JPH11277219A - Stirring and transporting device for conductive high-temperature liquid - Google Patents

Stirring and transporting device for conductive high-temperature liquid

Info

Publication number
JPH11277219A
JPH11277219A JP12518398A JP12518398A JPH11277219A JP H11277219 A JPH11277219 A JP H11277219A JP 12518398 A JP12518398 A JP 12518398A JP 12518398 A JP12518398 A JP 12518398A JP H11277219 A JPH11277219 A JP H11277219A
Authority
JP
Japan
Prior art keywords
gas
permanent magnet
cylinder
ring
rotary cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12518398A
Other languages
Japanese (ja)
Inventor
Itsuo Onaka
逸雄 大中
Tsunamitsu Nakahara
綱光 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onaka Itsuo
Original Assignee
Onaka Itsuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onaka Itsuo filed Critical Onaka Itsuo
Priority to JP12518398A priority Critical patent/JPH11277219A/en
Publication of JPH11277219A publication Critical patent/JPH11277219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute the speed control of a conductive high-temp. fluid, to rationalize stages and to improve quality by arranging a permanent magnet on the circumference of a vessel or transporting pipe of the conductive high-temp. fluid or the circumference of a solidified layer enclosing a liquid phase and holding and rotating this magnet by a pressurizing gas. SOLUTION: A rotary cylinder 4 combined with the permanent magnet and a nonmagnetic material is disposed on the circumference of a refractory pipe 2 including molten metal 1 and is supported by hydrostatic air bearings 5, 6 using carbon material. The pressurizing gas is supplied from a gas pipe 7 for the air bearings to the hydrostatic air bearings 5, 6. The rotary cylinder 4 is rotated by the gas injected from a nozzle 10 for rotation. The outer periphery of the rotary cylinder 4 is provided with ruggedness in order to efficiently transfer the kinetic energy of the gas. Air or gaseous nitrogen is supplied as the gas from a gas supply pipe 11 for rotation and executes the cooling of the rotary cylinder 4 as well. As a result, the decreasing of the surface defects by pouring and the capturing and removing of inclusions are executed and the product excellent in the control of the solidified structure and mechanical properties is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鋳造における溶融金属の
撹拌・輸送など,導電性高温液体を撹拌・輸送したり,
その流動あるいは凝固組織を制御するための装置に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to stirring and transporting a conductive high-temperature liquid, such as stirring and transporting molten metal in casting.
The present invention relates to an apparatus for controlling the flow or the solidified structure.

【0002】[0002]

【従来の技術】鋳造では,溶融金属を鋳型内に注湯する
ため,溶融金属を輸送する必要がある。また,連続鋳造
の場合,ノズル中の溶融金属に回転流動を生じさせる
と,ノズルからの流出速度,方向を制御できるため,介
在物などの巻き込みを防ぐことが可能である。さらに,
固液共存状態で撹拌し,凝固させることにより凝固組織
を制御できる。これらの目的のため,容器や輸送パイプ
の周囲に電磁石を配置して,溶融金属に電磁気力を作用
させ,輸送,撹拌などを行うことが従来行われている。
また,実験室的には,はんだなど低融点合金の撹拌に対
して,永久磁石を玉軸受などで機械的に保持して電気モ
ータで回転させている例もある。
2. Description of the Related Art In casting, molten metal must be transported in order to pour molten metal into a mold. In addition, in the case of continuous casting, if the molten metal in the nozzle is caused to rotate and flow, the outflow speed and direction from the nozzle can be controlled, so that entrapment of inclusions and the like can be prevented. further,
The solidification structure can be controlled by stirring and solidifying in the coexistence state of solid and liquid. For these purposes, it has been conventional practice to arrange an electromagnet around a container or a transport pipe to apply an electromagnetic force to molten metal to perform transport, stirring, and the like.
Further, in the laboratory, there is an example in which a permanent magnet is mechanically held by a ball bearing or the like and rotated by an electric motor with respect to stirring of a low melting point alloy such as solder.

