JP2013070581A - Resonance type wireless charger - Google Patents

Resonance type wireless charger Download PDF

Info

Publication number
JP2013070581A
JP2013070581A JP2011209261A JP2011209261A JP2013070581A JP 2013070581 A JP2013070581 A JP 2013070581A JP 2011209261 A JP2011209261 A JP 2011209261A JP 2011209261 A JP2011209261 A JP 2011209261A JP 2013070581 A JP2013070581 A JP 2013070581A
Authority
JP
Japan
Prior art keywords
power
charging
power transmission
reflected
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011209261A
Other languages
Japanese (ja)
Other versions
JP5690251B2 (en
Inventor
Satoru Onuki
悟 大貫
Hiroshi Ido
寛 井戸
Masashi Yoshihiro
昌史 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011209261A priority Critical patent/JP5690251B2/en
Publication of JP2013070581A publication Critical patent/JP2013070581A/en
Application granted granted Critical
Publication of JP5690251B2 publication Critical patent/JP5690251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enable power transmission to stop when charging has been completed, by appropriately detecting a charging state of a secondary battery on the transmission side without providing communication means on the transmission and reception sides.SOLUTION: A power transmission device 1 comprises: a high frequency power supply part 7; a power transmission primary coil 3 for transmitting AC power; a reflection power detection part 9 for detecting reflection power reflected from the power transmission primary coil; and a power supply controller 10 for controlling generation of the AC power. A power reception device 2 comprises: a power reception secondary coil 5 for receiving the AC power transmitted from the power transmission device; a rectifier 12 for rectifying the received AC power; and a charger 14 for charging a secondary battery by constant voltage after charging it by constant current by using DC power output by the rectifier. The power supply controller detects a time change rate of the reflection power and performs control so as to stop the transmission of the AC power, when the time change rate of the reflection power detected in the process of the constant voltage charging has become equal to or lower than a lower threshold RCL set correspondingly to a predetermined charge rate.

Description

本発明は、磁界共鳴による電力伝送技術を用いて、非接触で2次電池を充電するワイヤレス充電装置に関する。   The present invention relates to a wireless charging device that charges a secondary battery in a non-contact manner using a power transmission technique based on magnetic field resonance.

近年、電気自動車や産業用機器、携帯用電子機器等へのワイヤレス電力伝送技術が注目を浴びている。特に、電動歯ブラシや電気シェーバー等の水まわりで使う電化製品や、コードレス電話機、携帯電話機等には、この技術が重宝され、一部の製品において採用されている。   In recent years, wireless power transmission technology for electric vehicles, industrial devices, portable electronic devices, and the like has attracted attention. In particular, this technology is useful for electric appliances used around water such as electric toothbrushes and electric shavers, cordless telephones, mobile phones and the like, and is used in some products.

現在実用化されているワイヤレス充電装置は、送電装置に設けられた1次側のコイルと受電装置に設けられた2次側のコイルとの間での電磁誘導を利用した、電磁誘導型充電装置である。この装置においては、電力の伝送効率を高めるために、送電側と受電側の機器に設けられた各々のコイルを近接させて配置させる必要がある。そのため、電力を無線伝送できる距離が短いという課題を有する。   A wireless charging device that is currently in practical use is an electromagnetic induction charging device that uses electromagnetic induction between a primary coil provided in a power transmission device and a secondary coil provided in a power receiving device. It is. In this apparatus, in order to increase the power transmission efficiency, it is necessary to arrange the coils provided in the devices on the power transmission side and the power reception side close to each other. For this reason, there is a problem that a distance in which power can be wirelessly transmitted is short.

これに対して、電界・磁界共鳴型の電力伝送は、数m離れた機器にワイヤレスで電力を供給することが可能である。特に、磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられ、この点から磁界共鳴型に対する注目度が上昇している。   On the other hand, electric field / magnetic resonance type power transmission can supply power wirelessly to a device several meters away. In particular, in the case of the magnetic field resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic field resonance type is increasing.

例えば、特許文献1には、送電側と受電側の共振周波数を利用して、自動車用のイグニッション・キーに効率的に充電する技術が開示されている。特許文献1に開示されている技術は、温度や湿度等の環境条件による受電側の共振周波数の変化への対応を課題としており、送電側がある一定間隔で離間した複数の周波数成分の電力を供給し、最適な共振周波数にて充電を行うというものである。   For example, Patent Document 1 discloses a technique for efficiently charging an automobile ignition key using resonance frequencies on a power transmission side and a power reception side. The technique disclosed in Patent Document 1 has a problem of dealing with changes in the resonance frequency on the power receiving side due to environmental conditions such as temperature and humidity, and supplies power of a plurality of frequency components separated at a certain interval from the power transmission side. Then, charging is performed at an optimal resonance frequency.

しかしながら、特許文献1に開示された技術においては、充電が完了したときに送電側からの送電を停止する構成を持たず、送電側が送電を継続してしまうため、電力の浪費がさけられない。これに対処するために、受電側の充電完了を送電側が認識し、自動的に送電停止を実行しようとしても、送電側が受電側の充電状態を検出する手段を備えていないため、送電側と受電側の機器に通信手段を設ける必要がある。そのような構成は小型化には不適で、コスト高にならざるを得ない。   However, the technique disclosed in Patent Document 1 does not have a configuration for stopping power transmission from the power transmission side when charging is completed, and the power transmission side continues power transmission. To cope with this, even if the power transmission side recognizes the completion of charging on the power receiving side and automatically attempts to stop power transmission, the power transmission side does not have means for detecting the charging state of the power receiving side. It is necessary to provide communication means in the device on the side. Such a configuration is unsuitable for downsizing and must be expensive.

一方、特許文献2には、給電装置から電力を非接触で送信して車両に搭載されたバッテリを充電するワイヤレス充電システムにおいて、過大な交流電力の発生の惧れが生じたときに、送電側からの送電を停止する技術が開示されている。すなわち、このような充電システムでは、給電装置より送信される電力が車両側で全ては消費されない場合に、送信された電力が車両側にて反射し、電力が増幅され最大飽和電力(臨界点)に達する発振現象が発生する惧れがある。そのため、特許文献2では、給電装置に受電側の共鳴コイルで反射した交流電力を検出する反射電力検出部を設け、反射電力検出部で検出される反射電力が所定レベルを超えた場合に、交流電力の供給を停止するように構成している。   On the other hand, in Patent Document 2, in a wireless charging system that charges a battery mounted on a vehicle by transmitting electric power from a power supply device in a contactless manner, when there is a possibility of excessive AC power generation, A technique for stopping power transmission from the home is disclosed. That is, in such a charging system, when not all of the power transmitted from the power supply device is consumed on the vehicle side, the transmitted power is reflected on the vehicle side, the power is amplified, and the maximum saturation power (critical point) Oscillation phenomenon that reaches Therefore, in Patent Document 2, when the reflected power detected by the reflected power detection unit exceeds the predetermined level, the reflected power detection unit that detects the AC power reflected by the power receiving resonance coil is provided in the power feeding device. The power supply is stopped.

特開平11−46157号公報Japanese Patent Laid-Open No. 11-46157 特開2010−68634号公報JP 2010-68634 A

しかしながら、特許文献2に開示された技術は、2次電池の充電が完了したときに送電側からの送電を停止するための対応策を提供するものではない。すなわち、特許文献2の充電システムは、充電の完了に関わりなく、反射電力が所定レベルを超えた場合に交流電力の供給を停止して、反射電力が送信電力に重畳されて交流電力が異常に増大することを防止することを意図したものである。そのため、反射電力のレベルを2次電池の充電完了に対応させる意図は開示されていない。   However, the technique disclosed in Patent Document 2 does not provide a countermeasure for stopping power transmission from the power transmission side when charging of the secondary battery is completed. That is, the charging system of Patent Document 2 stops supplying AC power when the reflected power exceeds a predetermined level, regardless of completion of charging, and the reflected power is superimposed on the transmission power to make the AC power abnormal. It is intended to prevent the increase. Therefore, the intention of making the reflected power level correspond to the completion of charging of the secondary battery is not disclosed.

