のときは、透明層3の気泡もし
くは気泡核から発生する気泡の膨脹と内面側2の透明層
3の溶解とともに気泡がシリコン融液中への混入を抑制
できず、かつ不透明層5の気泡が膨脹して透明層3側に
膨脹、開裂してシリコン単結晶の成長に悪影響を与え、
DF率の低下させるのを防止することができない。
When the compression pressure of the transparent layer 3 is changed to the opaque layer 5
When the breaking strength of the transparent layer 3 is less than 30%, the expansion of the bubbles in the transparent layer 3 or the bubbles generated from the nuclei of the bubbles and the dissolution of the transparent layer 3 on the inner surface 2 cannot suppress the incorporation of the bubbles into the silicon melt. In addition, the bubbles in the opaque layer 5 expand and expand toward the transparent layer 3 and rupture, adversely affecting the growth of the silicon single crystal,
The DF rate cannot be prevented from lowering.

【0021】50%を超えると単結晶引上げ時の石英ガ
ラスルツボ1にかかる熱応力や、石英ガラスルツボ1に
装填された溶融シリコン6の荷重により石英ガラスルツ
ボ1が破壊する虞がある。
If it exceeds 50%, the quartz glass crucible 1 may be broken due to the thermal stress applied to the quartz glass crucible 1 when the single crystal is pulled or the load of the molten silicon 6 loaded in the quartz glass crucible 1.

【0022】不透明層5の破壊強度が32〜38MPa
であることが必要なのは、石英ルツボに構造上からであ
る。
The breaking strength of the opaque layer 5 is 32 to 38 MPa.
It is necessary for the quartz crucible to be structurally.

【0023】透明層の厚さが1mm未満のときは、単結
晶引上げ中に不可避なルツボ内表面のシリコン融液によ
る溶損によって、通常の耐用上の必要厚さ1mm以上を
満さなくなるためである。透明層の厚さが不透明層の厚
さの60%を超えるときは、透明層における30〜50
%の圧縮応力に対し、不透明層の保持強度が不十分なも
のとなってしまうからである。
When the thickness of the transparent layer is less than 1 mm, the thickness required for ordinary service becomes no more than 1 mm due to erosion of the inner surface of the crucible by silicon melt which is inevitable during pulling of the single crystal. is there. When the thickness of the transparent layer exceeds 60% of the thickness of the opaque layer, 30 to 50% in the transparent layer
% Of the compressive stress, the holding strength of the opaque layer becomes insufficient.

【0024】次に、本発明に係わる石英ガラスルツボの
製造方法について図面に基づいて説明する。
Next, a method for manufacturing a quartz glass crucible according to the present invention will be described with reference to the drawings.

【0025】図2に示すような製造装置7のルツボ成形
用型8は、例えば複数の貫通孔を穿設した金型、もしく
は高純化処理した多孔質カーボン型などのガス透過性部
材で構成されている内側部材9と、その外周に通気部1
0を設けて、前記内側部材9を保持する保持体11とか
ら構成されている。
The crucible forming die 8 of the manufacturing apparatus 7 as shown in FIG. 2 is composed of a gas permeable member such as a die having a plurality of through holes or a highly purified porous carbon type. Inner member 9 and the ventilation portion 1
0 and a holding body 11 for holding the inner member 9.

【0026】また、保持体11の下部には、図示しない
回転手段と連結されている回転軸12が固着されてい
て、ルツボ成形用型8とともに回転可能なようにして支
持している。通気部10は、保持体11の下部に設けら
れた開口部13を介して、回転軸12の中央に設けられ
た排気口14と連結されている。この通気路12は、減
圧機構15と連結されている。
A rotating shaft 12 connected to rotating means (not shown) is fixed to a lower portion of the holding body 11, and is supported so as to be rotatable together with the crucible forming die 8. The ventilation section 10 is connected to an exhaust port 14 provided at the center of the rotating shaft 12 through an opening 13 provided at a lower portion of the holding body 11. This ventilation path 12 is connected to a pressure reducing mechanism 15.