【0003】[0003]

【本発明が解決しようとする課題】上記のような電磁石
の利用や転がり軸受や滑り軸受支持と電気モータによる
回転では,鋼などの高温液体に利用する場合,以下のよ
うな問題がある:第1に電磁石では,水冷が必要であ
り,万一水が漏れた場合に水蒸気爆発の危険性がある。
第2に水冷しないと温度が上がるため熱膨張により回転
摩擦が増え,回転が困難になったり,耐久性が短くな
る。第3に,構造が複雑で周方向に分割困難であり,輸
送パイプやノズルの周囲に設置・保守するのが容易では
ない。第4に寸法が大きくなり,狭い空間への設置が困
難である。このため,このような問題がない場合以外に
は実用化されておらず,これらを解決する装置が望まれ
ている。
The use of electromagnets as described above and the use of rolling bearings or plain bearings and rotation by electric motors have the following problems when used in high-temperature liquids such as steel: (1) Electromagnets require water cooling, and if water leaks, there is a danger of steam explosion.
Secondly, if not cooled with water, the temperature rises, so that the rotational expansion increases due to thermal expansion, making rotation difficult or durable. Third, the structure is complicated and difficult to divide in the circumferential direction, and it is not easy to install and maintain around the transport pipes and nozzles. Fourth, the dimensions are large, and it is difficult to install in a narrow space. For this reason, it has not been put to practical use except when there is no such problem, and an apparatus for solving these problems is desired.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するために,永久磁石を周囲方向あるいは螺旋状に配置
し一部をくり抜いたリングあるいは円筒を,気体軸受で
支持し,外周部に加圧ガスを吹き付けて回転させる。ま
た,このリングあるいは円筒は周方向に2分割以上に分
割し,楔状の分割面とし,永久磁石を分割面に配置した
構造とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a ring or cylinder in which permanent magnets are arranged circumferentially or spirally and a part of which is hollowed out is supported by a gas bearing, and is mounted on the outer periphery. A pressurized gas is blown to rotate. Further, the ring or the cylinder is divided into two or more in the circumferential direction to form a wedge-shaped division surface, and the permanent magnet is arranged on the division surface.

【0005】[0005]

【作用】永久磁石の回転あるいは移動と共に導電性液体
が移動するのは,モータにおいて移動磁界と共にロータ
が回転するのと同じ原理であり,良く知られた事実であ
る。本発明はこの原理を利用して実用的に高温導電性液
体(固相を含んでいても良い)に回転あるいは移動駆動
力を与えるものであり,以下のような作用がある。第1
に,本発明の装置では,水を使用せず,ガスのみで支
持,回転,冷却するので,水蒸気爆発的などの事故が生
じず,安全である。第2に,ガスだけで支持,回転,冷
却しているため,構造が簡単で,小型化可能である。こ
のため,周方向への分割が容易で既存の容器やパイプな
どの周囲への設置・保守が容易である。第3に,回転体
とその保持構造体はガス膜で分離されているので,熱膨
張による回転への影響が少ない。第4に,ガス噴射を外
周部から行うので構造が簡単で分割も容易である,第5
に,永久磁石をリングあるいは円筒状に配置しているの
で,磁石の相互作用による引力が周方向に分散され,半
径方向に力が作用せず保持が容易である,第6に磁石を
螺旋状に配置した場合,導電性液体を一方向に移動でき
る。第7に,磁気圧力により介在物の一方向移動が可能
であり,介在物の巻き込みを防止できる。第8に,分割
面を楔状にしているので,自動的に芯合わせが可能であ
る。第9に,回転円筒の一部をくり抜くことで軽量化で
き,ガス使用量を少なくできる。第10に,回転円筒分
割面の磁石の吸引力により,分割面の自動接続が可能で
ある。
The fact that the conductive liquid moves with the rotation or movement of the permanent magnet is the same principle as the rotation of the rotor with the moving magnetic field in the motor, and is a well-known fact. The present invention practically provides a high-temperature conductive liquid (which may contain a solid phase) with a rotational or moving driving force utilizing this principle, and has the following effects. First
In addition, the apparatus of the present invention does not use water and supports, rotates and cools only with gas, so that there is no accident such as steam explosion, and the apparatus is safe. Second, the structure is simple and can be reduced in size because it is supported, rotated and cooled only by gas. For this reason, division in the circumferential direction is easy, and installation and maintenance around existing containers and pipes are easy. Third, since the rotating body and its holding structure are separated by a gas film, the rotation of the rotating body is less affected by thermal expansion. Fourth, since gas injection is performed from the outer peripheral portion, the structure is simple and division is easy.
In addition, since permanent magnets are arranged in a ring or cylindrical shape, the attractive force due to the interaction of the magnets is dispersed in the circumferential direction, and no force acts in the radial direction, making it easy to hold. When the conductive liquid is arranged in one direction, the conductive liquid can move in one direction. Seventh, the inclusion can move in one direction due to the magnetic pressure, and the inclusion can be prevented from being caught. Eighth, since the dividing surface is formed in a wedge shape, the alignment can be automatically performed. Ninth, weight can be reduced by hollowing out a part of the rotating cylinder, and the amount of gas used can be reduced. Tenth, automatic connection of the divided surfaces is possible by the attraction force of the magnet on the divided surface of the rotating cylinder.