また、反射電力は、送電側インピーダンスと受電側インピーダンスとの不整合により発生するので、反射電力のレベルは、充電開始時のインピーダンスの整合状態によって大きく変化する。すなわち、充電する度に充電完了時点での反射電力の値はばらつくので、反射電力のレベルを充電完了に対応させることは困難である。そのため、反射電力が所定レベルを超えた場合に交流電力の供給を停止しても、充電の完了に応じて適切に送電側からの送電を停止することはできない。   In addition, since the reflected power is generated due to mismatch between the power transmission side impedance and the power receiving side impedance, the level of the reflected power varies greatly depending on the impedance matching state at the start of charging. That is, the value of the reflected power at the time of completion of charging varies every time the battery is charged, so it is difficult to make the level of the reflected power correspond to the completion of charging. Therefore, even if the supply of AC power is stopped when the reflected power exceeds a predetermined level, the power transmission from the power transmission side cannot be stopped appropriately according to the completion of charging.

本発明は、このような状況に鑑みてなされたものであり、送電側及び受電側に通信手段を設けることなく、送電側にて受電側機器内の2次電池の充電状態を適切に検出し、充電完了時に自動的に送電を停止することが可能な共鳴型ワイヤレス充電装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and appropriately detects the charging state of the secondary battery in the power receiving side device on the power transmission side without providing communication means on the power transmission side and the power receiving side. An object of the present invention is to provide a resonance type wireless charging apparatus capable of automatically stopping power transmission when charging is completed.

上記課題を解決するために、本発明の共鳴型ワイヤレス充電装置の基本構成として、送電装置より出力される電力を非接触で磁界共鳴により受電装置に伝送し、受電装置に接続されている2次電池を充電するように構成され、前記送電装置は、交流電力を発生させる高周波電源部と、前記交流電力を送電する送電用1次コイルと、前記送電用1次コイルにおいて反射された反射電力を検出する反射電力検出部と、前記高周波電源部による前記交流電力の発生を制御する電源コントローラとを備え、前記受電装置は、前記送電装置から送電された交流電力を受電する受電用2次コイルと、受電した前記交流電力を整流する整流器と、前記整流器から出力される直流電力を用いて、前記2次電池に対して、一定の充電電流を流す定電流充電を行った後、電池電圧が一定になるように充電電流を制御する定電圧充電を行う充電器とを備える。   In order to solve the above problems, as a basic configuration of the resonance type wireless charging apparatus of the present invention, the power output from the power transmission apparatus is transmitted to the power reception apparatus by magnetic resonance without contact and connected to the power reception apparatus. The power transmission device is configured to charge a battery, the high-frequency power supply unit that generates AC power, the primary coil for power transmission that transmits the AC power, and the reflected power that is reflected by the primary coil for power transmission. A reflected power detection unit for detecting; and a power supply controller for controlling generation of the AC power by the high-frequency power supply unit, wherein the power reception device receives a secondary coil for receiving AC power transmitted from the power transmission device; , Using a rectifier that rectifies the received AC power and a DC power output from the rectifier, the secondary battery is subjected to constant current charging that causes a constant charging current to flow. After, and a charger for performing constant-voltage charging which controls the charging current so that the battery voltage is constant.

そして、本発明の第1構成の共鳴型ワイヤレス充電装置は、上記基本構成に加えて、前記電源コントローラは、前記反射電力の時間変化率を検出し、前記定電圧充電の過程で検出される前記時間変化率が、所定の充電率に対応させて設定された低位閾値RCL以下になった場合に、前記交流電力の送電を停止するように制御することを特徴とする。   In the resonance type wireless charging apparatus of the first configuration of the present invention, in addition to the basic configuration, the power supply controller detects the time change rate of the reflected power and is detected in the constant voltage charging process. Control is performed so that transmission of the AC power is stopped when the time change rate becomes equal to or lower than a lower threshold RCL set in correspondence with a predetermined charging rate.

本発明の第2構成の共鳴型ワイヤレス充電装置の特徴は、上記基本構成に加えて、前記送電装置には、前記定電圧充電の開始から所定の充電率に達するまでに要する充電時間Tpが記憶され、前記電源コントローラは、前記充電器による前記定電圧充電の過程に際して検出される前記反射電力の時間変化率を検出し、前記定電流充電から前記定電圧充電に切り替わるときの前記時間変化率の大きさに対応させて設定された高位閾値RCHを前記時間変化率が超えた時点から前記充電時間Tpが経過したときに、前記交流電力の送電を停止するように制御することを特徴とする。   The resonance type wireless charging device of the second configuration of the present invention is characterized in that, in addition to the basic configuration, the power transmission device stores a charging time Tp required to reach a predetermined charging rate from the start of the constant voltage charging. The power supply controller detects a time change rate of the reflected power detected during the constant voltage charging process by the charger, and sets the time change rate when the constant current charging is switched to the constant voltage charging. Control is performed to stop transmission of the AC power when the charging time Tp elapses from the time when the time change rate exceeds a high threshold RCH set corresponding to the magnitude.

上記構成の共鳴型ワイヤレス充電装置によれば、定電圧充電の過程における反射電力の時間変化率に基づいて、送電側にて受電側機器内の2次電池の充電状態を適切に検出できるので、送電側及び受電側に通信手段を設けることなく、簡素な構成により、充電完了時には自動的に送電を停止することが可能となる。   According to the resonance type wireless charging apparatus having the above-described configuration, the state of charge of the secondary battery in the power receiving side device can be appropriately detected on the power transmission side based on the time change rate of the reflected power in the constant voltage charging process. Without providing communication means on the power transmission side and the power reception side, it is possible to automatically stop power transmission when charging is completed with a simple configuration.

本発明の実施の形態における共鳴型ワイヤレス充電装置の構成を示すブロック図The block diagram which shows the structure of the resonance type wireless charging device in embodiment of this invention 実施の形態1における共鳴型ワイヤレス充電装置の作用を説明するためのタイムチャートTime chart for explaining the operation of the resonance type wireless charging apparatus according to the first embodiment 同共鳴型ワイヤレス充電装置の定電圧充電状態における2次電池の充電率と反射電力の時間変化率との関係を示す図The figure which shows the relationship between the charging rate of the secondary battery in the constant voltage charge state of the resonance type wireless charging apparatus and the time change rate of the reflected power 同共鳴型ワイヤレス充電装置の動作の一例を示すフロー図Flow chart showing an example of operation of the resonance type wireless charging apparatus 実施の形態2における共鳴型ワイヤレス充電装置の動作の一例を示すフロー図FIG. 9 is a flowchart showing an example of the operation of the resonance type wireless charging apparatus according to the second embodiment.

本発明の共鳴型ワイヤレス充電装置は、上記構成を基本として、以下のような態様をとることができる。   The resonance type wireless charging apparatus of the present invention can take the following modes based on the above configuration.

すなわち、第1構成の共鳴型ワイヤレス充電装置において、前記電源コントローラは、前記時間変化率が、前記定電流充電から前記定電圧充電に切り替わるときの前記時間変化率の大きさに対応させて設定された高位閾値RCHを超えた後に、前記時間変化率が前記低位閾値RCL以下となったか否かを判定する構成とすることができる。   That is, in the resonance type wireless charging apparatus of the first configuration, the power controller is set in accordance with the magnitude of the time change rate when the time change rate is switched from the constant current charge to the constant voltage charge. After exceeding the high threshold value RCH, it can be configured to determine whether or not the time change rate has become equal to or less than the low threshold value RCL.

