JPH1127871A - Charging equipment - Google Patents
Charging equipmentInfo
- Publication number
- JPH1127871A JPH1127871A JP9178231A JP17823197A JPH1127871A JP H1127871 A JPH1127871 A JP H1127871A JP 9178231 A JP9178231 A JP 9178231A JP 17823197 A JP17823197 A JP 17823197A JP H1127871 A JPH1127871 A JP H1127871A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- charging
- control circuit
- value
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、携帯電話機等に装
備される二次電池を充電するための充電装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for charging a secondary battery provided in a portable telephone or the like.
【0002】[0002]
【従来の技術】この種の充電装置として、従来より図2
に示す如き非接触式の充電装置が知られている。該充電
装置は、1次側充電器Aと2次側充電器Bとから構成さ
れ、1次充電器Aは、例えば商用交流電力源(AC10
0V)に接続されて交流電流を発生する交流電流発生回
路(21)と、該回路から交流電流が通電される1次コイル
(22)とから構成される。一方、2次側充電器Bは、前記
1次コイル(22)から発生する磁力線が貫通すべき2次コ
イル(23)と、2次コイル(23)から得られる交流電流を整
流する整流回路(28)と、整流回路(28)の出力電圧を降下
させて二次電池(27)へ供給するトランジスタ(24)と、該
トランジスタ(24)の動作を制御する定電流/定電圧制御
回路(25)と、充電電流を検出するための抵抗器(26)とか
ら構成される。2. Description of the Related Art As this type of charging apparatus, FIG.
2. Description of the Related Art A non-contact charging device as shown in FIG. The charging device includes a primary charger A and a secondary charger B. The primary charger A is, for example, a commercial AC power source (AC10).
0V) and an AC current generating circuit (21) for generating an AC current, and a primary coil through which the AC current flows from the circuit.
(22). On the other hand, the secondary-side charger B includes a secondary coil (23) through which the magnetic field lines generated from the primary coil (22) pass, and a rectifier circuit (rectifying an alternating current obtained from the secondary coil (23)). 28), a transistor (24) for reducing the output voltage of the rectifier circuit (28) and supplying the same to the secondary battery (27), and a constant current / constant voltage control circuit (25) for controlling the operation of the transistor (24). ) And a resistor (26) for detecting a charging current.
【0003】上記充電装置においては、2次側充電器B
の2次コイル(23)を1次側充電器Aの1次コイル(22)に
接近させて配置することによって、1次コイル(22)から
発生する交流磁力線が2次コイル(23)を貫通して、2次
側充電器Bにエネルギーが伝達され、二次電池(27)が充
電される。ここで、定電流/定電圧制御回路(25)には、
整流回路(28)の出力電圧が定電流/定電圧制御回路(25)
の電源電圧として供給されると共に、二次電池(27)に対
する充電電流と充電電圧の情報が供給されて、充電電圧
が所定の閾値電圧よりも低いときは、充電電流を所定の
目標値に近づけるべく定電流制御が実行され、充電電圧
が所定の電圧に達した後は、充電電圧を所定の目標値V
bに維持するべく定電圧制御が実行される。[0003] In the above charging device, the secondary charger B
Is arranged close to the primary coil (22) of the primary charger A, so that the alternating magnetic field lines generated from the primary coil (22) pass through the secondary coil (23). Then, energy is transmitted to the secondary charger B, and the secondary battery (27) is charged. Here, the constant current / constant voltage control circuit (25) includes:
Output voltage of rectifier circuit (28) is constant current / constant voltage control circuit (25)
Is supplied as a power supply voltage of the secondary battery (27), and information of a charging current and a charging voltage for the secondary battery (27) is supplied. When the charging voltage is lower than a predetermined threshold voltage, the charging current approaches a predetermined target value. After the charging current reaches a predetermined voltage, the charging voltage is reduced to a predetermined target value V.
The constant voltage control is executed to maintain the voltage at b.
【0004】図3(a)(b)は上記定電流制御及び定電圧
制御による電流及び電圧の変化を表わしており、同図
(a)の如く定電流制御によって充電電流Iaは目標値
(例えば100mA)に維持され、その後の定電圧制御に
よって、同図(b)の如く充電電圧Voは目標値(例えば
4.1V)に維持される。この過程で、図2に示す整流回
路(28)の出力電圧(整流出力)V′は図3(b)に二点鎖線
で示すように徐々に増大し、トランジスタ(24)の降下電
圧を制御することによって上述の定電流制御及び定電圧
制御を実現し、実線で示す充電電圧Voの変化を得てい
る。FIGS. 3 (a) and 3 (b) show current and voltage changes by the constant current control and the constant voltage control.
As shown in (a), the charging current Ia is set to the target value by the constant current control.