【0027】内側部材9に対向する上部にはアーク放電
用のカーボン電極16が設けられている。
A carbon electrode 16 for arc discharge is provided on an upper portion facing the inner member 9.

【0028】従って、上記製造装置7を用いてルツボの
製造を行うには、図示しない回転駆動源を稼働して回転
軸12を矢印の方向に回転することによってルツボ成形
用型8を高速で回転する。ルツボ成形用型8内に供給管
(図示せず)で、上部から高純度の石英粉を供給する。
供給された石英粉は、遠心力によってルツボ成形用型8
の内面側2に押圧されルツボ形状の石英充填層17とし
て形成される。
Therefore, in order to manufacture a crucible using the manufacturing apparatus 7, the crucible forming die 8 is rotated at a high speed by operating a rotary drive source (not shown) and rotating the rotating shaft 12 in the direction of the arrow. I do. A supply pipe (not shown) supplies high-purity quartz powder into the crucible-forming mold 8 from above.
The supplied quartz powder is converted into a crucible mold 8 by centrifugal force.
Is formed as a crucible-shaped quartz-filled layer 17 pressed against the inner surface 2.

【0029】さらに、大気雰囲気で、減圧機構15の作
動による減圧とほぼ同時にカーボン電極16に通電して
石英充填層17の内側から加熱する。
Further, in the atmosphere, the carbon electrode 16 is energized almost simultaneously with the pressure reduction by the operation of the pressure reduction mechanism 15 to heat the inside of the quartz filling layer 17.

【0030】カーボン電極16による石英充填層17の
加熱によって、石英充填層17は内側から順次溶融され
るが、内面側2には極小の気泡だけの実質的に無気泡化
状態の透明層が形成され、外表側4には多数の気泡が存
在する不透明層5が形成されて2重層構造の石英ガラス
ルツボ1が製造される。
The heating of the quartz-filled layer 17 by the carbon electrode 16 causes the quartz-filled layer 17 to be sequentially melted from the inside, but forms a substantially bubble-free transparent layer of only small bubbles on the inner surface 2. Then, an opaque layer 5 having a large number of bubbles is formed on the outer surface 4 to manufacture the quartz glass crucible 1 having a double-layer structure.

【0031】この石英ガラスルツボ1の製造工程におい
て、石英ガラスルツボ1の透明層3に石英ガラスルツボ
の破壊強度の2分の1の圧縮応力を持たせるには、冷却
の際、内面側2を外面側4より急冷することで行われ
る。
In the manufacturing process of the quartz glass crucible 1, in order to give the transparent layer 3 of the quartz glass crucible 1 a compressive stress that is half the breaking strength of the quartz glass crucible, the inner surface 2 must be cooled during cooling. This is performed by quenching from the outer surface 4.

【0032】すなわち、次のような製造条件を設定す
る。カーボン電極16による加熱終了直後、石英ガラス
ルツボ1の内面側2に窒素、ヘリウム、アルゴンなどの
不活性ガス例えば窒素を100〜300リットル/分例
えば100リットル/分、5〜10分例えば5分間流入
する。
That is, the following manufacturing conditions are set. Immediately after the completion of heating by the carbon electrode 16, an inert gas such as nitrogen, helium, or argon, for example, nitrogen, flows into the inner surface side 2 of the quartz glass crucible 1 for 100 to 300 liters / minute, for example, 100 liters / minute, for 5 to 10 minutes, for example, for 5 minutes. I do.

【0033】100リットル/分・5分間未満では、十
分な圧縮強度を持たせることができず、300リットル
/分・10分間を超えると、圧縮強度が過大になってし
まうためである。
If the pressure is less than 100 liters / minute for 5 minutes, sufficient compressive strength cannot be obtained. If the pressure exceeds 300 liters / minute for 10 minutes, the compressive strength becomes excessive.