以下、図面を参照して、本発明を具体化した実施の形態について、詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<実施の形態1>
図1は、実施の形態1における共鳴型ワイヤレス充電装置の全体構成を示す。この共鳴型ワイヤレス充電装置は、送電装置1より出力される電力を、非接触で磁界共鳴により受電装置2に伝送し、受電装置2に接続されている2次電池15を充電するように構成されている。
<Embodiment 1>
FIG. 1 shows the overall configuration of the resonant wireless charging apparatus according to the first embodiment. This resonance type wireless charging device is configured to transmit electric power output from the power transmission device 1 to the power reception device 2 by magnetic resonance without contact, and to charge the secondary battery 15 connected to the power reception device 2. ing.

送電装置1は、送電用1次コイル3と、この送電用1次コイル3に電磁誘導結合した送電用励振コイル4を有する。受電装置2は、受電用2次コイル5と、この受電用2次コイル5に電磁誘導結合した受電用励振コイル6を有する。送電用1次コイル3により送電される電力が、磁界共鳴により非接触で受電用2次コイル5に受電される。   The power transmission device 1 includes a power transmission primary coil 3 and a power transmission excitation coil 4 electromagnetically coupled to the power transmission primary coil 3. The power receiving device 2 includes a power receiving secondary coil 5 and a power receiving excitation coil 6 electromagnetically coupled to the power receiving secondary coil 5. The electric power transmitted by the primary coil 3 for power transmission is received by the secondary coil 5 for power reception in a non-contact manner by magnetic field resonance.

送電装置1の送電用励振コイル4には、高周波電源(交流電源)7が方向性結合器8を介して接続され、高周波電力(交流電力)を供給する。高周波電源7は、例えば数MHz〜数十MHz程度の高周波電力を出力する。高周波電源から出力された高周波電力は、送電用励振コイル4を介して電磁誘導により送電用1次コイル3に伝送される。送電用1次コイル3にはコンデンサCが接続されており、ある特定の共振周波数で共振するように設定されている。送電用励振コイル4にはまた、方向性結合器8を介して反射電力検出部9も接続されている。反射電力検出部9は、交流電力が送電用1次コイル3において反射された反射電力を検出する。   A high frequency power source (AC power source) 7 is connected to the power transmission excitation coil 4 of the power transmission device 1 via a directional coupler 8 to supply high frequency power (AC power). The high frequency power source 7 outputs high frequency power of, for example, about several MHz to several tens of MHz. The high frequency power output from the high frequency power source is transmitted to the primary coil 3 for power transmission by electromagnetic induction via the excitation coil 4 for power transmission. A capacitor C is connected to the primary coil 3 for power transmission, and is set to resonate at a specific resonance frequency. A reflected power detector 9 is also connected to the power transmission excitation coil 4 via a directional coupler 8. The reflected power detection unit 9 detects reflected power in which AC power is reflected by the primary coil 3 for power transmission.

高周波電源7には電源コントローラー10が接続され、電源コントローラー10から送られる送電オン/オフ信号により、高周波電源7による高周波電力の発生がオン/オフされる。電源コントローラー10は、反射電力検出部9において検出された反射電力値のデータに基づいて送電オン/オフ信号を生成する。電源コントローラー10には、充電オン/オフスイッチ11も接続されている。高周波電源7に対する送電オン/オフ信号の入力は、充電オン/オフスイッチ11の操作によって行うこともできる。それにより、使用者が送電開始/停止を操作することが可能となっている。   A power supply controller 10 is connected to the high frequency power supply 7, and generation of high frequency power by the high frequency power supply 7 is turned on / off by a power transmission on / off signal sent from the power supply controller 10. The power controller 10 generates a power transmission on / off signal based on the reflected power value data detected by the reflected power detection unit 9. A charge on / off switch 11 is also connected to the power controller 10. The input of the power transmission on / off signal to the high frequency power supply 7 can also be performed by operating the charging on / off switch 11. Thereby, the user can operate the start / stop of power transmission.

受電装置2の受電用2次コイル5は、送電用1次コイル3と離間して非接触で配置され、送電用1次コイル3からの交流電力を磁界共鳴により受電する。受電用2次コイル5にもコンデンサCが接続されており、送電用1次コイル3にて設定した共振周波数と同等の共振周波数が設定されている。   The power receiving secondary coil 5 of the power receiving device 2 is arranged in a non-contact manner apart from the power transmitting primary coil 3 and receives AC power from the power transmitting primary coil 3 by magnetic field resonance. A capacitor C is also connected to the power receiving secondary coil 5, and a resonance frequency equivalent to the resonance frequency set in the power transmitting primary coil 3 is set.

受電用励振コイル6には整流器12が接続され、受電用2次コイル5から電磁誘導により受電用励振コイル6に伝送された交流電力は、整流器12により整流され直流電力となる。整流器12には定電圧制御器13が接続され、整流器12で整流された電力の電圧は、定電圧制御器13により所定の定電圧に変換される。所定の定電圧に変換された電力は充電器14に送られ、充電器14は、その電力により、接続されている2次電池15の充電を行う。   A rectifier 12 is connected to the power receiving excitation coil 6, and the AC power transmitted from the power receiving secondary coil 5 to the power receiving excitation coil 6 by electromagnetic induction is rectified by the rectifier 12 to become DC power. A constant voltage controller 13 is connected to the rectifier 12, and the power voltage rectified by the rectifier 12 is converted into a predetermined constant voltage by the constant voltage controller 13. The electric power converted into the predetermined constant voltage is sent to the charger 14, and the charger 14 charges the connected secondary battery 15 with the electric power.

充電器14は、2次電池15に対して定電流定電圧充電(CCCV充電)を行うように充電を制御する。すなわち、2次電池15に一定の充電電流を流す定電流充電の過程と、定電流充電の後に、2次電池15の電池電圧が一定になるように充電電流を制御する定電圧充電の過程とを含むように充電を制御する、2段階方式の充電が行われる。   The charger 14 controls charging so that the secondary battery 15 performs constant current constant voltage charging (CCCV charging). That is, a constant current charging process for supplying a constant charging current to the secondary battery 15 and a constant voltage charging process for controlling the charging current so that the battery voltage of the secondary battery 15 becomes constant after the constant current charging. The charging is controlled so as to include the two-stage charging.

本実施の形態の特徴は、電源コントローラー10が、反射電力検出部9にて検出された反射電力値のデータに基づいて送電オフ信号を生成し、その送電オフ信号により高周波電源7による高周波電力の発生を停止するように構成されたことである。すなわち、送電用1次コイル3にて反射した反射電力は、送電用励振コイル4と方向性結合器8を経て反射電力検出部9に入る。反射電力検出部9で反射電力が計測され、計測された反射電力値が電源コントローラー10に送られる。その反射電力データに基づいて、電源コントローラー10が2次電池15の充電完了を認識し(と判定し)、送電オフ信号を高周波電源7に入力する。   The feature of the present embodiment is that the power controller 10 generates a power transmission off signal based on the reflected power value data detected by the reflected power detector 9, and the high frequency power from the high frequency power source 7 is generated by the power transmission off signal. It is configured to stop the occurrence. That is, the reflected power reflected by the power transmission primary coil 3 enters the reflected power detection unit 9 through the power transmission excitation coil 4 and the directional coupler 8. The reflected power is measured by the reflected power detector 9, and the measured reflected power value is sent to the power supply controller 10. Based on the reflected power data, the power supply controller 10 recognizes (determines) that charging of the secondary battery 15 has been completed, and inputs a power transmission off signal to the high frequency power supply 7.

電源コントローラー10が、反射電力データに基づいて2次電池15の充電完了を判定するために、反射電力の時間変化率が用いられる。これについて、図2のタイムチャートを用いて説明する。図2において、横軸は時間の経過を示し、縦軸は上から、(a)は2次電池の充電率(%)、(b)は2次電池電圧、(c)は充電電流、(d)は反射電力、(e)は反射電力の時間変化率を示す。   In order for the power supply controller 10 to determine the completion of charging of the secondary battery 15 based on the reflected power data, the time change rate of the reflected power is used. This will be described with reference to the time chart of FIG. In FIG. 2, the horizontal axis indicates the passage of time, the vertical axis from the top, (a) is the charging rate (%) of the secondary battery, (b) is the secondary battery voltage, (c) is the charging current, ( d) shows the reflected power, and (e) shows the time change rate of the reflected power.