(For example, 100 mA), and the charging voltage Vo is maintained at a target value (for example, 4.1 V) as shown in FIG. In this process, the output voltage (rectified output) V 'of the rectifier circuit (28) shown in FIG. 2 gradually increases as shown by a two-dot chain line in FIG. 3 (b) to control the voltage drop of the transistor (24). As a result, the above-described constant current control and constant voltage control are realized, and a change in the charging voltage Vo indicated by a solid line is obtained.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、図2に
示す従来の充電装置においては、図3(b)に示す様に、
特に充電開始時の整流出力Vs′と充電電圧Vaの差が
大きく、電圧降下用半導体素子であるトランジスタ(24)
の電圧降下が大きくなるため、該電圧降下によって大き
な熱損失が生じる。従って、特に携帯電話機などの小型
機器に2次側充電器を内蔵する場合、発熱の問題によっ
てトランジスタ(24)のパッケージの小型化が困難であ
り、ひいては機器の小型化に支障を来たすこととなって
いた。However, in the conventional charging device shown in FIG. 2, as shown in FIG.
In particular, the difference between the rectified output Vs' at the start of charging and the charging voltage Va is large, and the transistor (24) which is a semiconductor device for voltage drop is used.
, A large heat loss is caused by the voltage drop. Therefore, especially when a secondary charger is built in a small device such as a mobile phone, it is difficult to reduce the size of the transistor (24) package due to heat generation, which hinders miniaturization of the device. I was
【0006】本発明の目的は、電圧降下用半導体素子に
おける電圧降下を従来よりも低減せしめることが可能な
充電装置を提供することである。An object of the present invention is to provide a charging device capable of reducing a voltage drop in a voltage drop semiconductor device as compared with a conventional device.
【0007】[0007]
【課題を解決する為の手段】本発明に係る充電装置は、
2次側充電器として、1次側充電器から供給される交流
磁力線が貫通すべき2次コイル(3)と、2次コイル(3)
と共に共振系を構成して、Q値の調整が可能な共振制御
回路(11)と、2次コイル(3)から得られる交流電流を整
流する整流回路(5)と、整流回路(5)の出力端と二次電
池(10)の間に介在する電圧降下用半導体素子と、整流回
路(5)の出力電圧と所定の基準電圧の偏差に応じて、共
振制御回路(11)のQ値を制御する第1充電制御回路(4)
と、二次電池(10)に供給される充電電流及び充電電圧に
応じて、電圧降下用半導体素子の動作を制御すると共
に、共振制御回路(11)のQ値を制御する第2充電制御回
路(7)とを具えている。そして、充電電圧が前記基準電
圧よりも低いときは、第1充電制御回路(4)が整流回路
(5)の出力電圧を前記基準電圧に維持するべく共振制御
回路(11)のQ値を制御すると共に、第2充電制御回路
(7)が充電電流又は充電電圧を目標値に近づけるべく電
圧降下用半導体素子の降下電圧を制御する一方、充電電
圧が前記基準電圧を上回っているときは、第2充電制御
回路(7)が充電電流又は充電電圧を目標値に近づけるべ
く共振制御回路(11)のQ値を制御すると共に、電圧降下
用半導体素子による降下電圧を零に近づけるべく電圧降
下用半導体素子を制御する。The charging device according to the present invention comprises:
As a secondary charger, a secondary coil (3) through which AC magnetic field lines supplied from the primary charger should pass, and a secondary coil (3)
And a resonance control circuit (11) capable of adjusting the Q value, a rectifier circuit (5) for rectifying an alternating current obtained from the secondary coil (3), and a rectifier circuit (5). The Q value of the resonance control circuit (11) is changed according to the voltage drop semiconductor element interposed between the output terminal and the secondary battery (10) and the deviation between the output voltage of the rectifier circuit (5) and a predetermined reference voltage. First charging control circuit for controlling (4)
And a second charge control circuit for controlling the operation of the voltage drop semiconductor element and controlling the Q value of the resonance control circuit (11) according to the charge current and the charge voltage supplied to the secondary battery (10). (7). When the charge voltage is lower than the reference voltage, the first charge control circuit (4)
(5) controlling the Q value of the resonance control circuit (11) so as to maintain the output voltage at the reference voltage;
(7) controls the voltage drop of the voltage-dropping semiconductor element to bring the charging current or the charging voltage closer to the target value. On the other hand, when the charging voltage is higher than the reference voltage, the second charging control circuit (7) The Q value of the resonance control circuit (11) is controlled so that the charging current or the charging voltage approaches the target value, and the voltage dropping semiconductor element is controlled so that the voltage drop by the voltage dropping semiconductor element approaches zero.
【0008】ここで、第2充電制御回路(7)は、充電電
圧が所定の閾値電圧よりも低いときは、充電電流を所定
の目標値に近づけるべく定電流制御を行ない、充電電圧
が所定の電圧に達した後は、充電電圧を所定の目標値V
bに維持する定電圧制御を行なう。Here, when the charging voltage is lower than a predetermined threshold voltage, the second charging control circuit (7) performs constant current control so that the charging current approaches a predetermined target value. After reaching the voltage, the charging voltage is reduced to a predetermined target value V
The constant voltage control for maintaining the voltage at b is performed.