【0006】[0006]

【実施例】以下、本発明の実施例を添付図面に基づいて
詳述する。図1は実施した装置の一例であり,溶湯を
含む耐火物パイプの周囲に配置した例を示している。
まず,パイプに近い位置に内筒があるが,これは万一
の場合の回転円筒の保護のためのもので,なくても良
い。は永久磁石と非磁性材料を組み合わせた円筒(以
後回転円筒という)で,詳細は後述する(図2,3,
4,5)。この回転円筒は,の炭素材料を使用した
気体静圧軸受で支持されているが,必ずしも炭素材料で
なくても良いし,他の形式の気体軸受でも良い。また,
の軸受は熱膨張の影響が少ないので必ずしも気体軸受
である必要はなく,転がり軸受など他の軸受でも良い。
これらの気体軸受はのパイプから加圧ガス(空気ある
いは他のガスでも良い)を供給される。はこれらの軸
受を保持する軸受支持である。の回転円筒は▲10▼
のノズルから噴射されたガスにより回転させられる。回
転円筒には,後述(図3,4,6)のようにガスの運動
エネルギを効率良く円筒に伝えるために,凹凸が設けて
ある。▲11▼は回転用ガスを供給するパイプである。
ガスとしては空気の他窒素などを使用しても良い。この
ガスおよび気体軸受からのガスが回転円筒の冷却も行
う。もし,冷却が不足する場合には,回転用ガスとして
微細な水滴を混合したミストを使用しても良い。▲12
▼は軸受支持底盤を介して軸受支持を支持するもの
で,ボールベアリングあるいはローラベアリング▲13
▼,▲14▼で基礎に支持されており,最初の設置時あ
るいは取り外し時には,ウオームギヤ▲15▼を介して
サーボモータ等▲16▼により左右に移動させるが,手
動で移動しても良い。▲12▼の支持体にはバネ▲17
▼が取り付けてあり,本装置稼働時には分割した軸受支
持底盤を一定荷重で押しつけている。なお,本装置の
取外し時には,分割面に使用している磁石間隙に楔を空
気シリンダで差し込めば容易に自動的に分離できる。な
お,このシリンダは軸受支持底盤に固定されている。
図2は,回転円筒の実施例を示したもので(回転駆動用
凹凸部は省略している),は駆動用のサマリューム・
コバルト系永久磁石,はアルミニューム合金である
が,他の永久磁石および非磁性材料でも良い。,は
勘合部に設置した磁石で,楔状の勘合部が接近する
と,磁力により自動的に一体化する。しかし,ボルト等
で接続して一体化しても良い。勘合部の形態は他の形態
でも良いが,勘合部を楔状にしておくことで,自動的な
位置合わせが可能となる。また,設置環境によっては分
割しなくても良い。駆動用永久磁石の数,形状は目的や
使用条件で異なる。回転力を与える場合には対向した一
対の配置でも良いし,2対としても良い。推進力を与え
るには,図3に示す様に螺旋状に磁石を配置する。図
4,5は,回転円筒を軽量化して回転用および支持用の
ガス消費量を少なくするもので,くり抜く形状,寸法,
場所は回転,支持,分割に支障がなければ自由である。
形状としては楕円,円形,矩形,その他でも良い。回転
円筒に回転駆動力を効率良く与えるための凹凸(貫通し
ていても良い)の形状としては,断面が本図のような3
角形状のもの以外に図6のような形状や翼型でも良い。
また,必ずしも全周になく,局所的にあっても良い。ま
た,図5のように中心部に設置し,軸受を端部に設置し
ても良い。これら凹凸の形状,寸法,場所は,回転体の
質量,回転数,摩擦力,磁石寸法,位置などで最適値が
決まる。また,図5,6に示す例では,ガス圧力および
噴射方向を変更することで回転数を制御することができ
る。上記装置により,外形50mm,内径30mmのパ
イプ中の溶融アルミニュームを,約0.2m/sの速度
で回転あるいは移動させることができた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an example of the apparatus which is implemented, and shows an example in which the apparatus is arranged around a refractory pipe containing a molten metal.
First, there is an inner cylinder near the pipe, but this is for protecting the rotating cylinder in case of an emergency, and may not be necessary. Is a cylinder combining a permanent magnet and a non-magnetic material (hereinafter referred to as a rotating cylinder).
4,5). The rotating cylinder is supported by a gas static pressure bearing using a carbon material. However, the rotating cylinder may not necessarily be a carbon material, and may be another type of gas bearing. Also,
Is not necessarily a gas bearing because the influence of thermal expansion is small, and other bearings such as a rolling bearing may be used.
These gas bearings are supplied with pressurized gas (air or other gas) from the pipes. Is a bearing support for holding these bearings. The rotating cylinder is ▲ 10 ▼
Is rotated by the gas injected from the nozzle. The rotating cylinder is provided with concavities and convexities for efficiently transmitting the kinetic energy of the gas to the cylinder as described later (FIGS. 3, 4, and 6). (11) is a pipe for supplying a rotating gas.