まず、操作者が充電オン/オフスイッチ11をオン操作すると(図2に示す充電開始のタイミング)、送電オン信号が電源コントローラー10から高周波電源7に送られ、高周波電源7の出力により送電装置1からの送電が開始される。送電が開始されると、上述のように、受電装置2の充電器14に電力が伝わり、2次電池15の充電が開始される。   First, when the operator turns on the charging on / off switch 11 (charging start timing shown in FIG. 2), a power transmission on signal is sent from the power controller 10 to the high frequency power source 7, and the power transmission device 1 is output by the output of the high frequency power source 7. Power transmission from is started. When power transmission is started, as described above, power is transmitted to the charger 14 of the power receiving device 2, and charging of the secondary battery 15 is started.

まず、(I)段階として、図2(c)に示すように、2次電池15に一定の充電電流を流す定電流充電が行われる。定電流充電中には、送電装置1内の反射電力検出部9にて検出される反射電力は、図2(d)に示すように、ほぼ一定の値をとる。   First, as step (I), as shown in FIG. 2C, constant current charging is performed in which a constant charging current is supplied to the secondary battery 15. During constant current charging, the reflected power detected by the reflected power detection unit 9 in the power transmission device 1 takes a substantially constant value as shown in FIG.

ここで、反射電力について簡単に説明する。反射電力は、送電側インピーダンスと受電側インピーダンス(受電側インピーダンスには、送電用1次コイル3と受電用2次コイル5との結合状態も含める)との不整合により発生する。これらのインピーダンスの差が小さければ反射電力は小さく、インピーダンスの差が大きければ反射電力は大きくなる。定電流充電の場合、送電側インピーダンスも受電側インピーダンスも一定になるため、インピーダンス整合状態(送電側インピーダンスと受電側インピーダンスの差)は変化せず、図2(e)に示すように、反射電力は一定の値をとる。   Here, the reflected power will be briefly described. The reflected power is generated due to a mismatch between the power transmission side impedance and the power reception side impedance (the power reception side impedance includes the coupling state between the power transmission primary coil 3 and the power reception secondary coil 5). If the difference in impedance is small, the reflected power is small. If the difference in impedance is large, the reflected power is large. In the case of constant current charging, since the power transmission side impedance and the power reception side impedance are constant, the impedance matching state (difference between the power transmission side impedance and the power reception side impedance) does not change, and as shown in FIG. Takes a constant value.

定電流充電が進むにつれて、図2(b)に示すように、2次電池電圧が上昇する。2次電池電圧が、ある所定の設定電圧Vb0に到達すると、(II)段階として、図2(b)、(c)に示すように、2次電池電圧が一定となるように充電電流を制御して充電する定電圧充電に切り替わる。2次電池電圧がVb0に到達したタイミングでの定電流充電から定電圧充電への切り替えは、充電器14により周知の技術と同様に制御される。   As constant current charging proceeds, the secondary battery voltage increases as shown in FIG. When the secondary battery voltage reaches a predetermined set voltage Vb0, as shown in FIGS. 2 (b) and 2 (c), the charging current is controlled so that the secondary battery voltage becomes constant as step (II). Switch to constant voltage charging. Switching from the constant current charging to the constant voltage charging at the timing when the secondary battery voltage reaches Vb0 is controlled by the charger 14 in the same manner as a known technique.

定電圧充電状態では、充電が進むにつれて2次電池15の内部抵抗が上昇していくため、図2(c)に示すように、充電電流が低下していく。充電電流が変化すると、それに応じて受電側インピーダンスが変化するので、送電側インピーダンスと受電側インピーダンスの差が変化し、図2(d)に示すように、反射電力が変化する。反射電力は、送電装置1における反射電力検出部9にて検出され、検出された反射電力データは、電源コントローラー10に送られる。電源コントローラー10は、その反射電力データをもとに、反射電力の時間変化率を求める。   In the constant voltage charging state, as the charging proceeds, the internal resistance of the secondary battery 15 increases, so that the charging current decreases as shown in FIG. When the charging current changes, the power receiving side impedance changes accordingly, so the difference between the power transmission side impedance and the power receiving side impedance changes, and the reflected power changes as shown in FIG. The reflected power is detected by the reflected power detection unit 9 in the power transmission device 1, and the detected reflected power data is sent to the power supply controller 10. The power controller 10 obtains the time change rate of the reflected power based on the reflected power data.

定電圧充電状態では、反射電力の時間変化率は、図2(e)に示すように、必ず低下していく傾向を示す。これに基づき、あらかじめ充電率がほぼ100%となる反射電力の時間変化率を調べて、それに対応した閾値(低位閾値RCL)を設定しておく。そして、反射電力の時間変化率がその低位閾値RCL以下になった場合に、電源コントローラー10が充電完了と判定し、高周波電源7に送電オフ信号を入力する。それにより、高周波電源7は送電を停止する。   In the constant voltage charging state, the time change rate of the reflected power tends to decrease as shown in FIG. Based on this, the time change rate of the reflected power at which the charging rate is approximately 100% is examined in advance, and a threshold value (low threshold value RCL) corresponding thereto is set. When the time change rate of the reflected power becomes equal to or lower than the lower threshold value RCL, the power supply controller 10 determines that charging is complete and inputs a power transmission off signal to the high frequency power supply 7. Thereby, the high frequency power supply 7 stops power transmission.

反射電力のレベルではなく、反射電力の時間変化率により充電完了を判定するのは、反射電力のレベルにより充電完了を判定するための閾値の設定が、以下の理由により困難なためである。   The reason for determining the completion of charging not by the level of reflected power but by the time rate of change of reflected power is because it is difficult to set a threshold for determining completion of charging by the level of reflected power for the following reason.

すなわち、反射電力のレベルに対する閾値を設定するためには、充電動作開始時における送電側インピーダンスと受電側インピーダンスの関係が一定の状態に再現されなければならない。例えば、上述した一連の充電動作開始前には、送電側インピーダンスと受電側インピーダンスの整合をとる動作を行い、定電流充電状態の反射電力を比較的低く抑えるように構成する。しかし、そのような事前の整合動作の精度は高くないために、整合状態がばらつき、定電流充電状態における反射電力の値は充電の度にばらつく。   That is, in order to set a threshold for the level of reflected power, the relationship between the power transmission side impedance and the power reception side impedance at the start of the charging operation must be reproduced in a constant state. For example, before starting the series of charging operations described above, an operation for matching the power transmission side impedance and the power reception side impedance is performed, and the reflected power in the constant current charging state is suppressed to be relatively low. However, since the accuracy of such prior matching operation is not high, the matching state varies, and the value of the reflected power in the constant current charging state varies with each charging.

その結果、充電する度に充電完了時点での反射電力の値がばらついてしまい、充電完了と判定するための閾値を図2(d)の反射電力について設定することは不可能である。そこで、反射電力の時間変化率を用いる。定電圧充電状態における反射電力の時間変化率は、充電率が100%に近付くと小さな値になり、その変化の様子は、充電開始前の整合状態がばらついてもほとんど変わらない。図3に、定電圧充電状態における反射電力の時間変化率と充電率(割合)との関係を示す。予めこのような関係図を実験により求め、充電率が100%となる反射電力の時間変化率を、充電完了と判定する低位閾値RCLとして設定する。   As a result, the value of the reflected power at the time of completion of charging varies every time the battery is charged, and it is impossible to set a threshold value for determining the completion of charging for the reflected power in FIG. Therefore, the time change rate of the reflected power is used. The time change rate of the reflected power in the constant voltage charging state becomes a small value when the charging rate approaches 100%, and the state of the change hardly changes even if the matching state before the start of charging varies. FIG. 3 shows the relationship between the time change rate of the reflected power and the charging rate (ratio) in the constant voltage charging state. Such a relationship diagram is obtained in advance by experiment, and the time change rate of the reflected power at which the charging rate becomes 100% is set as the low threshold RCL for determining that charging is completed.