【0009】一方、1次側充電器は、交流電流発生回路
(1)と、該回路から交流電流の供給を受けて交流磁力線
を発生する1次コイル(2)とを具え、2次コイル(3)を
1次コイル(2)に接近させて配置することによって、1
次コイル(2)から発生する交流磁力線が2次コイル(3)
を貫通する。[0009] On the other hand, the primary charger includes an AC current generating circuit.
(1) and a primary coil (2) that receives an alternating current supplied from the circuit and generates an alternating magnetic field line, and the secondary coil (3) is arranged close to the primary coil (2). By 1
The line of alternating magnetic force generated from the secondary coil (2) is the secondary coil (3)
Penetrate through.
【0010】上記本発明の充電装置によって、放電状態
の二次電池(10)を充電する場合、先ずは第2充電制御回
路(7)によって定電流制御が実行される。ここで、第1
充電制御回路(4)は共振制御回路(11)のQ値を制御し
て、整流回路(5)の出力電圧を基準電圧(例えば3V)に
維持する。この状態で、第2充電制御回路(7)が電圧降
下用半導体素子を能動領域に移行させ、その降下電圧を
調整することによって充電電圧を作成し、二次電池(10)
に印加する。これによって電池電圧が徐々に増大し、前
記基準電圧に達することになる。When charging the discharged secondary battery (10) by the charging device of the present invention, first, constant current control is executed by the second charging control circuit (7). Here, the first
The charge control circuit (4) controls the Q value of the resonance control circuit (11) to maintain the output voltage of the rectifier circuit (5) at a reference voltage (for example, 3V). In this state, the second charge control circuit (7) moves the semiconductor device for voltage drop to the active area, and adjusts the voltage drop to create a charge voltage, and the secondary battery (10)
Is applied. As a result, the battery voltage gradually increases and reaches the reference voltage.
【0011】この時点で、第2充電制御回路(7)が電圧
降下用半導体素子をオン状態(短絡状態)に設定して、そ
の降下電圧を零とする。一方、第2充電制御回路(7)
は、共振制御回路(11)のQ値を調整して、整流回路(5)
の出力電圧を前記基準電圧から徐々に増大させ、充電電
流を目標値に維持する。これによって電池電圧は更に増
大し、所定の閾値電圧に達することになる。At this time, the second charge control circuit (7) sets the semiconductor device for voltage drop to an ON state (short-circuit state), and sets the voltage drop to zero. On the other hand, the second charge control circuit (7)
Adjusts the Q value of the resonance control circuit (11), and adjusts the rectifier circuit (5).
Is gradually increased from the reference voltage to maintain the charging current at the target value. This further increases the battery voltage and reaches a predetermined threshold voltage.
【0012】この時点で、第2充電制御回路(7)は定電
流制御から定電圧制御に切り替わり、充電電圧を目標値
Vbに維持するべく、共振制御回路(11)のQ値を調整し
て、整流回路(5)の出力電圧を制御する。ここで、電圧
降下用半導体素子の降下電圧は零となっているから、整
流回路(5)の出力電圧がそのまま充電電圧として二次電
池(10)に印加される。これによって、二次電池(10)は更
に充電され、満充電状態に達することになる。At this point, the second charge control circuit (7) switches from the constant current control to the constant voltage control, and adjusts the Q value of the resonance control circuit (11) to maintain the charge voltage at the target value Vb. And the output voltage of the rectifier circuit (5). Here, since the voltage drop of the voltage drop semiconductor element is zero, the output voltage of the rectifier circuit (5) is directly applied to the secondary battery (10) as a charging voltage. As a result, the secondary battery (10) is further charged, and reaches a fully charged state.
【0013】具体的構成において、第2充電制御回路
(7)には、整流回路の出力電圧が電源電圧として供給さ
れる。該具体的構成においては、前述の如く充電開始直
後、充電電圧が十分に上昇していない期間においても、
充電電圧に拘わらず、整流回路(5)の出力電圧(整流出
力)は所定の基準電圧(例えば3V)に維持されるので、
常に十分な電源電圧を確保することが出来る。In a specific configuration, the second charge control circuit
In (7), the output voltage of the rectifier circuit is supplied as a power supply voltage. In the specific configuration, immediately after the start of charging as described above, even during a period in which the charging voltage is not sufficiently increased,
Regardless of the charging voltage, the output voltage (rectified output) of the rectifier circuit (5) is maintained at a predetermined reference voltage (for example, 3 V).
A sufficient power supply voltage can always be ensured.