As the gas, nitrogen or the like may be used in addition to air. This gas and the gas from the gas bearing also cool the rotating cylinder. If cooling is insufficient, a mist mixed with fine water droplets may be used as a rotating gas. ▲ 12
The symbol ▼ supports the bearing support via the bearing support bottom plate.
At the time of initial installation or removal, it is moved to the left and right by a servomotor or the like (16) via a worm gear (15) at the time of initial installation or removal, but it may be moved manually. Spring 17 on the support 12
▼ is attached, and the divided bearing support base is pressed with a constant load when this device is operating. When the device is removed, the wedge can be easily and automatically separated by inserting a wedge with a pneumatic cylinder into the gap between the magnets used on the dividing surface. This cylinder is fixed to the bearing support base.
FIG. 2 shows an embodiment of a rotary cylinder (rotational drive irregularities are omitted).
The cobalt-based permanent magnet is an aluminum alloy, but may be another permanent magnet or a non-magnetic material. , Are magnets installed in the fitting portion, and when the wedge-shaped fitting portion approaches, they are automatically integrated by magnetic force. However, they may be integrated by connecting them with bolts or the like. The form of the fitting portion may be other forms, but by making the fitting portion wedge-shaped, automatic positioning can be performed. In addition, it is not necessary to divide it depending on the installation environment. The number and shape of the driving permanent magnets differ depending on the purpose and use conditions. When a rotational force is applied, a pair may be arranged facing each other, or two pairs may be arranged. To provide propulsion, magnets are arranged spirally as shown in FIG. Figures 4 and 5 show the reduction in the weight of the rotating cylinder to reduce gas consumption for rotation and support.
The place is free as long as rotation, support and division are not hindered.
The shape may be an ellipse, a circle, a rectangle, and others. The shape of the concavities and convexities (which may be penetrated) for efficiently applying the rotational driving force to the rotating cylinder is as shown in FIG.
In addition to the square shape, the shape and the airfoil shown in FIG. 6 may be used.
In addition, it does not necessarily have to be on the entire circumference, and may be locally. Also, as shown in FIG. 5, the bearing may be installed at the center and the bearing may be installed at the end. The optimum values for the shape, size, and location of these irregularities are determined by the mass, rotation speed, frictional force, magnet size, and position of the rotating body. In the examples shown in FIGS. 5 and 6, the rotation speed can be controlled by changing the gas pressure and the injection direction. With the above apparatus, molten aluminum in a pipe having an outer diameter of 50 mm and an inner diameter of 30 mm could be rotated or moved at a speed of about 0.2 m / s.

