JPH11277372A - Working method for work - Google Patents

Working method for work

Info

Publication number
JPH11277372A
JPH11277372A JP8647498A JP8647498A JPH11277372A JP H11277372 A JPH11277372 A JP H11277372A JP 8647498 A JP8647498 A JP 8647498A JP 8647498 A JP8647498 A JP 8647498A JP H11277372 A JPH11277372 A JP H11277372A
Authority
JP
Japan
Prior art keywords
tool
work
workpiece
processing
circular arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8647498A
Other languages
Japanese (ja)
Inventor
Yoshito Yasui
義人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP8647498A priority Critical patent/JPH11277372A/en
Publication of JPH11277372A publication Critical patent/JPH11277372A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent decrease in roundness due to actual working, particularly, in working precision at an approaching part and a releasing part by finishing the working by an up-cutting work such that the relative motion direction of a work and a tool is reverse to the rotating direction of the tool when the work is made apart from the tool. SOLUTION: A work 21 is set to a table of a machine tool, and a tool 20 is rotated clockwise. Next, with respect to the relative position of the work 21 and the tool 20, the work 21 and the tool 20 are moved to a height position (a) to enable a circular arc to be worked promptly in the tangential line direction of the circular arc to be desired upon finishing the circular arc working. Further, the table is moved until the tool 20 reaches a position b as an approaching operation. After that, the table is moved so that a start point and an end point are set to the position (b) and a circular arc interpolation is executed by diameter of the circular arc to be finished. Finally, the table is moved until the tool 20 reaches a position (c) as a releasing operation. As described above, in the case of circular arc working, the working precision upon up-cutting work is always improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工具によってワー
クの加工を行う方法に関するもので、特に、曲線の加工
を含むものを対象としている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a workpiece with a tool, and more particularly to a method including a curve processing.

【0002】[0002]

【従来の技術】従来、工作機械でワークを加工する場
合、特開平9−11020号公報の図5(a)に示され
るように、ワーク21と工具20との相対運動方向Aと
回転方向Bとが同一方向となるダウンカット加工が常識
である。それは、ワーク21と工具20との相対運動方
向Aと回転方向Bとが逆方向となるアップカット加工で
は図5(b)に示すように工具20のワーク21への切
込みが0から徐々に増加していくため、高速加工しよう
とすると、刃先の食いつきがどうしても悪くなり、刃の
上滑りが発生し加工面にむしれが発生しやすいためであ
る。
2. Description of the Related Art Conventionally, when a work is machined by a machine tool, as shown in FIG. 5A of Japanese Patent Application Laid-Open No. 9-11020, the relative movement direction A and rotation direction B of the work 21 and the tool 20 are changed. It is common sense to perform a down cut process in which the same direction is applied. In the up-cut processing in which the relative movement direction A and the rotation direction B of the workpiece 21 and the tool 20 are opposite to each other, the cutting of the tool 20 into the workpiece 21 gradually increases from 0 as shown in FIG. This is because, when trying to perform high-speed machining, the bite of the cutting edge is inevitably deteriorated, and the blade is liable to slip on the machined surface due to upper sliding.

【0003】従って、円弧形状(ピン、ピン穴等)を加
工する場合にも、ダウンカット加工で加工を行ってい
た。
[0003] Therefore, even when processing an arc shape (pin, pin hole, etc.), processing has been performed by down-cut processing.

【0004】一方、ワークを加工するときの加工精度
(円弧補間の場合は、真円度)は、基本的にワークを載
置したテーブルや主軸を備えたコラム等の動きを制御す
る数値制御装置(NC)の性能(円弧補間精度)によっ
て決まっていた。
On the other hand, the processing accuracy (roundness in the case of circular interpolation) when processing a work is basically controlled by a numerical controller for controlling the movement of a table on which the work is mounted or a column having a spindle. (NC) performance (circular interpolation accuracy).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
たダウンカット加工では、NCの性能(円弧補間精度)
が向上しても、円弧形状に加工したワークはNCの性能
(円弧補間精度)の能力を十分に生かした加工精度(真
円度)を得ることができなかった。つまり、ワークの加
工精度(真円度)を測定した場合、実加工によるさまざ
まな影響により、真円度はNCの性能(円弧補間精度)
の能力と比較してかなり悪くなってしまう。特に、ワー
クに工具が加工を始めるアプローチと、ワークと工具と
が離れるリリースの部分でのワークの加工精度が悪くな
ってしまうという問題点があった。
However, in the above-described down-cut processing, the NC performance (circular interpolation accuracy)
However, even if the workpiece shape was improved, the workpiece processed into an arc shape could not obtain the processing accuracy (roundness) that made full use of the NC performance (circular interpolation accuracy). In other words, when measuring the processing accuracy (roundness) of the workpiece, the roundness is determined by the performance of the NC (circular interpolation accuracy) due to various effects due to actual machining.
It will be much worse compared to his ability. In particular, there is a problem in that the approach in which the tool starts machining on the workpiece and the machining accuracy of the workpiece in a release portion where the workpiece and the tool are separated deteriorate.