【0014】[0014]
【発明の効果】本発明に係る充電装置によれば、充電開
始時の整流出力が従来よりも小さくなるため、該整流出
力と充電電圧の差、即ち電圧降下用半導体素子による電
圧降下が小さくなって、熱損失が減少する。従って、携
帯電話機などの機器に充電装置を内蔵する場合に、発熱
の問題は発生せず、機器の小型化が可能となる。According to the charging device of the present invention, the rectified output at the start of charging is smaller than in the prior art, so that the difference between the rectified output and the charging voltage, that is, the voltage drop due to the voltage drop semiconductor element is reduced. Heat loss is reduced. Therefore, when the charging device is incorporated in a device such as a mobile phone, the problem of heat generation does not occur, and the device can be downsized.
【0015】[0015]
【発明の実施の形態】以下、本発明を携帯電話機に装備
すべき非接触式の充電装置に実施した形態につき、図面
に沿って具体的に説明する。本発明に係る充電装置は、
図1に示す如く1次側充電器Aと2次側充電器Bとから
構成される。二次電池(10)としては例えばリチウムイオ
ン電池が用いられる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-contact charging device to be equipped in a portable telephone according to the present invention will be described below in detail with reference to the drawings. The charging device according to the present invention,
As shown in FIG. 1, it comprises a primary charger A and a secondary charger B. As the secondary battery (10), for example, a lithium ion battery is used.
【0016】1次充電器Aは、AC100Vに接続され
て交流電流を発生する交流電流発生回路(1)と、該回路
から交流電流が通電される1次コイル(2)とから構成さ
れる。一方、2次側充電器Bは、1次コイル(2)から発
生する磁力線が貫通すべき2次コイル(3)と、2次コイ
ル(3)と共に共振系を構成する共振制御回路(11)と、2
次コイル(3)から得られる交流電流を整流する整流回路
(5)と、整流回路(5)の出力電圧を降下させて二次電池
(10)へ供給する電圧降下用トランジスタ(8)と、充電電
流を検出するための抵抗器(9)と、共振制御回路(11)の
Q値を制御する第1充電制御回路(4)と、トランジスタ
(8)のオン/オフ及び降下電圧を制御すると共に、共振
制御回路(11)のQ値を制御する第2充電制御回路(7)と
を具えている。The primary charger A is composed of an AC current generating circuit (1) connected to AC 100V to generate an AC current, and a primary coil (2) to which the AC current is supplied from the circuit. On the other hand, the secondary side charger B includes a secondary coil (3) through which the magnetic field lines generated from the primary coil (2) pass, and a resonance control circuit (11) which forms a resonance system together with the secondary coil (3). And 2
Rectifier circuit that rectifies the alternating current obtained from the secondary coil (3)
(5) and the output voltage of the rectifier circuit (5) is reduced to make the secondary battery
A voltage drop transistor (8) to be supplied to (10), a resistor (9) for detecting a charging current, and a first charging control circuit (4) for controlling a Q value of a resonance control circuit (11). , Transistor
A second charge control circuit (7) for controlling the on / off and drop voltage of (8) and controlling the Q value of the resonance control circuit (11).
【0017】共振制御回路(11)は、FET(13)とコンデ
ンサ(12)を直列に接続して構成され、FET(13)のゲー
ト電圧を制御することによって、FET(13)の抵抗性分
を変化させ、Q値を調整することが可能である。例えば
FET(13)の抵抗成分を減少させることによってQ値を
増大せしめ、これによって充電電圧或いは充電電流を増
大せしめることが可能である。The resonance control circuit (11) is configured by connecting an FET (13) and a capacitor (12) in series, and by controlling the gate voltage of the FET (13), the resistance of the FET (13) is controlled. Can be changed to adjust the Q value. For example, it is possible to increase the Q value by decreasing the resistance component of the FET (13), thereby increasing the charging voltage or charging current.
【0018】第1充電制御回路(4)はオペアンプ(14)を
具え、該オペアンプ(14)の非反転入力端子には基準電圧
Vs(3V)が入力されると共に、反転入力端子には整流
回路(5)の出力電圧V1が入力されており、両入力の差
に応じた電圧信号を共振制御回路(11)のFET(13)のベ
ースに印加するものである。The first charge control circuit (4) has an operational amplifier (14), a non-inverting input terminal of the operational amplifier (14) receives a reference voltage Vs (3V), and an inverting input terminal has a rectifier circuit. The output voltage V1 of (5) is input, and a voltage signal corresponding to the difference between the two inputs is applied to the base of the FET (13) of the resonance control circuit (11).