【0034】上述にような製造条件で石英ガラスルツボ
1を製造することにより、透明層3に不透明層5の破壊
強度の2分の1の圧縮応力を持た石英ガラスルツボ1を
製造することができる。
By manufacturing the quartz glass crucible 1 under the manufacturing conditions as described above, the quartz glass crucible 1 having a compressive stress that is half the breaking strength of the opaque layer 5 in the transparent layer 3 can be manufactured. .

【0035】本発明に係わる石英ガラスルツボ1を用い
て、シリコン単結晶6を引き上げるには、ナゲット状ポ
リシリコンを石英ルツボ1に入れ、ヒータ19を付勢し
て石英ルツボ1を加熱し、モータを付勢してこのモータ
に結合された回転軸20を回転させて石英ルツボ1を回
転させる。
In order to pull up the silicon single crystal 6 using the quartz glass crucible 1 according to the present invention, the nugget-like polysilicon is put into the quartz crucible 1, the heater 19 is energized to heat the quartz crucible 1, and the motor is heated. To rotate the rotating shaft 20 connected to the motor to rotate the quartz crucible 1.

【0036】一定時間が経過しナゲット状ポリシリコン
がシリコン融液6になった後、シード軸21を下ろし、
種結晶22をシリコン融液6の液面に接触させ、シリコ
ン単結晶18を引き上げる。
After a certain time has passed and the nugget-like polysilicon has become the silicon melt 6, the seed shaft 21 is lowered,
The seed crystal 22 is brought into contact with the liquid surface of the silicon melt 6 to pull up the silicon single crystal 18.

【0037】このとき、シリコン単結晶引上げ工程にお
いて、石英ガラスルツボ1の透明層3には大きな気泡が
存在していないので、石英ガラスルツボ1の内面側2の
透明層3の溶解とともに気泡がシリコン融液6中に混入
することもなく、DF率の低下させることもない。
At this time, in the silicon single crystal pulling step, since no large bubbles exist in the transparent layer 3 of the quartz glass crucible 1, the bubbles are dissolved together with the dissolution of the transparent layer 3 on the inner surface side 2 of the quartz glass crucible 1. There is no mixing in the melt 6 and no decrease in the DF ratio.

【0038】また透明層3には不透明層5の破壊強度の
2分の1の圧縮応力が存在するので、透明層3に存在す
る極小の気泡が膨脹し大きな気泡となり、上述同様に気
泡が内表側2の透明層3の溶解とともにシリコン融液6
中に混入することもない。さらに、透明層3には圧縮応
力が存在するので、不透明層5の気泡が膨脹して透明層
3側に膨脹、開裂してシリコン単結晶18の成長に悪影
響を与えることもない。
Further, since the transparent layer 3 has a compressive stress that is one half of the breaking strength of the opaque layer 5, the tiny bubbles existing in the transparent layer 3 expand to become large bubbles, and as described above, the inside Silicon melt 6 along with dissolution of transparent layer 3 on front side 2
There is no mixing in. Further, since a compressive stress is present in the transparent layer 3, the bubbles in the opaque layer 5 do not expand and expand and cleave toward the transparent layer 3 to adversely affect the growth of the silicon single crystal 18.

【0039】[0039]

【実施例】石英ガラスルツボの作製とこのルツボを用い
シリコン単結晶引上げの実機試験を行った。
EXAMPLE A quartz glass crucible was manufactured and an actual machine test of pulling a silicon single crystal was performed using the crucible.

【0040】(1)試験用石英ガラスルツボの製作 天然水晶を粉砕し、精製して製作した平均粒径230μ
m径の石英粒子を、ルツボ寸法が外径350mm、高さ
300mmとなる型に堆積層厚さ20mmに充填した。
充填ルツボ型の外面側から、真空ポンプを用いて300
Torrの溶融圧力となるように減圧しながら、内面側
上方に位置したカーボン電極によるアーク放電を行っ
て、石英粒子を溶融した。
(1) Manufacture of quartz glass crucible for test A natural quartz crystal was crushed and refined to produce an average particle diameter of 230 μm.
Quartz particles having a diameter of m were filled into a mold having a crucible size of 350 mm in outer diameter and 300 mm in height to have a deposited layer thickness of 20 mm.
From the outer surface side of the filled crucible type, 300
While reducing the pressure to a melting pressure of Torr, arc discharge was performed by a carbon electrode located above the inner surface side to melt the quartz particles.