【0006】本発明は、上述した問題点を解決するため
になされたものであり、実加工による真円度、特にアプ
ローチ、リリース部分において加工精度が低減すること
を防ぐことができるワークを加工する方法を提供するこ
とを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and processes a workpiece which can prevent a reduction in processing accuracy in roundness in actual processing, particularly in an approach and a release portion. It is intended to provide a way.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、請求項1記載のワークの加工方法によれば、ワーク
と工具との相対運動によってワークに対して曲線を含む
加工を施す方法であって、前記ワークと前記工具とが離
れる際に前記ワークと前記工具との相対運動方向と前記
工具の回転方向とが逆方向となるアップカット加工で終
了するようにしている。
According to a first aspect of the present invention, there is provided a method of processing a workpiece, comprising: performing a processing including a curve on the workpiece by a relative motion between the workpiece and a tool. Then, when the workpiece and the tool are separated from each other, the up-cut processing in which the relative movement direction between the workpiece and the tool and the rotation direction of the tool are opposite to each other is finished.

【0008】従って、前記ワークと前記工具とが離れる
際に、アップカット加工で加工されるため、後述する表
1に示したデータから明らかなように加工精度を高める
ことができる。
Therefore, when the workpiece and the tool are separated from each other, the workpiece is processed by the up-cut processing, so that the processing accuracy can be increased as is apparent from the data shown in Table 1 described later.

【0009】また、請求項2に記載のワークの加工方法
によれば、前記ワークと前記工具とが接触する際に前記
ワークと前記工具との相対運動方向と前記工具の回転方
向とが逆方向となるアップカット加工で開始してもよ
い。
According to a second aspect of the present invention, when the workpiece comes into contact with the tool, the direction of relative movement between the workpiece and the tool and the direction of rotation of the tool are opposite. May be started with the up-cut processing.

【0010】この場合、加工終了時にアップカット加工
を行うために工具の回転方向を変更することをせずに加
工することができる。
In this case, the machining can be performed without changing the rotation direction of the tool for performing the up-cutting at the end of the machining.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態のワー
クの加工方法について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A work processing method according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】まず図1及び図2を参照に、本実施の形態
の工作機械10のメカニカルな構成について説明する。
First, a mechanical configuration of a machine tool 10 according to the present embodiment will be described with reference to FIGS.

【0013】図1に示すように、この工作機械10は、
切削屑の飛散を防止するためのスプラッシュガード12
の内側にワーク(図示しない)を載置するためのテーブ
ル14と、例えばドリルやタップ等の工具交換のための
ATCマガジン16と、工作機械本体(以下単に本体と
もいう)20等が配置されている。またスプラッシュガ
ード12には、操作パネル22と、ワークの入出やメン
テナンスのためのワーク交換口24と、主にメンテナン
ス用の点検ハッチ26等が設けられている。尚、操作パ
ネル22には、本体20の動作モードを切り替えるため
の状態スイッチ23と、運転状態等を表示する液晶ディ
スプレイ25と、本体20を動作させるための加工プロ
グラム等を入力するためのテンキーパネル27等が設け
られている。
As shown in FIG. 1, the machine tool 10 includes:
Splash guard 12 to prevent scattering of cutting chips
A table 14 for mounting a work (not shown), an ATC magazine 16 for exchanging tools such as drills and taps, a machine tool main body (hereinafter also simply referred to as a main body) 20 and the like are arranged inside. I have. In addition, the splash guard 12 is provided with an operation panel 22, a work exchange port 24 for entering and exiting and maintaining a work, and an inspection hatch 26 mainly for maintenance. The operation panel 22 includes a state switch 23 for switching an operation mode of the main body 20, a liquid crystal display 25 for displaying an operation state and the like, and a ten-key panel for inputting a processing program for operating the main body 20 and the like. 27 etc. are provided.