【0019】第2充電制御回路(7)は、定電流/定電圧
制御回路(16)とトランジスタ(17)から構成される。定電
流/定電圧制御回路(16)は、整流回路(5)の出力端から
電源電圧の供給を受けて動作し、トランジスタ(8)の出
力端から得られる電圧情報と、充電電流検出用抵抗器
(9)の入力端から得られる電流情報とに基づいて、トラ
ンジスタ(17)のベース電圧を制御するものである。又、
定電流/定電圧制御回路(16)の出力電圧はダイオード(1
5)を介して共振制御回路(11)のFET(13)のベースに印
加される。The second charge control circuit (7) comprises a constant current / constant voltage control circuit (16) and a transistor (17). The constant current / constant voltage control circuit (16) operates by receiving supply of a power supply voltage from the output terminal of the rectifier circuit (5), and outputs voltage information obtained from the output terminal of the transistor (8) and a charge current detecting resistor. vessel
The base voltage of the transistor (17) is controlled based on current information obtained from the input terminal of (9). or,
The output voltage of the constant current / constant voltage control circuit (16) is a diode (1
5) is applied to the base of the FET (13) of the resonance control circuit (11).
【0020】上記充電装置においては、2次側充電器B
の2次コイル(3)を1次側充電器Aの1次コイル(2)に
接近させて配置することにより、1次コイル(2)から発
生する交流磁力線が2次コイル(3)を貫通して、2次側
充電器Bにエネルギーが伝達され、後述する定電流制御
及び定電圧制御によって二次電池(10)が充電されるので
ある。In the above charging device, the secondary charger B
The secondary coil (3) is placed close to the primary coil (2) of the primary charger A, so that the lines of alternating magnetic force generated from the primary coil (2) pass through the secondary coil (3). Then, energy is transmitted to the secondary charger B, and the secondary battery (10) is charged by constant current control and constant voltage control described later.
【0021】図3(a)(b)は、定電流制御及び定電圧制
御による電流及び電圧の変化を表わしており、同図(a)
の如く時間t1までは、定電流制御によって充電電流I
aは所定値(100mA)に維持され、その後の定電圧制
御によって、同図(b)の如く充電電圧Voは所定値(4.
1V)に維持される。FIGS. 3 (a) and 3 (b) show changes in current and voltage by constant current control and constant voltage control, respectively.
Until time t1, the charging current I is controlled by the constant current control.
a is maintained at a predetermined value (100 mA), and the charging voltage Vo is changed to a predetermined value (4.
1V).
【0022】この過程で、充電電圧Voが前記基準電圧
Vs(3V)よりも低い期間は、図1に示す第1充電制御
回路(4)が整流回路(5)の出力電圧と基準電圧Vsの偏
差に応じた電圧信号を作成して、該信号を共振制御回路
(11)のFET(13)のベースに印加し、共振制御回路(11)
のQ値を制御することによって、整流回路(5)の出力電
圧を図3(b)に一点鎖線で示すように基準電圧Vsに維
持する。一方、定電流/定電圧制御回路(16)は、そのと
きの電流情報に基づいて、充電電流を目標値Iaに維持
するのに必要な制御信号を作成し、該信号をトランジス
タ(17)のベースへ印加する。これによって、トランジス
タ(17)にコレクター電流が流れて、トランジスタ(8)の
ベース電圧が変化する。この結果、トランジスタ(8)の
コレクタ−エミッタ間の電位差、即ち降下電圧が制御さ
れ、図3(b)に実線で示す充電電圧Voが作成されて、
二次電池(10)に印加される。この結果、電池電圧(充電
電圧Vo)が徐々に増大して、基準電圧Vsに達するこ
とになる。In this process, while the charging voltage Vo is lower than the reference voltage Vs (3 V), the first charging control circuit 4 shown in FIG. 1 uses the output voltage of the rectifier circuit 5 and the reference voltage Vs. A voltage signal corresponding to the deviation is created, and the signal is used as a resonance control circuit.
(11) applied to the base of the FET (13), the resonance control circuit (11)
, The output voltage of the rectifier circuit (5) is maintained at the reference voltage Vs as shown by the dashed line in FIG. 3 (b). On the other hand, the constant current / constant voltage control circuit (16) creates a control signal necessary to maintain the charging current at the target value Ia based on the current information at that time, and outputs the control signal to the transistor (17). Apply to base. As a result, a collector current flows through the transistor (17), and the base voltage of the transistor (8) changes. As a result, the potential difference between the collector and the emitter of the transistor (8), that is, the voltage drop is controlled, and the charging voltage Vo shown by the solid line in FIG.
Applied to the secondary battery (10). As a result, the battery voltage (charging voltage Vo) gradually increases and reaches the reference voltage Vs.