【0041】溶融層の肉厚が12mm(透明層が約2m
m、不透明層が約10mm)になるよう溶融時間を10
〜20分間で調節した。なお、500Torr以下の真
空系ではバルブを設置して、溶融部の圧力を制御しなが
ら溶融した。
The thickness of the molten layer is 12 mm (the transparent layer is about 2 m
m, the opaque layer is about 10 mm).
Adjusted for ~ 20 minutes. In a vacuum system of 500 Torr or less, a valve was provided to perform melting while controlling the pressure of the melting portion.

【0042】アーク放電による加熱後、放電を停止し、
石英ガラスルツボ内面領域に窒素ガスを流入し、この窒
素ガスの流入速度および時間を調整し、表1に示すよう
な所定透明層厚さ、不透明層厚さ、透明層の破壊強度、
および透明層の圧縮応力を有する石英ガスルツボを製造
した(実施例4)。
After heating by the arc discharge, the discharge is stopped,
Nitrogen gas is introduced into the quartz glass crucible inner surface area, and the inflow speed and time of the nitrogen gas are adjusted to obtain predetermined transparent layer thickness, opaque layer thickness, transparent layer breaking strength, and the like as shown in Table 1.
Further, a quartz gas crucible having a compressive stress of the transparent layer was manufactured (Example 4).

【0043】また、窒素ガスの流入速度および時間を種
々調整し、表1に示すような種々の透明層、不透明層厚
さ、不透明層の破壊強度、および透明層の圧縮応力の石
英ガスルツボを製作した(実施例1〜3および比較例1
〜3)。
Also, the flow rate and time of the nitrogen gas were adjusted variously to produce quartz gas crucibles having various transparent layers, opaque layer thicknesses, opaque layer breaking strengths, and transparent layer compressive stresses as shown in Table 1. (Examples 1 to 3 and Comparative Example 1
~ 3).

【0044】(2)破壊強度、圧縮応力測定 試料の作製 ・破壊強度用試料:上述の製造方法により製作された実
施例1〜4、比較例1〜3の石英ガラスルツボから不透
明層のみを切り出し各試料を作製した。 ・圧縮応力用試料:図4に示すような形状の試料を実施
例1〜4、比較例1〜3の石英ガラスルツボから切り出
し作製した。
(2) Measurement of Breaking Strength and Compressive Stress Preparation of Samples Samples for Breaking Strength: Only the opaque layer was cut out from the quartz glass crucibles of Examples 1-4 and Comparative Examples 1-3 produced by the above-mentioned production method. Each sample was prepared. -Compressive stress sample: Samples having a shape as shown in Fig. 4 were cut out from the quartz glass crucibles of Examples 1 to 4 and Comparative Examples 1 to 3 to produce them.

【0045】測定方法 ・不透明層の破壊強度測定はJIS規格R−1606
(ファインセラミックの室温および高温引張り強さ試験
法)に基づき実施した。 ・透明層の圧縮応力は上述した図4のような試料(ルツ
ボ断面)を用意し、この断面に対し手前側から直角方向
に光が照射されるように精密歪計〔東芝硝子株式会社
製、SVP−30−II〕にて測定した。
Measurement method: The breaking strength of the opaque layer was measured according to JIS standard R-1606.
(Fine ceramics room temperature and high temperature tensile strength test method). For the compressive stress of the transparent layer, a sample (crucible section) as shown in FIG. 4 described above is prepared, and a precision strain meter (manufactured by Toshiba Glass Co., Ltd .; SVP-30-II].