【007】007

【発明の効果】本発明によれば、導電性高温流体の速度
制御や輸送が可能になり,工程の合理化や製品の品質向
上に役立つ。品質向上としては,例えば,均一な鋳込み
による表面欠陥の軽減,介在物の捕捉軽減あるいは積極
的除去などがある。また,凝固組織を制御し,機械的性
質の優れた製品が製造可能となる。
According to the present invention, the speed control and transport of the conductive high-temperature fluid are made possible, which contributes to streamlining the process and improving the quality of products. The quality improvement includes, for example, reduction of surface defects by uniform casting, reduction of inclusion inclusion, or active removal. In addition, the solidification structure can be controlled, and a product having excellent mechanical properties can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施した装置例を示すもので,溶湯を含む
耐火物パイプの周囲に配置した例を示している。は
保護内筒,は永久磁石と非磁性材料を組み合わせた回
転円筒,,は静圧気体軸受,は気体軸受用ガスパ
イプ,は軸受支持,は軸受支持底盤,▲10▼は回
転用ノズル,▲11▼は回転用ガス供給パイプ,▲12
▼は装置支持,▲13▼▲14▼はボールベアリング,
▲15▼はウオームギヤ,▲16▼はサーボモータ,▲
17▼はバネである。
FIG. 1 shows an example of an implemented apparatus, in which an apparatus is arranged around a refractory pipe containing a molten metal. Is a protective inner cylinder, is a rotating cylinder combining a permanent magnet and a nonmagnetic material, is a hydrostatic gas bearing, is a gas pipe for a gas bearing, is a bearing support, is a bearing support bottom plate, (10) is a rotary nozzle, (11) ▼ is a gas supply pipe for rotation, ▲ 12
▼ is device support, 1313 ▼ 1414 is ball bearing,
(15) is a worm gear, (16) is a servo motor, and (▲)
17 ▼ denotes a spring.

【図2】は,回転円筒の構造,特に分割構造例を示した
もので,はサマリューム・コバルト系永久磁石,は
アルミニューム合金,は勘合部に設置した永久磁
石,は楔状の勘合部である。
Fig. 2 shows the structure of a rotating cylinder, especially an example of a divided structure, where is a samarium-cobalt permanent magnet, is an aluminum alloy, is a permanent magnet installed in the fitting portion, and is a wedge-shaped fitting portion. .

【図3】は液体に推進力を与える場合の例で磁石を螺
旋状に配置した例である。
FIG. 3 is an example in which a propulsive force is applied to a liquid, in which magnets are spirally arranged.

【図4,5】は回転円筒に回転駆動力を効率良く与える
ために設けた凹凸(3角形断面形状)と軽量化のため円
筒をくり抜いた例を示したもので,はサマリューム・
コバルト系永久磁石,はアルミニューム合金,がく
り抜いた穴,が凹凸部である。
FIGS. 4 and 5 show irregularities (triangular cross-sectional shape) provided for efficiently applying a rotational driving force to a rotating cylinder and an example in which the cylinder is hollowed out for weight reduction.
Cobalt-based permanent magnets are aluminum alloys, and hollow holes are irregularities.

【図6】は回転駆動力を与えるための凹凸部の他の形状
例を示したものである。
FIG. 6 shows another example of the shape of the concave / convex portion for giving a rotational driving force.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性高温液体の容器あるいは輸送パイ
プの周囲,あるいは液相を内包する凝固層の周囲に配置
して,加圧ガスにより,永久磁石を保持・回転させるこ
とを特徴とする装置。
An apparatus characterized in that a permanent magnet is held and rotated by a pressurized gas disposed around a container or transport pipe of a conductive high-temperature liquid or around a solidified layer containing a liquid phase. .
【請求項2】 上記請求項1に記載の装置で,永久磁石
と非磁性材料を組み合わせてリングあるいは円筒とし
て,回転させる装置。
2. The apparatus according to claim 1, wherein a permanent magnet and a non-magnetic material are combined to rotate as a ring or a cylinder.
【請求項3】 上記請求項1および2に記載の装置で周
方向に2分割あるいはそれ以上に分割し,磁石あるいは
ボルトあるいは外側からの押しつけ力で接続することを
特徴とする装置。
3. The apparatus according to claim 1, wherein the apparatus is divided into two or more in the circumferential direction and connected by a magnet, a bolt, or a pressing force from outside.
【請求項4】 上記請求項1,2および3に記載の装置
で,分割体の一方の分割面の肉厚方向あるいは長さ方向
あるいはその両方の形状を楔状のオス型に,もう一方の
分割面の形状を対応するメス型にした装置。
4. The apparatus according to claim 1, wherein one of the divided surfaces of the divided body has a wedge-shaped male shape in a thickness direction and / or a length direction, and the other has a divided shape. A device with a female shape corresponding to the shape of the surface.
【請求項5】上記請求項1,2,3および4に記載の装
置で,永久磁石と非磁性材料を組み合わせたリングある
は円筒の一部をくり抜いたものを回転させる装置。
5. The apparatus according to claim 1, wherein said ring or cylinder formed by combining a permanent magnet and a non-magnetic material is partially hollowed out.
【請求項6】 上記請求項1,2,3,4および5に記
載の装置で,永久磁石と非磁性材料を組み合わせたリン
グあるは円筒の外周部および端部を気体軸受で支持し,
この軸受位置と異なる外周部の一部に回転方向に加圧ガ
スジェットを噴射して回転させる装置。
6. The apparatus according to claim 1, wherein the outer periphery and the end of the ring or the cylinder combining a permanent magnet and a non-magnetic material are supported by gas bearings.
A device that rotates by injecting a pressurized gas jet in a rotational direction to a part of the outer peripheral portion different from the bearing position.
【請求項7】 上記請求項6に記載の装置で,リングあ
るは円筒の端部を転がり軸受や滑り軸受などの軸受で支
持する装置。
7. The device according to claim 6, wherein the end of the ring or the cylinder is supported by a bearing such as a rolling bearing or a sliding bearing.
【請求項8】 上記請求項1,2,3,4,5,6およ
び7に記載の永久磁石と非磁性材料を組み合わせたリン
グあるは円筒で,永久磁石を螺旋状に配置したものを使
用する装置。
8. A ring or a cylinder in which the permanent magnet according to claim 1, 2, 3, 4, 5, 6, and 7 is combined with a non-magnetic material, wherein a permanent magnet is spirally arranged. Equipment to do.
JP12518398A 1998-03-30 1998-03-30 Stirring and transporting device for conductive high-temperature liquid Pending JPH11277219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12518398A JPH11277219A (en) 1998-03-30 1998-03-30 Stirring and transporting device for conductive high-temperature liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12518398A JPH11277219A (en) 1998-03-30 1998-03-30 Stirring and transporting device for conductive high-temperature liquid