【0023】充電電圧Voが基準電圧Vsを上回った時
点で、定電流/定電圧制御回路(16)は制御信号を更に増
大させて、トランジスタ(17)のベース電圧を上昇せし
め、トランジスタ(8)をオン状態(短絡状態)に設定す
る。又、定電流/定電圧制御回路(16)から出力される制
御信号はダイオード(15)を介して共振制御回路(11)のF
ET(13)にベース電圧として印加される。このとき、ダ
イオード(15)を経て入力される制御信号は、オペアンプ
(14)から得られる電圧信号よりも電位が高くなって、該
制御信号に応じてFET(13)の抵抗成分が調整され、共
振制御回路(11)のQ値が制御される。これによって、整
流回路(5)の出力電圧が図3(b)に示す様に基準電圧V
sから増大し、該出力電圧は、オン状態のトランジスタ
(8)にて電圧降下を伴うことなく、二次電池(10)に印加
されて、充電電流が目標値Iaに維持される。この結
果、充電電圧Voが更に増大して、所定の閾値電圧(例
えば4.1V)に達することになる。When the charging voltage Vo exceeds the reference voltage Vs, the constant current / constant voltage control circuit (16) further increases the control signal to increase the base voltage of the transistor (17), and the transistor (8) Is set to the ON state (short-circuit state). The control signal output from the constant current / constant voltage control circuit (16) is supplied to the resonance control circuit (11) through a diode (15).
It is applied to ET (13) as a base voltage. At this time, the control signal input via the diode (15)
The potential becomes higher than the voltage signal obtained from (14), the resistance component of the FET (13) is adjusted according to the control signal, and the Q value of the resonance control circuit (11) is controlled. As a result, the output voltage of the rectifier circuit (5) becomes equal to the reference voltage V as shown in FIG.
s, the output voltage is higher than the on-state transistor
In (8), the charging current is applied to the secondary battery (10) without a voltage drop, and the charging current is maintained at the target value Ia. As a result, the charging voltage Vo further increases and reaches a predetermined threshold voltage (for example, 4.1 V).
【0024】この時点で、定電流/定電圧制御回路(16)
は定電流制御から定電圧制御に切り替わり、充電電圧V
oを目標値Vbに維持するための制御信号を作成する。
該信号はトランジスタ(17)のベースに印加されて、トラ
ンジスタ(8)がオン状態が維持される共に、該信号はダ
イオード(15)を経て共振制御回路(11)のFET(13)にベ
ース電圧として印加されて、共振制御回路(11)のQ値が
制御される。これによって、整流回路(5)の出力電圧が
図3(b)に示す様に目標値Vbに維持される。該出力電
圧は、オン状態のトランジスタ(8)にて電圧降下を伴う
ことなく、二次電池(10)に印加される。この結果、二次
電池(10)は更に充電され、満充電状態に達することにな
る。そして、図3(a)に示す様に充電電流が所定の閾値
を下回ったとき、充電動作を停止する。At this point, the constant current / constant voltage control circuit (16)
Is switched from constant current control to constant voltage control, and the charging voltage V
A control signal for maintaining o at the target value Vb is created.
The signal is applied to the base of the transistor (17), the transistor (8) is kept on, and the signal is applied to the FET (13) of the resonance control circuit (11) via the diode (15). And the Q value of the resonance control circuit (11) is controlled. Thus, the output voltage of the rectifier circuit (5) is maintained at the target value Vb as shown in FIG. The output voltage is applied to the secondary battery (10) without causing a voltage drop at the transistor (8) in the ON state. As a result, the secondary battery (10) is further charged and reaches a fully charged state. Then, as shown in FIG. 3A, when the charging current falls below a predetermined threshold, the charging operation is stopped.
【0025】上記充電装置においては、電池電圧が基準
電圧Vs(3V)よりも低い場合は、図3(b)に示すよう
に、整流回路(5)の出力電圧(整流出力)V1が基準値V
s(3V)に維持されて、従来の整流出力よりも低くなる
ため、トランジスタ(8)での降下電圧が小さくなり、ト
ランジスタ(8)での熱損失は減少する。又、電池電圧が
基準電圧Vs(3V)よりも高い場合は、トランジスタ
(8)がオン状態となるため、該トランジスタ(8)による
熱損失は殆ど零となる。従って、電池電圧に拘わらず、
トランジスタ(8)での熱損失が従来よりも小さくなり、
これによって小型パッケージのトランジスタ(8)を採用
することが可能となり、携帯電話機を小型化することが
出来る。In the above charging device, when the battery voltage is lower than the reference voltage Vs (3 V), as shown in FIG. 3B, the output voltage (rectified output) V1 of the rectifier circuit (5) is equal to the reference value. V
Since the voltage is maintained at s (3V) and becomes lower than the conventional rectified output, the voltage drop in the transistor (8) is reduced, and the heat loss in the transistor (8) is reduced. If the battery voltage is higher than the reference voltage Vs (3 V), the transistor
Since the transistor (8) is turned on, the heat loss due to the transistor (8) becomes almost zero. Therefore, regardless of the battery voltage,
The heat loss in the transistor (8) is smaller than before,
As a result, the transistor (8) in a small package can be adopted, and the size of the mobile phone can be reduced.
【0026】又、第2充電制御回路(7)をIC化する場
合、図1の如く整流回路(5)の出力電圧をICの電源電
圧として利用することにより、電源電圧の最小値が保証
されるので、信頼性の向上を図ることが出来る。When the second charge control circuit (7) is integrated into an IC, the minimum value of the power supply voltage is guaranteed by using the output voltage of the rectifier circuit (5) as the power supply voltage of the IC as shown in FIG. Therefore, the reliability can be improved.