【0046】(3)実機引上試験 (1)により製作した石英ガラスルツボ実施例1〜4、
比較例1〜3を用いて、上述したシリコン単結晶引上げ
方法によりシリコン単結晶を実際に引上げを行い、DF
率を測定した。
(3) Pull-up test on actual machine The quartz glass crucibles produced in (1), Examples 1-4,
Using Comparative Examples 1 to 3, a silicon single crystal was actually pulled by the above-described silicon single crystal pulling method, and DF
The rate was measured.

【0047】(4)破壊強度、圧縮応力測定および実機
引上試験結果 破壊強度、圧縮応力測定および実機引上試験結果を表1
に示す。
(4) Results of Measurement of Breaking Strength, Compressive Stress and Pull-Up Test of Actual Machine
Shown in

【0048】[0048]

【表1】 [Table 1]

【0049】層厚さ、不透明層の破壊強度、透明層の圧
縮応力測定結果 実施例1〜4のDF率はいずれも94%以上で高位で、
特に実施例3では96%、実施例4では、97%に達し
ている。
Results of Measurement of Layer Thickness, Breaking Strength of Opaque Layer, and Compressive Stress of Transparent Layer The DF ratios of Examples 1 to 4 were all higher than 94%,
In particular, it reaches 96% in the third embodiment and 97% in the fourth embodiment.

【0050】比較例1は透明層の厚さが7mmで、不透
明層の厚さ10mmの70%と好ましい範囲60%を超
えており、透明層における30〜50%の圧縮応力に対
し、不透明層の保持強度が不十分であり、単結晶引上げ
中にルツボに破壊が生じ、引上げを中断した。
In Comparative Example 1, the thickness of the transparent layer was 7 mm, which is 70% of the thickness of the opaque layer, which is 70%, which exceeds the preferred range of 60%. Was insufficient, and the crucible was broken during pulling of the single crystal, and the pulling was interrupted.

【0051】比較例2は透明層の圧縮応力が9MPaと
不透明層の破壊強度の35MPaに対し25.7%であ
り、透明層の気泡もしくは気泡核から発生する気泡のシ
リコン融液への混入および不透明層の気泡が膨脹して透
明層側に膨脹、開裂してDF率を低下させたためDF率
は90%と各実施例に対して劣る。
In Comparative Example 2, the compressive stress of the transparent layer was 9 MPa, which was 25.7% of the breaking strength of the opaque layer of 35 MPa, and the bubbles in the transparent layer or the bubbles generated from the bubble nuclei were mixed into the silicon melt. The DF ratio was 90%, which was inferior to each of the examples, because the air bubbles in the opaque layer expanded and expanded toward the transparent layer, and the DF ratio was reduced.

【0052】比較例3は透明層の圧縮応力が20MPa
と不透明層の破壊強度の35MPaに対し57.1%で
あり、ルツボにかかる熱応力や、ルツボに装填された溶
融シリコンに荷重によりルツボに破壊が生じ、試験を中
断した。
In Comparative Example 3, the compressive stress of the transparent layer was 20 MPa.
The fracture strength of the opaque layer was 57.1% with respect to 35 MPa, and the crucible was destroyed by the thermal stress applied to the crucible and the load on the molten silicon loaded in the crucible, and the test was interrupted.

【0053】[0053]

【発明の効果】石英ガラスルツボの透明層には石英ガラ
スルツボの破壊強度の2分の1の圧縮応力を存在させ、
透明層に存在する極小の気泡が膨脹し大きな気泡となり
内面側の透明層の溶解とともに気泡がシリコン融液中へ
の混入を抑制し、かつ不透明層の気泡が膨脹して透明層
側に膨脹、開裂してシリコン単結晶の成長に悪影響を与
えることがなく、高単結晶化率が得られる石英ガラスル
ツボおよびその製造方法を提供することができる。
According to the present invention, the transparent layer of the quartz glass crucible has a compressive stress of one half of the breaking strength of the quartz glass crucible.
The tiny bubbles existing in the transparent layer expand and become large bubbles, dissolving the transparent layer on the inner surface and suppressing the mixing of the bubbles into the silicon melt, and the bubbles in the opaque layer expand and expand toward the transparent layer. It is possible to provide a quartz glass crucible capable of obtaining a high single crystallization ratio without being cleaved and adversely affecting the growth of a silicon single crystal, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる石英ガラスルツボの断面図。FIG. 1 is a sectional view of a quartz glass crucible according to the present invention.