図3のように、定電圧充電状態における反射電力の時間変化率と充電率は、1対1で対応している。従って、これらの関係データを送電装置1にメモリーしておけば、送電装置1側で反射電力の時間変化率の値から充電率を認識することもできる。また、低位閾値RCLは、必ずしも充電率がほぼ100%となる反射電力の時間変化率に対応させる必要はない。すなわち、所望の充電率に対応させて低位閾値RCLを設定することができ、それにより、所望の充電率に達したときに充電を停止することができる。   As shown in FIG. 3, the time change rate of the reflected power and the charging rate in a constant voltage charging state are in a one-to-one correspondence. Therefore, if these related data are stored in the power transmission device 1, the charging rate can be recognized from the value of the time change rate of the reflected power on the power transmission device 1 side. Further, the lower threshold value RCL does not necessarily correspond to the time change rate of the reflected power at which the charging rate is almost 100%. That is, the low threshold value RCL can be set in correspondence with the desired charging rate, whereby charging can be stopped when the desired charging rate is reached.

また、低位閾値RCLに基づく充電完了の判定は、定電圧充電の過程で行わなければならない。何故ならば、図2(d)に示したように、定電流充電の過程では反射電力はほぼ一定の値をとり、従って、図2(e)に示したように、反射電力の時間変化率はほぼゼロになるため、低位閾値RCL以下であることが検出されてしまうからである。従って、定電流充電から定電圧充電への切り替わりを、何らかの方法で判別する必要がある。その方法は、特に限定されることはないが、例えば、下記のような方法を用いることができる。   Further, the determination of the completion of charging based on the lower threshold value RCL must be performed in the process of constant voltage charging. This is because, as shown in FIG. 2 (d), the reflected power takes a substantially constant value in the constant current charging process. Therefore, as shown in FIG. This is because it becomes almost zero and is detected to be lower than the lower threshold RCL. Therefore, it is necessary to determine the switching from constant current charging to constant voltage charging by some method. The method is not particularly limited, but for example, the following method can be used.

すなわち、定電流充電から定電圧充電に切り替わるタイミングで、反射電力の時間変化率は最も大きく変化する。従って、送電装置1側で反射電力の時間変化率をモニタリングしておけば、送電装置1側で定電流充電から定電圧充電に切り替わるタイミングを非常に正確に検出することができる。この場合、定電圧充電に切り替わるタイミングを検出するための高位閾値RCHを、充電完了の判定に用いる低位閾値RCLとは別に設定しておく。そして、反射電力の時間変化率が高位閾値RCHを超えた後に、次に低位閾値RCL以下となったときをもって、充電完了と判定する。   That is, the time change rate of the reflected power changes most greatly at the timing when switching from constant current charging to constant voltage charging. Therefore, if the time change rate of the reflected power is monitored on the power transmission device 1 side, the timing at which the power transmission device 1 switches from constant current charging to constant voltage charging can be detected very accurately. In this case, the high threshold value RCH for detecting the timing of switching to constant voltage charging is set separately from the low threshold value RCL used for determining the completion of charging. Then, it is determined that the charging is completed when the time change rate of the reflected power exceeds the high threshold RCH and then becomes equal to or lower than the low threshold RCL.

以上のような構成を有する共鳴型ワイヤレス充電装置の動作について、図4のフロー図を参照して説明する。図4の左側のフローは送電装置1の動作、左側のフローは受電装置2の動作を示す。   The operation of the resonance type wireless charging apparatus having the above configuration will be described with reference to the flowchart of FIG. The left flow in FIG. 4 shows the operation of the power transmission device 1, and the left flow shows the operation of the power reception device 2.

操作者が送電装置1の充電オン/オフスイッチ11をオン操作すると、送電オン信号が電源コントローラー10から高周波電源7に送られ、高周波電源7が交流電力を発生して給電が開始される(ステップS1)。次に、反射電力検出部9の検出出力を用いて反射電力の時間変化率を検出し(ステップS2)、時間変化率が上述の高位閾値RCHを超えたか否かが判定される(ステップS3)。高位閾値RCHを超えていなければ(ステップS3、No)、ステップS2、S3が繰り返される。   When the operator turns on the charging on / off switch 11 of the power transmission device 1, a power transmission on signal is sent from the power controller 10 to the high frequency power source 7, and the high frequency power source 7 generates AC power to start feeding (step). S1). Next, the time change rate of the reflected power is detected using the detection output of the reflected power detection unit 9 (step S2), and it is determined whether or not the time change rate exceeds the above-described high threshold RCH (step S3). . If the high threshold RCH is not exceeded (No at Step S3), Steps S2 and S3 are repeated.

一方、受電装置2では、高周波電源7からの給電が開始されると(ステップS1)、送電装置1からの電力を受電するようになる(ステップS11)。なお、ステップS1からステップS11へのフローを破線で示したのは、ワイヤレスであることを示すためである。受電に伴い、定電流充電の実施が開始され(ステップS12)るとともに、2次電池15の電池電圧が、定電圧充電に切替えるべき所定の設定電圧Vb0に達したか否かが、充電器14により判定される(ステップS13)。設定電圧Vb0に達していなければ、ステップS12とS13が繰り返される。   On the other hand, in the power receiving device 2, when the power supply from the high frequency power source 7 is started (step S1), the power from the power transmitting device 1 is received (step S11). Note that the flow from step S1 to step S11 is indicated by a broken line in order to indicate wireless. With the power reception, the constant current charging is started (step S12), and the charger 14 determines whether or not the battery voltage of the secondary battery 15 has reached a predetermined set voltage Vb0 to be switched to the constant voltage charging. (Step S13). If the set voltage Vb0 has not been reached, steps S12 and S13 are repeated.

設定電圧Vb0に達すると(ステップS13、Yes)、次に定電圧充電の実施(ステップS14)が開始され、それに伴い、所定の充電が完了したか否かの判定が行われる(ステップS15)。所定の充電の完了は、周知の方法によって判定すればよい。例えば、充電電流が設定された閾値以下になったことによって判定することができる。所定の充電が完了したら(ステップS15、Yes)、充電動作を終了する(ステップS16)。   When the set voltage Vb0 is reached (step S13, Yes), the implementation of constant voltage charging (step S14) is started, and accordingly, it is determined whether or not the predetermined charging is completed (step S15). Completion of the predetermined charging may be determined by a known method. For example, it can be determined when the charging current is equal to or less than a set threshold value. When the predetermined charging is completed (step S15, Yes), the charging operation is terminated (step S16).

また、送電装置1では、受電装置2において定電圧充電の実施(ステップS14)が開始されるのに伴い、時間変化率が高位閾値RCHを超えたことが検出される(ステップS3、Yes)。これは、ステップS14の開始が直接検出されることを意味するわけではなく、上述のように、反射電力の時間変化率の急激な上昇によって間接的に検出されるものである。   Further, in the power transmission device 1, it is detected that the rate of change with time exceeds the high threshold RCH (Step S <b> 3, Yes) as constant voltage charging is started in the power receiving device 2 (Step S <b> 14). This does not mean that the start of step S14 is directly detected, but is indirectly detected by a rapid increase in the time change rate of the reflected power as described above.

時間変化率が高位閾値RCHを超えたことが検出された結果、ステップS4に移行し、再度、反射電力検出部9の検出出力を用いて反射電力の時間変化率を検出し、時間変化率が上述の低位閾値RCL以下になったか否かが判定される(ステップS5)。低位閾値RCL以下になっていなければ(ステップS5、No)、ステップS4、S5が繰り返される。このようにして、定電圧充電の過程で、反射電力の時間変化率が低位閾値RCL以下になったか否かが判定される。   As a result of detecting that the time change rate has exceeded the high threshold RCH, the process proceeds to step S4, and the time change rate of the reflected power is detected again using the detection output of the reflected power detection unit 9, and the time change rate is It is determined whether or not the lower threshold value RCL has been reached (step S5). If it is not lower than the lower threshold RCL (step S5, No), steps S4 and S5 are repeated. In this way, it is determined whether or not the time change rate of the reflected power has become equal to or lower than the lower threshold RCL during the constant voltage charging.