【0014】また、図2に示すように本体20は、ドリ
ルやタップ等の工具を保持するための主軸28と、主軸
28を回転駆動するための主軸モータ30と、多数の剛
球を内蔵して主軸側に固着されているナット部32とナ
ット部32に内挿されるボールネジ34とからなるボー
ルネジ機構36と、ボールネジ34を回転駆動するため
のZ軸モータ38と、ボールネジ34と平行に配されて
いるガイドレール40と、ガイドレール40と主軸側と
を連結するスライド42等を備えている。尚、Z軸モー
タ38は、送り軸の駆動モータに相当する。
As shown in FIG. 2, the main body 20 includes a main shaft 28 for holding a tool such as a drill and a tap, a main shaft motor 30 for driving the main shaft 28 to rotate, and a large number of hard balls. A ball screw mechanism 36 including a nut 32 fixed to the main shaft side and a ball screw 34 inserted in the nut 32, a Z-axis motor 38 for rotating and driving the ball screw 34, and a ball screw 34 are disposed in parallel with the ball screw 34. And a slide 42 for connecting the guide rail 40 to the main shaft. Note that the Z-axis motor 38 corresponds to a drive motor for the feed shaft.

【0015】この本体20においては、ボールネジ機構
36とZ軸モータ38とでZ軸方向の送りのためのZ軸
送り機構が構成され、Z軸モータ38によりボールネジ
34を回転させることで主軸28のZ軸方向の移動が行
われる。また図1に示されるテーブル14をX軸および
Y軸方向に移動させることができ、主軸28のZ軸方向
の移動と併せて、ワークと工具のX、Y、Z軸方向の相
対位置を変化させることができる。
In the main body 20, a Z-axis feed mechanism for feeding in the Z-axis direction is constituted by the ball screw mechanism 36 and the Z-axis motor 38. The Z-axis motor 38 rotates the ball screw 34 to rotate the main shaft 28. The movement in the Z-axis direction is performed. The table 14 shown in FIG. 1 can be moved in the X-axis and Y-axis directions, and the relative position of the workpiece and the tool in the X, Y, and Z-axis directions can be changed in conjunction with the movement of the main shaft 28 in the Z-axis direction. Can be done.

【0016】次に、本発明の曲線を含むワークの加工方
法として円弧加工を行う場合について、図3を用いて説
明する。
Next, the case of performing arc machining as a method of machining a workpiece including a curve according to the present invention will be described with reference to FIG.

【0017】図3は、テーブル14にワーク21を載置
した状態の上面図である。
FIG. 3 is a top view showing a state where the work 21 is placed on the table 14.

【0018】まず始めに、図2に示した主軸28に保持
されたワークを切削するための工具20をcw方向に回
転させる。次に、ワーク21と工具20の相対位置を、
円弧加工を仕上げたい円弧の接線方向かつ即座に加工で
きる高さである位置aになるようにテーブル14と工具
20を動かす。更に、アプローチ動作としてワーク21
の位置bに工具20が到達するまでテーブル14を動か
す。その後、始点と終点を位置bとして矢印A方向に仕
上げたい円弧の径の大きさで円弧補間を行うようにテー
ブル14を移動させる。最後に、リリース動作として、
工具20が位置cに達するまでテーブル14を移動させ
る。尚、この円弧加工の動きは一連の動作で行う。
First, the tool 20 for cutting the work held on the main shaft 28 shown in FIG. 2 is rotated in the cw direction. Next, the relative position of the work 21 and the tool 20 is
The table 14 and the tool 20 are moved so as to be at a position a which is a tangential direction of the arc to be finished and the height at which the machining can be performed immediately. Further, the work 21 is used as an approach operation.
The table 14 is moved until the tool 20 reaches the position b. Then, the table 14 is moved so that the start point and the end point are set to the position b and the circular interpolation is performed in the direction of the arrow A in the direction of the arrow A to perform the circular interpolation. Finally, as a release operation,
The table 14 is moved until the tool 20 reaches the position c. The operation of the arc processing is performed by a series of operations.

【0019】次に、図4に円弧加工したワークの測定結
果を示す。図4は、ダウンカット加工で加工した場合の
ワークと、アップカット加工で加工した場合のワークと
を真円度測定器で測定した結果を図示したものである。
ダウンカット加工では、図4(a)に示すようにアプロ
ーチ、リリースポイントであるp1で凹みが生じてい
る。これに対してアップカット加工では、図4(b)に
示すように、アプローチ、リリースポイントであるp2
で凹みは生じていないことが示されている。
Next, FIG. 4 shows the measurement results of a workpiece that has been subjected to arc processing. FIG. 4 illustrates the results of measurement of a workpiece processed by down-cut processing and a workpiece processed by up-cut processing using a roundness measuring device.
In the down-cut processing, as shown in FIG. 4A, a dent occurs at the approach and release point p1. On the other hand, in the up-cut processing, as shown in FIG.
Indicates that no dent is formed.