Publications (1)

Publication Number Publication Date
JPH11277219A true JPH11277219A (en) 1999-10-12

Family

ID=14903968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12518398A Pending JPH11277219A (en) 1998-03-30 1998-03-30 Stirring and transporting device for conductive high-temperature liquid

Country Status (1)

Country Link
JP (1) JPH11277219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150883A (en) * 2014-05-21 2019-09-12 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
CN110382136A (en) * 2017-02-28 2019-10-25 诺维尔里斯公司 The crystal grain refinement of the ingot casting of shear-induced

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150883A (en) * 2014-05-21 2019-09-12 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
US10835954B2 (en) 2014-05-21 2020-11-17 Novelis Inc. Mixing eductor nozzle and flow control device
US11383296B2 (en) 2014-05-21 2022-07-12 Novelis, Inc. Non-contacting molten metal flow control
CN110382136A (en) * 2017-02-28 2019-10-25 诺维尔里斯公司 The crystal grain refinement of the ingot casting of shear-induced

Similar Documents

Publication Publication Date Title
JPH11277219A (en) Stirring and transporting device for conductive high-temperature liquid
US4824478A (en) Method and apparatus for producing fine metal powder
KR960010241B1 (en) Double roll type method and apparatus for continuously casting thin sheets
Wei et al. Centrifugal casting
JP2009533225A (en) Strip continuous casting
US5547013A (en) Rotary wheel casting machine
JP2889192B2 (en) Apparatus for producing powdered magnet material
US3642055A (en) Method of and apparatus for continuously casting molten metal
JP2000000642A (en) Metal strip continuous casting equipment
EP0237558B1 (en) Method and apparatus for continuous casting
JPH07115132B2 (en) Casting method of Al-Mg alloy with twin rolls
US3844332A (en) Making seamless tubing by continuous process
CN108044062A (en) A kind of equipment continuous control method and its equipment for turning round continuous production alloy
CN2264054Y (en) Compound movable electroslag smelting casting
WO1982003809A1 (en) Apparatus for spraying metal or other material
US6263951B1 (en) Horizontal rotating directional solidification
US6997236B2 (en) Bearing arrangement for a centrifugal casting machine
JPH03221257A (en) Aluminum alloy casting product
CN208116703U (en) A kind of disc type molten metal casting molding machine
JPH05237635A (en) Water-cooling rotary disk type casting mold device in induction heating type vacuum melting furnace
CN108072281A (en) A kind of heat-energy recovering apparatus and its equipment for turning round continuous production alloy
CN108057858A (en) A kind of casting system for turning round continuous production alloy
AU721235B2 (en) Rotary wheel casting machine
JP2824380B2 (en) Centrifugal casting method
JP2012179621A (en) Molten metal holding furnace