【図1】本発明に係る充電装置の構成を表わすブロック
図である。FIG. 1 is a block diagram illustrating a configuration of a charging device according to the present invention.
【図2】従来の充電装置の構成を表わすブロック図であ
る。FIG. 2 is a block diagram illustrating a configuration of a conventional charging device.
【図3】充電装置における電流及び電圧の変化を表わす
グラフである。FIG. 3 is a graph showing changes in current and voltage in the charging device.
(1) 交流電流発生回路 (2) 1次コイル (3) 2次コイル (4) 第1充電制御回路 (5) 整流回路 (7) 第2充電制御回路 (8) 電圧降下用トランジスタ (10) 二次電池 (11) 共振制御回路 (16) 定電流/定電圧制御回路 (1) AC current generating circuit (2) Primary coil (3) Secondary coil (4) First charge control circuit (5) Rectifier circuit (7) Second charge control circuit (8) Voltage drop transistor (10) Secondary battery (11) Resonance control circuit (16) Constant current / constant voltage control circuit
Claims (4)
電する充電装置において、 交流磁力線が貫通すべき2次コイル(3)と、 2次コイル(3)と共に共振系を構成して、Q値の調整が
可能な共振制御回路(11)と、 2次コイル(3)から得られる交流電流を整流する整流回
路(5)と、 整流回路(5)の出力端と二次電池(10)の間に介在する電
圧降下用半導体素子と、 整流回路(5)の出力電圧と所定の基準電圧の偏差に応じ
て、共振制御回路(11)のQ値を制御する第1充電制御回
路(4)と、 二次電池(10)に供給される充電電流及び充電電圧に応じ
て、電圧降下用半導体素子の動作を制御すると共に、共
振制御回路(11)のQ値を制御する第2充電制御回路(7)
とを具え、充電電圧が前記基準電圧よりも低いときは、
第1充電制御回路(4)が整流回路(5)の出力電圧を前記
基準電圧に維持するべく共振制御回路(11)のQ値を制御
すると共に、第2充電制御回路(7)が充電電流又は充電
電圧を目標値に近づけるべく電圧降下用半導体素子の降
下電圧を制御する一方、充電電圧が前記基準電圧を上回
っているときは、第2充電制御回路(7)が充電電流又は
充電電圧を目標値に近づけるべく共振制御回路(11)のQ
値を制御すると共に、電圧降下用半導体素子による降下
電圧を零に近づけるべく電圧降下用半導体素子を制御す
ることを特徴とする充電装置。1. A charging device for charging a secondary battery by receiving a supply of alternating magnetic field lines, comprising: a secondary coil (3) through which the alternating magnetic field lines are to penetrate; and a resonance system together with the secondary coil (3). A resonance control circuit (11) capable of adjusting the Q value; a rectifier circuit (5) for rectifying an alternating current obtained from the secondary coil (3); an output terminal of the rectifier circuit (5) and a secondary battery (10 And a first charge control circuit (Q) for controlling the Q value of the resonance control circuit (11) in accordance with a deviation between the output voltage of the rectifier circuit (5) and a predetermined reference voltage. 4) and the second charging for controlling the operation of the voltage drop semiconductor element and controlling the Q value of the resonance control circuit (11) according to the charging current and the charging voltage supplied to the secondary battery (10). Control circuit (7)
When the charging voltage is lower than the reference voltage,
The first charge control circuit (4) controls the Q value of the resonance control circuit (11) so as to maintain the output voltage of the rectifier circuit (5) at the reference voltage, and the second charge control circuit (7) controls the charge current. Alternatively, while controlling the voltage drop of the voltage dropping semiconductor element to bring the charging voltage closer to the target value, when the charging voltage is higher than the reference voltage, the second charging control circuit (7) changes the charging current or the charging voltage. Q of the resonance control circuit (11) to approach the target value
A charging apparatus characterized by controlling a value and controlling the voltage drop semiconductor element so that a voltage drop by the voltage drop semiconductor element approaches zero.
定の閾値電圧よりも低いときは、充電電流を所定の目標
値に近づけるべく定電流制御を行ない、充電電圧が所定
の電圧に達した後は、充電電圧を所定の目標値に維持す
るべく定電圧制御を行なう請求項1に記載の充電装置。A second charging control circuit that performs constant current control to bring the charging current closer to a predetermined target value when the charging voltage is lower than a predetermined threshold voltage; 2. The charging device according to claim 1, wherein after reaching the predetermined value, constant voltage control is performed to maintain the charging voltage at a predetermined target value.
に電源電圧として供給される請求項1に記載の充電装
置。The output voltage of the rectifier circuit is controlled by a charge control circuit.