【図2】本発明に係わる石英ガラスルツボの製造方法に
用いられる石英ガラスルツボ用製造装置の概念図。
FIG. 2 is a conceptual diagram of a manufacturing apparatus for a quartz glass crucible used in the method for manufacturing a quartz glass crucible according to the present invention.

【図3】本発明に係わる石英ガラスルツボを用いたシリ
コン単結晶引上げ装置の説明図。
FIG. 3 is an explanatory view of a silicon single crystal pulling apparatus using a quartz glass crucible according to the present invention.

【図4】圧縮応力測定試験用試料の説明図。FIG. 4 is an explanatory view of a sample for a compression stress measurement test.

【符号の説明】[Explanation of symbols]

1 石英ガラスルツボ 2 内面側 3 透明層 4 外面側 5 不透明層 6 溶融シリコン 7 製造装置 8 ルツボ成形用型 9 内側部材 10 通気部 11 保持体 12 回転軸 13 開口部 14 排気口 15 減圧機構 16 カーボン電極 17 石英充填層 18 シリコン単結晶 19 ヒータ 20 回転軸 21 シード軸 22 種結晶 DESCRIPTION OF SYMBOLS 1 Quartz glass crucible 2 Inner side 3 Transparent layer 4 Outer side 5 Opaque layer 6 Fused silicon 7 Manufacturing equipment 8 Crucible mold 9 Inner member 10 Vent section 11 Holder 12 Rotary shaft 13 Opening 14 Exhaust port 15 Decompression mechanism 16 Carbon Electrode 17 Quartz filling layer 18 Silicon single crystal 19 Heater 20 Rotation axis 21 Seed axis 22 Seed crystal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内面側に透明層を有し、この透明層の外
周に多数の気泡が存在する不透明層を有する2層で形成
された石英ガラスルツボにおいて、前記透明層に前記不
透明層の破壊強度の30〜50%の圧縮応力を持たせた
ことを特徴とするシリコン単結晶引上げ用石英ガラスル
ツボ。
1. A quartz glass crucible having a transparent layer on an inner surface side and an opaque layer having a large number of bubbles around the transparent layer, wherein the transparent layer is broken by the transparent layer. A quartz glass crucible for pulling a silicon single crystal, having a compressive stress of 30 to 50% of the strength.
【請求項2】 上記不透明層の破壊強度が32〜38M
Paであることを特徴とする請求項1に記載のシリコン
単結晶引上げ用石英ガラスルツボ。
2. The opaque layer has a breaking strength of 32 to 38 M.
The quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein the pressure is Pa.
【請求項3】 上記透明層の厚さが少なくとも1mmで
あり、かつこの透明層の厚さが不透明層の厚さの60%
以下であることを特徴とする請求項1に記載のシリコン
単結晶引上げ用石英ガラスルツボ。
3. The thickness of the transparent layer is at least 1 mm, and the thickness of the transparent layer is 60% of the thickness of the opaque layer.
The quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein:
【請求項4】 石英粉がルツボ状体に充填されたルツボ
成形型を用意し、前記ルツボ状体の内面側から前記石英
粉を加熱するシリコン単結晶引上げ用石英ガラスルツボ
の製造方法において、前記ルツボ成形用型の加熱後、石
英ガラスルツボの内面側と外面側とで冷却条件を変える
ことを特徴とするシリコン単結晶引上げ用石英ガラスル
ツボの製造方法。
4. A method for producing a quartz glass crucible for pulling a silicon single crystal, comprising preparing a crucible mold filled with quartz powder in a crucible-like body and heating the quartz powder from the inner side of the crucible-like body. A method for producing a quartz glass crucible for pulling a silicon single crystal, wherein cooling conditions are changed between an inner surface side and an outer surface side of the quartz glass crucible after heating the crucible mold.
【請求項5】 上記石英粉の加熱終了後、石英ガラスル
ツボの内面側領域に不活性ガスを流入させ、内面側から
強制冷却することを特徴とする請求項4に記載のシリコ
ン単結晶引上げ用石英ガラスルツボの製造方法。
5. The silicon single crystal pulling apparatus according to claim 4, wherein after the heating of the quartz powder, an inert gas is caused to flow into an inner surface side region of the quartz glass crucible and forcedly cooled from the inner surface side. A method for manufacturing a quartz glass crucible.
【請求項6】 上記不活性ガスの流入速度が100〜3
00リットル/分であり、かつ上記強制冷却時間が5〜
10分間であり、その後放冷することを特徴とする請求
項5に記載のシリコン単結晶引上げ用石英ガラスルツボ
の製造方法。
6. An inert gas inflow speed of 100 to 3
00 liter / minute and the forced cooling time is 5
The method for producing a quartz glass crucible for pulling a silicon single crystal according to claim 5, wherein the cooling is performed for 10 minutes, and then the mixture is left to cool.
JP08743698A 1998-03-31 1998-03-31 Silica glass crucible for pulling silicon single crystal and method for producing the same Expired - Lifetime JP4054434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08743698A JP4054434B2 (en) 1998-03-31 1998-03-31 Silica glass crucible for pulling silicon single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08743698A JP4054434B2 (en) 1998-03-31 1998-03-31 Silica glass crucible for pulling silicon single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11278855A true JPH11278855A (en) 1999-10-12
JP4054434B2 JP4054434B2 (en) 2008-02-27