【0020】更に、アップカット加工とダウンカット加
工のいずれの方法において、送り速度、主軸の回転数、
円弧の径、円弧の内側加工か外側加工かといった条件を
変更して、加工した場合の真円度の誤差を表1に示す。
Further, in any of the up-cut processing and the down-cut processing, the feed speed, the number of revolutions of the spindle,
Table 1 shows errors in the roundness when processing is performed by changing the conditions such as the diameter of the arc and whether the arc is processed inside or outside.

【0021】[0021]

【表1】 [Table 1]

【0022】送り速度についてみると、送り速度が37
5mm/minの場合、真円度誤差はダウンカット加工
の19μmに対しアップカット加工で行えば真円度は1
3μmとなり円弧加工精度は良くなっている。また送り
速度が750mm/min、1500mm/minの場
合も、真円度はそれぞれアップカット加工の14μm、
15μmに対しダウンカット加工の20μm、21μmと
比較してよくなる。
Looking at the feed speed, the feed speed is 37.
In the case of 5 mm / min, the roundness error is 1 μm when performed by up-cut processing for 19 μm of down-cut processing.
It becomes 3 μm and the arc processing accuracy is improved. Also, when the feed speed is 750 mm / min and 1500 mm / min, the roundness is 14 μm,
It is better than 15 μm compared to 20 μm and 21 μm of the down-cut processing.

【0023】また、主軸回転数について比較してみる
と、主軸回転数が15000rpmと22000rpm
で加工を行った場合も真円度はダウンカット加工の33
μm、38μmに対し、アップカット加工では23μm、
33μmであった。
Further, comparing the main shaft rotation speeds, the main shaft rotation speeds are 15,000 rpm and 22,000 rpm.
The roundness is 33 when down machining.
μm, 38μm, 23μm in up-cut processing,
It was 33 μm.

【0024】また、円弧の加工径をφ3とφ20で加工を
行った場合も径の大きさに関係なくアップカット加工で
行った方が真円度は良い。
Also, in the case where the processing diameter of the arc is φ3 and φ20, the roundness is better if the processing is performed by the up-cut processing regardless of the size of the diameter.

【0025】更に、円弧加工の種類(内円と外円)でも
関係なくやはりアップカット加工の方がダウンカット加
工に比べ真円度は良くなる結果が得られた。
Further, regardless of the type of the arc processing (inner circle and outer circle), the result that the roundness is better in the up-cut processing than in the down-cut processing is obtained.

【0026】以上の結果から、円弧の種類(内周円、外
周円)、円弧径および加工条件(送り速度、主軸回転
数)等の条件に関係なく、円弧加工を行う場合は常にア
ップカット加工で加工を行った場合の方が加工精度(真
円度)は良くなることが判明した。
From the above results, regardless of the type of arc (inner circle, outer circle), arc diameter and machining conditions (feed speed, spindle speed), etc., up-cut machining is always performed when arc machining is performed. It was found that the processing accuracy (roundness) was better when the processing was performed with.

【0027】尚、本発明は上述した実施の形態に限定さ
れるものではなく、要旨を逸脱しない範囲内において様
々な変形が可能である。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

【0028】本実施の形態では、曲線を含む加工として
円弧を加工する例を示したが、曲線が含まれる加工であ
ればいずれでもよい。
In this embodiment, an example in which an arc is machined as a process including a curve has been described, but any process may be used as long as the process includes a curve.

【0029】また、所望の加工を実現するための加工プ
ログラム内に、円弧指令がある場合、その円弧指令の回
転方向(CW、CCW)を検出して、工具が装着された
主軸の回転方向を変更するようにしてもよい。
If a machining program for realizing a desired machining includes an arc command, the rotation direction (CW, CCW) of the arc command is detected, and the rotation direction of the spindle on which the tool is mounted is determined. It may be changed.

【0030】逆に、主軸の回転方向が指令としてた指定
された場合、円弧指令の回転方向を自動的に決定するよ
うにしてもよい。
Conversely, when the rotation direction of the spindle is designated as a command, the rotation direction of the arc command may be automatically determined.