The charging device according to claim 1, wherein the charging device is supplied as a power supply voltage to the charging device.
から交流電流の供給を受けて交流磁力線を発生する1次
コイル(2)とを具え、2次コイル(3)を1次コイル(2)
に接近させて配置することによって、1次コイル(2)か
ら発生する交流磁力線が2次コイル(3)に供給される請
求項1乃至請求項3の何れかに記載の充電装置。4. An AC current generating circuit (1), and a primary coil (2) receiving an AC current from the circuit to generate an AC magnetic field line, the secondary coil (3) being a primary coil. Coil (2)
The charging device according to any one of claims 1 to 3, wherein an AC magnetic field line generated from the primary coil (2) is supplied to the secondary coil (3) by being arranged close to the secondary coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9178231A JPH1127871A (en) | 1997-07-03 | 1997-07-03 | Charging equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9178231A JPH1127871A (en) | 1997-07-03 | 1997-07-03 | Charging equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1127871A true JPH1127871A (en) | 1999-01-29 |
Family
ID=16044896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9178231A Pending JPH1127871A (en) | 1997-07-03 | 1997-07-03 | Charging equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1127871A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100389629B1 (en) * | 2000-12-29 | 2003-06-27 | 삼성전기주식회사 | Charger circuit in mobile terminal |
JP2010017018A (en) * | 2008-07-04 | 2010-01-21 | Sanyo Electric Co Ltd | Equipment with built-in battery and charging stand |
JP2010233354A (en) * | 2009-03-27 | 2010-10-14 | Nissan Motor Co Ltd | Power supply device |
JP2010233364A (en) * | 2009-03-27 | 2010-10-14 | Nissan Motor Co Ltd | Power supply device |
JP2013070581A (en) * | 2011-09-26 | 2013-04-18 | Hitachi Maxell Energy Ltd | Resonance type wireless charger |
JP2014131440A (en) * | 2012-12-28 | 2014-07-10 | Seiko Instruments Inc | Electronic component, power reception device, and power feeding system |
-
1997
- 1997-07-03 JP JP9178231A patent/JPH1127871A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100389629B1 (en) * | 2000-12-29 | 2003-06-27 | 삼성전기주식회사 | Charger circuit in mobile terminal |
JP2010017018A (en) * | 2008-07-04 | 2010-01-21 | Sanyo Electric Co Ltd | Equipment with built-in battery and charging stand |
JP2010233354A (en) * | 2009-03-27 | 2010-10-14 | Nissan Motor Co Ltd | Power supply device |
JP2010233364A (en) * | 2009-03-27 | 2010-10-14 | Nissan Motor Co Ltd | Power supply device |
JP2013070581A (en) * | 2011-09-26 | 2013-04-18 | Hitachi Maxell Energy Ltd | Resonance type wireless charger |
JP2014131440A (en) * | 2012-12-28 | 2014-07-10 | Seiko Instruments Inc | Electronic component, power reception device, and power feeding system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10516299B2 (en) | Power reception device and power reception method for non-contact power transmission | |
EP3512066B1 (en) | Charging circuit, terminal, and charging system | |
US6980446B2 (en) | Circuit for starting power source apparatus | |
US9853505B2 (en) | Resonant wireless power receiver circuit and control circuit and wireless power conversion method thereof | |
US7254048B2 (en) | Power supply capable of AC and DC input utilizing winding of transformer as boost inductor | |
US8035350B2 (en) | Battery charger | |
KR102207502B1 (en) | Wireless charging receiving device, charging system and terminal | |
US3735233A (en) | Battery charger apparatus having multiple modes of operation and automatic switching therebetween | |
JP3213401B2 (en) | Charging method for non-aqueous secondary batteries | |
KR20130009599A (en) | Battery charging apparatus with a common control loop for a low drop-out voltage regulator and a boost regulator | |
US10879737B2 (en) | Control device, power receiving device, and electronic device | |
JPH1014127A (en) | Multifunctional battery charger self-aligned as supply voltage regulator for device receiving power from the battery | |
US20060034108A1 (en) | Synchronous rectifying switching power source circuit | |
US20140184154A1 (en) | Electronic component, power receiving device, and power feeding system | |
JP2006325350A (en) | Power supply device | |
US20080122405A1 (en) | Constant voltage and constant current power source | |
US5337228A (en) | Differential charging circuit | |
JPH1127871A (en) | Charging equipment | |
US9007035B2 (en) | Charge control circuit | |
US8344696B2 (en) | Battery charger including a comparator | |
US20220115894A1 (en) | Secondary battery charging system, power management integrated circuit, and method of charging secondary battery | |
US7382108B2 (en) | Charging apparatus and charging current detecting circuit thereof | |
JP2001275271A (en) | Secondary cell charging device | |
JP2000004583A (en) | Switching power supply device and electronic apparatus equipped with the same | |
JPH09130983A (en) | Battery charge control device |