Family

ID=13914827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08743698A Expired - Lifetime JP4054434B2 (en) 1998-03-31 1998-03-31 Silica glass crucible for pulling silicon single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP4054434B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070221A (en) * 2005-09-08 2007-03-22 Heraeus Shin-Etsu America Inc Silica glass crucible with bubble-free and reduced bubble growth wall
KR100957444B1 (en) 2009-05-18 2010-05-11 정성묵 A high purity fused quartz melting crucible assembly for manufacturing a polycrystalline silicon ingot and the manufacturing method thereof
EP2267192A1 (en) * 2007-10-25 2010-12-29 Japan Super Quartz Corporation Quartz glass crucible, method for manufacturing quartz glass crucible and application of quartz glass crucible
JP2011105568A (en) * 2009-11-20 2011-06-02 Japan Siper Quarts Corp Sample for quality evaluation of quartz glass crucible, production method of the same, evaluation method using the sample, and production apparatus of the sample
CN105264124A (en) * 2013-05-31 2016-01-20 胜高股份有限公司 Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same
CN107662921A (en) * 2016-07-29 2018-02-06 友达晶材股份有限公司 To manufacture the container of silicon ingot and its manufacture method and crystallize the manufacture method of silicon ingot
WO2019167345A1 (en) * 2018-02-28 2019-09-06 株式会社Sumco Silica glass crucible
KR20200106528A (en) 2018-02-23 2020-09-14 가부시키가이샤 사무코 Quartz glass crucible