ステップS5の結果、時間変化率が低位閾値RCL以下になれば(ステップS5、Yes)、高周波電源7からの給電を停止する(ステップS6)。上述のとおり、反射電力の時間変化率は、所定の充電が完了すること(ステップS15、Yes)により低位閾値RCL以下になるので、充電の完了を適切に検出することができる。   As a result of step S5, if the time change rate becomes equal to or lower than the lower threshold value RCL (step S5, Yes), the power supply from the high frequency power supply 7 is stopped (step S6). As described above, the time change rate of the reflected power becomes equal to or lower than the lower threshold value RCL when the predetermined charging is completed (step S15, Yes), so that the completion of the charging can be appropriately detected.

以上のとおり、本実施の形態による反射電力の時間変化率の検出は、送電装置1内において実行可能であり、受電装置2との通信を要することなく、充電の完了を精度よく検出して無駄な送電を回避することが可能となる。   As described above, the detection of the time change rate of the reflected power according to the present embodiment can be performed in the power transmission device 1 and it is unnecessary to accurately detect completion of charging without requiring communication with the power reception device 2. It is possible to avoid unnecessary power transmission.

<実施の形態2>
実施の形態2における共鳴型ワイヤレス充電装置について、図5のフロー図を参照して説明する。なお、本実施の形態における共鳴型ワイヤレス装置の構成は、図1に示した実施の形態1の構成と同様である。実施の形態1の場合との相違は、電源コントローラー10による制御動作にあり、従って、図5のフロー図においては、ステップS21〜S22が、図4におけるステップS4〜S5に置き換えられている。従って、図4と同一のステップについては、同一のステップ番号を付して説明の繰り返しを省略する。
<Embodiment 2>
A resonance type wireless charging apparatus according to Embodiment 2 will be described with reference to the flowchart of FIG. The configuration of the resonance type wireless device in the present embodiment is the same as the configuration of the first embodiment shown in FIG. The difference from the case of the first embodiment is in the control operation by the power supply controller 10. Therefore, in the flowchart of FIG. 5, steps S21 to S22 are replaced with steps S4 to S5 in FIG. Accordingly, the same steps as those in FIG. 4 are denoted by the same step numbers, and the description will not be repeated.

本実施の形態の特徴は、反射電力の時間変化率に係る次のような事象を利用することである。すなわち、上述のとおり、反射電力の時間変化率をモニタリングし、高位閾値RCHを超えたことを検出することにより、定電流充電から定電圧充電に切り替わるタイミングを、送電装置1側で非常に正確に検出することができる。従って、予めその切り替わるタイミングでの充電率X%を送電装置1にメモリーしておけば、充電動作時の充電率X%になるタイミングを、送電側で非常に正確に検出することができることになる。   The feature of this embodiment is to use the following phenomenon related to the time change rate of the reflected power. That is, as described above, by monitoring the rate of change of reflected power over time and detecting that the high threshold RCH has been exceeded, the timing of switching from constant current charging to constant voltage charging can be very accurately determined on the power transmission device 1 side. Can be detected. Therefore, if the charging rate X% at the switching timing is stored in the power transmission device 1 in advance, the timing at which the charging rate X% during the charging operation is achieved can be detected very accurately on the power transmission side. .

これに基づき、充電率を所望の値、例えば100%にするために必要な残りの充電率(100−X)%も正確に認識できる。従って、その残りの充電率を充電するのに必要な充電時間Tpを予め送電装置1に設定しておき、検出した定電流充電から定電圧充電に切り替わるタイミングから充電時間Tpだけ送電を行い、その後送電を停止することで、充電率100%まで充電した後に送電を自動的に停止することが可能である。本実施の形態においても、送電を停止する基準となる充電率は、100%とする必要はない。すなわち、所望の充電率P%にするために必要な残りの充電率(P−X)%を充電するのに必要な充電時間Tpを予め送電装置1に設定しておき、それにより、所望の充電率P%に達したときに充電を停止することができる。   Based on this, the remaining charge rate (100-X)% necessary for setting the charge rate to a desired value, for example, 100%, can also be accurately recognized. Therefore, the charging time Tp necessary for charging the remaining charging rate is set in the power transmission device 1 in advance, and power is transmitted for the charging time Tp from the timing when the detected constant current charging is switched to the constant voltage charging. By stopping power transmission, it is possible to automatically stop power transmission after charging to a charging rate of 100%. Also in the present embodiment, it is not necessary to set the charging rate as a reference for stopping power transmission to 100%. That is, a charging time Tp necessary for charging the remaining charging rate (PX)% required to obtain the desired charging rate P% is set in advance in the power transmission device 1, thereby Charging can be stopped when the charging rate P% is reached.

以上の手順を実行するために、図5のステップS3により、反射電力の時間変化率が高位閾値RCHを超えたことが検出された後、その後の充電時間を計測する(ステップS21)。それに伴い、上記充電時間Tpを経過したか否かを判定する(ステップS22)。そして、充電時間Tpを経過したときに(ステップS22、Yes)、高周波電源7による交流電力の発生を停止し、給電を終了する(ステップS6)。このようにして、受電装置2との通信を要することなく、充電の完了を精度よく検出して、無駄な送電を回避することが可能となる。   In order to execute the above procedure, after it is detected in step S3 of FIG. 5 that the time change rate of the reflected power exceeds the high threshold RCH, the subsequent charging time is measured (step S21). Accordingly, it is determined whether or not the charging time Tp has elapsed (step S22). And when charge time Tp passes (step S22, Yes), generation | occurrence | production of the alternating current power by the high frequency power supply 7 is stopped, and electric power feeding is complete | finished (step S6). In this way, it is possible to accurately detect the completion of charging and avoid unnecessary power transmission without requiring communication with the power receiving device 2.

以上のように、本発明の共鳴型ワイヤレス充電装置は、非接触で磁界共鳴により送電装置から受電装置に伝送される電力により、受電装置に接続された2次電池に対して定電流定電圧充電を行う。そして、定電圧充電に移行した後に送電装置側で検出する反射電力の時間変化率に基づいて、送電装置側が充電完了と判定し高周波電源による交流電力の発生を停止させる。これにより、送電側および受電側に通信手段を設けることなく、送電装置において、受電装置内の2次電池の充電完了を適切に検知して電力の浪費を回避できる。   As described above, the resonance type wireless charging device of the present invention is a constant current and constant voltage charging for the secondary battery connected to the power receiving device by the power transmitted from the power transmitting device to the power receiving device by magnetic resonance without contact. I do. Then, based on the time change rate of the reflected power detected on the power transmission device side after shifting to constant voltage charging, the power transmission device side determines that charging is complete and stops the generation of AC power by the high-frequency power source. Accordingly, it is possible to appropriately detect the completion of charging of the secondary battery in the power receiving device and avoid waste of power in the power transmitting device without providing communication means on the power transmitting side and the power receiving side.

なお、本発明は、上述の各実施の形態に限定されるものではなく、例えば、次のように変更して具体化してもよい。   The present invention is not limited to the above-described embodiments. For example, the present invention may be modified and embodied as follows.