【0031】[0031]

【発明の効果】以上説明したことから明かなように、請
求項1記載のワークの加工方法によれば、前記ワークと
前記工具とが離れる際に、アップカット加工で加工され
るため、ダウンカット加工で加工したときよりも加工精
度を高めることができる。
As is apparent from the above description, according to the method of processing a work according to the first aspect, when the work and the tool are separated from each other, the work is processed by the up-cut processing. Processing accuracy can be increased as compared with the case of processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態の工作機械の外観図を示す斜視図
である。
FIG. 1 is a perspective view showing an external view of a machine tool according to the present embodiment.

【図2】工作機械の構成を表す図である。FIG. 2 is a diagram illustrating a configuration of a machine tool.

【図3】本実施の形態のワークの加工方法を示した図で
ある。
FIG. 3 is a diagram illustrating a method of processing a workpiece according to the present embodiment.

【図4】円弧切削を実施した後の、ワークの真円度を測
定した結果図であり、(a)はダウンカット加工による
もの、(b)はアップカット加工によるものである。
FIGS. 4A and 4B are diagrams showing the results of measuring the roundness of a workpiece after performing arc cutting, in which FIG. 4A shows a result obtained by down-cutting and FIG. 4B shows a result obtained by up-cutting.

【符号の説明】[Explanation of symbols]

20 工具 21 ワーク 28 主軸 38 Z軸モータ 20 Tool 21 Work 28 Spindle 38 Z-axis motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ワークと工具との相対運動によってワー
クに対して曲線を含む加工を施すワークの加工方法であ
って、 前記ワークと前記工具とが離れる際に前記ワークと前記
工具との相対運動方向と前記工具の回転方向とが逆方向
となるアップカット加工で終了することを特徴とするワ
ークの加工方法。
1. A method of processing a workpiece for performing a processing including a curve on a workpiece by a relative motion between the workpiece and the tool, the relative motion between the workpiece and the tool when the workpiece is separated from the tool. A method of machining a workpiece, wherein the method ends with an up-cut process in which a direction is opposite to a rotation direction of the tool.
【請求項2】 前記ワークと前記工具とが接触する際に
前記ワークと前記工具との相対運動方向と前記工具の回
転方向とが逆方向となるアップカット加工で開始するこ
とを特徴とする請求項1に記載のワークの加工方法。
2. The method according to claim 1, wherein when the workpiece and the tool come into contact with each other, an up-cut process is started in which the direction of relative movement between the workpiece and the tool and the direction of rotation of the tool are opposite. Item 2. The method for processing a work according to Item 1.
JP8647498A 1998-03-31 1998-03-31 Working method for work Pending JPH11277372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8647498A JPH11277372A (en) 1998-03-31 1998-03-31 Working method for work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8647498A JPH11277372A (en) 1998-03-31 1998-03-31 Working method for work

Publications (1)

Publication Number Publication Date
JPH11277372A true JPH11277372A (en) 1999-10-12

Family

ID=13887976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8647498A Pending JPH11277372A (en) 1998-03-31 1998-03-31 Working method for work

Country Status (1)

Country Link
JP (1) JPH11277372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020436A (en) * 2011-07-11 2013-01-31 Jatco Ltd Machining device and machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020436A (en) * 2011-07-11 2013-01-31 Jatco Ltd Machining device and machining method

Similar Documents

Publication Publication Date Title
JP3761230B2 (en) Machine Tools
JP6546355B1 (en) Differential case processing machine
JPH0794094B2 (en) Machine Tools
JPH03178735A (en) Three phase crankshaft machining
JP2019171503A (en) Robot processing system
JP5080120B2 (en) Polygon processing apparatus and polygon processing method
TWI768194B (en) work machinery
JPH11151606A (en) Profile machining method and machining machinery
JPH11239909A (en) Deburring method and device thereof
WO2021210522A1 (en) Machine tool
JPH11277372A (en) Working method for work
JPH11207514A (en) Machining method and finishing machine
JP2002254231A (en) Cutting method
JPH0592301A (en) Machine tool
JP2012161904A (en) Composite tool, machining method, and machine tool
JPH11179608A (en) Finish work method and working machine
JP4144955B2 (en) Gear machining method
JP4656371B2 (en) Cutting method
JP4621569B2 (en) Machining method of spindle crossing inner circumference in lathe
JP6565380B2 (en) Cutting device, cutting method and annular tool
JP2003300115A (en) Machining center capable of machining gear and machining method for gear
CN214642661U (en) Polishing device
WO2023062973A1 (en) Processing machine and method for manufacturing object to be processed
JP3194493B2 (en) Machine Tools
JP7058103B2 (en) Work end face cutting method