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070221A (en) * 2005-09-08 2007-03-22 Heraeus Shin-Etsu America Inc Silica glass crucible with bubble-free and reduced bubble growth wall
JP2013014518A (en) * 2005-09-08 2013-01-24 Heraeus Shin-Etsu America Inc Silica glass crucible with bubble-free and reduced bubble growth wall
EP2267192A1 (en) * 2007-10-25 2010-12-29 Japan Super Quartz Corporation Quartz glass crucible, method for manufacturing quartz glass crucible and application of quartz glass crucible
EP2267192A4 (en) * 2007-10-25 2011-03-30 Japan Super Quartz Corp Quartz glass crucible, method for manufacturing quartz glass crucible and application of quartz glass crucible
KR100957444B1 (en) 2009-05-18 2010-05-11 정성묵 A high purity fused quartz melting crucible assembly for manufacturing a polycrystalline silicon ingot and the manufacturing method thereof
JP2011105568A (en) * 2009-11-20 2011-06-02 Japan Siper Quarts Corp Sample for quality evaluation of quartz glass crucible, production method of the same, evaluation method using the sample, and production apparatus of the sample
CN105264124A (en) * 2013-05-31 2016-01-20 胜高股份有限公司 Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same
EP3006606A4 (en) * 2013-05-31 2017-03-01 Sumco Corporation Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same
CN107662921A (en) * 2016-07-29 2018-02-06 友达晶材股份有限公司 To manufacture the container of silicon ingot and its manufacture method and crystallize the manufacture method of silicon ingot
KR20180013736A (en) * 2016-07-29 2018-02-07 아우오 크리스탈 코포레이션 Container for silicon ingot fabrication and manufacturing method thereof, and method for manufacturing crystalline silicon ingot
JP2018030774A (en) * 2016-07-29 2018-03-01 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Container for manufacturing silicon ingot and manufacturing method therefor, method for manufacturing crystal silicon ingot
TWI651284B (en) * 2016-07-29 2019-02-21 友達晶材股份有限公司 Container for manufacturing bismuth ingot, method for producing same, and method for producing crystalline bismuth ingot
US10450669B2 (en) 2016-07-29 2019-10-22 Auo Crystal Corporation Container for silicon ingot fabrication and manufacturing method thereof, and method for manufacturing crystalline silicon ingot
KR20200106528A (en) 2018-02-23 2020-09-14 가부시키가이샤 사무코 Quartz glass crucible
US11466381B2 (en) 2018-02-23 2022-10-11 Sumco Corporation Quartz glass crucible
WO2019167345A1 (en) * 2018-02-28 2019-09-06 株式会社Sumco Silica glass crucible
JP2019151494A (en) * 2018-02-28 2019-09-12 株式会社Sumco Silica glass crucible
KR20200077546A (en) 2018-02-28 2020-06-30 가부시키가이샤 사무코 Silica glass crucible
US11535546B2 (en) 2018-02-28 2022-12-27 Sumco Corporation Silica glass crucible

Also Published As

Publication number Publication date
JP4054434B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
EP1094039B1 (en) Method for manufacturing quartz glass crucible
KR101104674B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot which enables reduction of pinhole defect among large-diameter single-crystal silicon ingot
JPH01148718A (en) Quartz crucible and its formation
JP4347916B2 (en) Crucible and manufacturing method thereof
EP2070882B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot and manufacturing method
US20020166341A1 (en) Technique for quartz crucible fabrication having reduced bubble content in the wall
JP4398527B2 (en) Silica glass crucible for pulling silicon single crystals
JP4702898B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
EP2022765B1 (en) Method for making a silica glass crucible
JPH11278855A (en) Quartz glass crucible for pulling up silicon single crystal and its production
WO2007000864A1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JP2010155762A (en) Method of producing silicon single crystal
EP1279644A2 (en) Method for producing a quartz glass crucible for pulling up silicon single crystal and apparatus
JP4548682B2 (en) Manufacturing method of quartz glass crucible
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JP2008297154A (en) Quartz glass crucible for pulling silicon single crystal and method for manufacturing the same
JPH11199369A (en) Quartz glass crucible for pulling up silicon single crystal and its production
JP3672460B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP5741163B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP5685894B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP4549008B2 (en) Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same
JPH0692779A (en) Quartz crucible for pulling up single crystal
US9328009B2 (en) Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
JP2001302391A (en) Method of producing quartz glass crucible for pulling silicon single crystal
JP4482567B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term