すなわち、図1には、送電用1次コイル3及び受電用2次コイル5について、それぞれ電線が螺旋状に巻回されたヘリカル形状を示したが、その形状に限らず、一平面上で渦巻き状に巻回されたスパイラル形状としてもよい。また、これらのコイルの外形は、円形に限らず、例えば、四角形や八角形の多角形にしたり、あるいは楕円形にしたりしてもよい。さらに、送電用1次コイル3と受電用2次コイル5は、図1では同じ大きさ(コイルの直径、長さなど)としたが、2者の大きさは異なっていてもよい。   In other words, FIG. 1 shows a helical shape in which the electric wire is wound spirally for each of the primary coil 3 for power transmission and the secondary coil 5 for power reception. It is good also as the spiral shape wound by the shape. Further, the outer shape of these coils is not limited to a circle, and may be, for example, a quadrangular or octagonal polygon, or an elliptical shape. Furthermore, the primary coil 3 for power transmission and the secondary coil 5 for power reception have the same size (coil diameter, length, etc.) in FIG. 1, but the sizes of the two may be different.

また、図1の例では、送電用1次コイル3及び受電用2次コイル5にコンデンサCを接続した構成としたが、コンデンサCを接続しないコイルのみの構成とし、コイル線の線間容量により共振させてもよい。   In the example of FIG. 1, the capacitor C is connected to the primary coil 3 for power transmission and the secondary coil 5 for power reception. However, only the coil not connected to the capacitor C is used, and the line capacitance of the coil wire You may make it resonate.

また、送電装置1における送電用1次コイル3からの反射電力は、方向性結合器8を経て反射電力検出部9に入力され、計測される例を示したが、方向性結合器8及び反射電力検出部9を用いずに、反射電力は高周波電源7に直接入力されるように構成してもよい。その場合、反射電力は高周波電源7内で計測され、その計測データは電源コントローラー10に送られる。更に、その反射電力データに基づいて電源コントローラー10が2次電池15の充電完了を認識し(と判定し)、送電オフ信号を高周波電源7に入力する。   Moreover, although the reflected power from the primary coil 3 for power transmission in the power transmission device 1 is input to the reflected power detection unit 9 via the directional coupler 8 and measured, the directional coupler 8 and the reflected power are shown. Instead of using the power detection unit 9, the reflected power may be directly input to the high frequency power supply 7. In that case, the reflected power is measured in the high frequency power supply 7 and the measurement data is sent to the power supply controller 10. Further, based on the reflected power data, the power supply controller 10 recognizes (determines that the secondary battery 15 has been fully charged) and inputs a power transmission off signal to the high frequency power supply 7.

本発明の共鳴型ワイヤレス充電装置によれば、簡素な構成で、充電完了時に送電装置からの送電を停止して電力の浪費を回避することが可能であり、電気自動車、産業用機器、携帯用電子機器等の電池を充電する装置として有用である。   According to the resonance type wireless charging apparatus of the present invention, it is possible to stop power transmission from the power transmission apparatus when charging is completed and avoid waste of electric power with a simple configuration. Electric vehicles, industrial equipment, portable It is useful as a device for charging a battery such as an electronic device.

1 送電装置
2 受電装置
3 送電用1次コイル
4 送電用励振コイル
5 受電用2次コイル
6 受電用励振コイル
7 高周波電源
8 方向性結合器
9 反射電力検出部
10 電源コントローラー
11 充電オン/オフスイッチ
12 整流器
13 定電圧制御器
14 充電器
15 2次電池
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Power reception apparatus 3 Primary coil for power transmission 4 Excitation coil for power transmission 5 Secondary coil for power reception 6 Excitation coil for power reception 7 High frequency power supply 8 Directional coupler 9 Reflected power detection part 10 Power supply controller 11 Charging on / off switch 12 Rectifier 13 Constant Voltage Controller 14 Charger 15 Secondary Battery

Claims (3)

送電装置より出力される電力を非接触で磁界共鳴により受電装置に伝送し、受電装置に接続されている2次電池を充電する共鳴型ワイヤレス充電装置において、
前記送電装置は、
交流電力を発生させる高周波電源部と、
前記交流電力を送電する送電用1次コイルと、
前記送電用1次コイルにおいて反射された反射電力を検出する反射電力検出部と、
前記高周波電源部による前記交流電力の発生を制御する電源コントローラとを備え、
前記受電装置は、
前記送電装置から送電された交流電力を受電する受電用2次コイルと、
受電した前記交流電力を整流する整流器と、
前記整流器から出力される直流電力を用いて、前記2次電池に対して、一定の充電電流を流す定電流充電を行った後、電池電圧が一定になるように充電電流を制御する定電圧充電を行う充電器とを備え、
前記電源コントローラは、前記反射電力の時間変化率を検出し、前記定電圧充電の過程で検出される前記時間変化率が、所定の充電率に対応させて設定された低位閾値RCL以下になった場合に、前記交流電力の送電を停止するように制御することを特徴とする共鳴型ワイヤレス充電装置。
In a resonance type wireless charging device that transmits electric power output from a power transmission device to a power reception device by magnetic resonance without contact, and charges a secondary battery connected to the power reception device.
The power transmission device is:
A high-frequency power supply that generates AC power;
A primary coil for power transmission for transmitting the AC power;
A reflected power detector that detects reflected power reflected by the primary coil for power transmission;
A power controller for controlling the generation of the AC power by the high-frequency power unit,
The power receiving device is:
A secondary coil for receiving power that receives AC power transmitted from the power transmission device;
A rectifier that rectifies the received AC power;
Constant voltage charging for controlling the charging current so that the battery voltage becomes constant after performing constant current charging for supplying a constant charging current to the secondary battery using DC power output from the rectifier. With a charger to perform
The power controller detects a time change rate of the reflected power, and the time change rate detected in the constant voltage charging process is equal to or lower than a low threshold RCL set in correspondence with a predetermined charge rate. In this case, the resonance type wireless charging apparatus is controlled so as to stop the transmission of the AC power.
前記電源コントローラは、前記時間変化率が、前記定電流充電から前記定電圧充電に切り替わるときの前記時間変化率の大きさに対応させて設定された高位閾値RCHを超えた後に、前記時間変化率が前記低位閾値RCL以下となったか否かを判定する請求項1に記載の共鳴型ワイヤレス充電装置。   The power supply controller, after the time change rate exceeds a high threshold RCH set corresponding to the magnitude of the time change rate when switching from the constant current charge to the constant voltage charge, the time change rate The resonance type wireless charging apparatus according to claim 1, wherein it is determined whether or not the value is equal to or lower than the lower threshold value RCL. 送電装置より出力される電力を非接触で磁界共鳴により受電装置に伝送し、受電装置に接続されている2次電池を充電する共鳴型ワイヤレス充電装置において、
前記送電装置は、
交流電力を発生させる高周波電源部と、
前記交流電力を送電する送電用1次コイルと、
前記送電用1次コイルにおいて反射された反射電力を検出する反射電力検出部と、
前記高周波電源部による前記交流電力の発生を制御する電源コントローラとを備え、
前記受電装置は、
前記送電装置から送電された交流電力を受電する受電用2次コイルと、
受電した前記交流電力を整流する整流器と、
前記整流器から出力される直流電力を用いて、前記2次電池に対して、一定の充電電流を流す定電流充電を行った後、電池電圧が一定になるように充電電流を制御する定電圧充電を行う充電器とを備え、
前記送電装置には、前記定電圧充電の開始から所定の充電率に達するまでに要する充電時間Tpが記憶され、
前記電源コントローラは、前記充電器による前記定電圧充電の過程に際して検出される前記反射電力の時間変化率を検出し、前記定電流充電から前記定電圧充電に切り替わるときの前記時間変化率の大きさに対応させて設定された高位閾値RCHを前記時間変化率が超えた時点から前記充電時間Tpが経過したときに、前記交流電力の送電を停止するように制御することを特徴とする共鳴型ワイヤレス充電装置。
In a resonance type wireless charging device that transmits electric power output from a power transmission device to a power reception device by magnetic resonance without contact, and charges a secondary battery connected to the power reception device.
The power transmission device is:
A high-frequency power supply that generates AC power;
A primary coil for power transmission for transmitting the AC power;
A reflected power detector that detects reflected power reflected by the primary coil for power transmission;
A power controller for controlling the generation of the AC power by the high-frequency power unit,
The power receiving device is:
A secondary coil for receiving power that receives AC power transmitted from the power transmission device;
A rectifier that rectifies the received AC power;
Constant voltage charging for controlling the charging current so that the battery voltage becomes constant after performing constant current charging for supplying a constant charging current to the secondary battery using DC power output from the rectifier. With a charger to perform
In the power transmission device, a charging time Tp required to reach a predetermined charging rate from the start of the constant voltage charging is stored,
The power supply controller detects the time change rate of the reflected power detected during the constant voltage charging process by the charger, and the magnitude of the time change rate when the constant current charging is switched to the constant voltage charging. The resonance type wireless is controlled so as to stop the transmission of the AC power when the charging time Tp elapses from the time when the time change rate exceeds the high threshold RCH set corresponding to Charging device.
JP2011209261A 2011-09-26 2011-09-26 Resonance type wireless charger Active JP5690251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209261A JP5690251B2 (en) 2011-09-26 2011-09-26 Resonance type wireless charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209261A JP5690251B2 (en) 2011-09-26 2011-09-26 Resonance type wireless charger

Publications (2)

Publication Number Publication Date
JP2013070581A true JP2013070581A (en) 2013-04-18
JP5690251B2 JP5690251B2 (en) 2015-03-25

Family

ID=48475623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209261A Active JP5690251B2 (en) 2011-09-26 2011-09-26 Resonance type wireless charger

Country Status (1)

Country Link
JP (1) JP5690251B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200494A (en) * 2013-04-25 2013-07-10 青岛歌尔声学科技有限公司 Wireless sound box with wireless charging function
CN103633746A (en) * 2013-11-04 2014-03-12 上海华勤通讯技术有限公司 Wireless power supply device, wireless charging device and mobile terminal
WO2015005008A1 (en) * 2013-07-09 2015-01-15 日東電工株式会社 Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus
JP2015136219A (en) * 2014-01-16 2015-07-27 キヤノン株式会社 Charged apparatus, control method thereof, and control program, and non-contact charging system
US9438231B2 (en) 2013-08-23 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Gate drive circuit
EP3197018A1 (en) 2016-01-19 2017-07-26 Daihen Corporation Contactless power supply system and power receiver
WO2017195581A1 (en) * 2016-05-09 2017-11-16 有限会社アール・シー・エス Non-contact power supply device and non-contact power supply system
JP2017204951A (en) * 2016-05-12 2017-11-16 株式会社ダイヘン Power transmission device, power reception device, and non-contact charging system
EP3242374A4 (en) * 2014-12-29 2018-09-05 LG Innotek Co., Ltd. Wireless power transmission device and wireless charging system comprising same
WO2018203176A1 (en) * 2017-05-03 2018-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, charging method thereof, and electronic device
US10177591B2 (en) 2014-03-18 2019-01-08 Ihi Corporation Power-transmitting device and wireless power transmission system
JPWO2020246067A1 (en) * 2019-06-03 2020-12-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157371A1 (en) * 2017-03-03 2018-09-07 小天才科技有限公司 Non-contact charging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182310A (en) * 1995-12-28 1997-07-11 Suzuki Motor Corp Battery charging system
JPH1127871A (en) * 1997-07-03 1999-01-29 Sanyo Electric Co Ltd Charging equipment
JP2011177009A (en) * 2010-01-26 2011-09-08 Equos Research Co Ltd Non-contact power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182310A (en) * 1995-12-28 1997-07-11 Suzuki Motor Corp Battery charging system
JPH1127871A (en) * 1997-07-03 1999-01-29 Sanyo Electric Co Ltd Charging equipment
JP2011177009A (en) * 2010-01-26 2011-09-08 Equos Research Co Ltd Non-contact power transmission system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200494A (en) * 2013-04-25 2013-07-10 青岛歌尔声学科技有限公司 Wireless sound box with wireless charging function
WO2015005008A1 (en) * 2013-07-09 2015-01-15 日東電工株式会社 Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus
JP2015019438A (en) * 2013-07-09 2015-01-29 日東電工株式会社 Wireless power transmitter and supply power control method of wireless power transmitter
CN105359376A (en) * 2013-07-09 2016-02-24 日东电工株式会社 Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus
TWI568126B (en) * 2013-07-09 2017-01-21 Nitto Denko Corp A power transmission method of a wireless power transmission device and a wireless power transmission device
US10069310B2 (en) 2013-07-09 2018-09-04 Nitto Denko Corporation Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus
US9438231B2 (en) 2013-08-23 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Gate drive circuit
CN103633746A (en) * 2013-11-04 2014-03-12 上海华勤通讯技术有限公司 Wireless power supply device, wireless charging device and mobile terminal
JP2015136219A (en) * 2014-01-16 2015-07-27 キヤノン株式会社 Charged apparatus, control method thereof, and control program, and non-contact charging system
EP3121932B1 (en) * 2014-03-18 2020-10-28 IHI Corporation Power supply device and non-contact power supply system
US10177591B2 (en) 2014-03-18 2019-01-08 Ihi Corporation Power-transmitting device and wireless power transmission system
EP3242374A4 (en) * 2014-12-29 2018-09-05 LG Innotek Co., Ltd. Wireless power transmission device and wireless charging system comprising same
EP3197018B1 (en) * 2016-01-19 2019-06-12 Daihen Corporation Contactless power supply system
EP3197018A1 (en) 2016-01-19 2017-07-26 Daihen Corporation Contactless power supply system and power receiver
WO2017195581A1 (en) * 2016-05-09 2017-11-16 有限会社アール・シー・エス Non-contact power supply device and non-contact power supply system
JP2017204951A (en) * 2016-05-12 2017-11-16 株式会社ダイヘン Power transmission device, power reception device, and non-contact charging system
WO2018203176A1 (en) * 2017-05-03 2018-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, charging method thereof, and electronic device
US11316361B2 (en) 2017-05-03 2022-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, charging method thereof, and electronic device
JPWO2020246067A1 (en) * 2019-06-03 2020-12-10
WO2020246067A1 (en) * 2019-06-03 2020-12-10 株式会社村田製作所 Power receiving device of wireless power supply system and electronic equipment
JP7259952B2 (en) 2019-06-03 2023-04-18 株式会社村田製作所 Receiving device of wireless power supply system, electronic equipment

Also Published As

Publication number Publication date
JP5690251B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5690251B2 (en) Resonance type wireless charger
US11757309B2 (en) Apparatus and method for detecting foreign objects in wireless power transmission system
US8274254B2 (en) Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, method for controlling power transmission, and method for controlling power receiving
EP3396807B1 (en) Energy receiver, detection method, power transmission system, detection device, and energy transmitter
KR101720400B1 (en) Power delivery device and power delivery/power receiving system
US20140103711A1 (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
US20140184149A1 (en) Method in wireless power transmission system, wireless power transmission apparatus using the same, and wireless power receiving apparatus using the same
US9130380B2 (en) Contactless power transmitting system having overheat protection function and method thereof
WO2012014482A1 (en) Resonance type non-contact power supply system
WO2013084754A1 (en) Contactless power transmission device
JP2011120443A (en) Resonance type non-contact power transmission apparatus
KR20140113147A (en) Apparatus and method for detecting foreign object in wireless power transmitting system
KR102198935B1 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
KR20140008273A (en) Apparatus and method for detecting foreign object in wireless power transmitting system
JP2016015808A (en) Power reception equipment and non-contact power transmission device
EP3046217B1 (en) Device for receiving wireless power
JP2010119193A (en) Resonant charging system, power feeding device, and electronic equipment
KR102272354B1 (en) Apparatus for wireless power transmission
JP2014217116A (en) Electronic apparatus, electronic apparatus power transmission system and power reception control method
KR102282862B1 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
KR20210003075A (en) Apparatus and method for detecting foreign object in wireless power transmitting system
JP2014042428A (en) Contactless power transmission apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250