JPH11276841A - Device for submerged regeneration in wet desulfurizing - Google Patents

Device for submerged regeneration in wet desulfurizing

Info

Publication number
JPH11276841A
JPH11276841A JP10087061A JP8706198A JPH11276841A JP H11276841 A JPH11276841 A JP H11276841A JP 10087061 A JP10087061 A JP 10087061A JP 8706198 A JP8706198 A JP 8706198A JP H11276841 A JPH11276841 A JP H11276841A
Authority
JP
Japan
Prior art keywords
regeneration
containing gas
tower
oxygen
submerged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10087061A
Other languages
Japanese (ja)
Inventor
Shigenori Ogawa
重徳 小川
Yoichi Murai
洋一 村井
Hideki Touku
英樹 藤九
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP10087061A priority Critical patent/JPH11276841A/en
Publication of JPH11276841A publication Critical patent/JPH11276841A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for submerged regeneration in wet desulfurizing equipment, which has high air use efficiency, can be easily installed and maintained, and is inexpensive in the equipment and operation costs, and to provide a simple method for installing the device for the submerged regeneration without stopping the operation of the desulfurizing equipment. SOLUTION: This device for submerged regeneration in wet desulfurizing is formed by installing a plurality of perforated nozzles for injecting an oxygen-containing gas on the bottom side wall of a regeneration tower 6 in wet desulfurizing equipment in which a hydrogen sulfide-containing gas is brought into contact with a redox system catalyst-containing absorption liquid in an absorption tower 2 to absorb and remove the hydrogen sulfide, this hydrogen sulfide-containing absorption liquid is brought into contact with the oxygen-containing gas in the regeneration tower 6 to be oxidized and liberate sulfur to regenerate the redox system catalyst, and the regenerated absorption liquid circulates to the absorption tower 2. In this method for installing the device for submerged regeneration, after punching a plurality of installation holes onto the bottom side wall of the regeneration tower 6 by an incessant hole drilling method, the perforated nozzles for injecting the oxygen-containing gas, connected to valves adjusting the injection amount of the oxygen-containing gas, are attached to these installation holes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばコークス炉
ガス等の燃料ガスに含まれる硫化水素、シアン化水素等
の酸性の不純成分を吸収液との接触により吸収除去し、
その吸収液に酸素含有ガスを吹き込んで吸収液を酸化再
生する湿式脱硫における液中再生装置に関するものであ
り、特に空気利用効率の低い気中再生装置を備えた既存
の湿式脱硫設備を空気利用効率の高い液中再生装置へ改
造するのに好適である。
The present invention relates to a method for absorbing and removing acidic impurities such as hydrogen sulfide and hydrogen cyanide contained in a fuel gas such as a coke oven gas by contact with an absorbing solution.
The present invention relates to an in-liquid regenerator for wet desulfurization in which an oxygen-containing gas is blown into the absorbent to oxidize and regenerate the absorbent, particularly to an existing wet desulfurization facility equipped with an air regenerator with low air utilization efficiency. It is suitable for remodeling to a submerged regenerating device with high density.

【0002】[0002]

【従来の技術】コークス炉ガス、石油分解ガス、天然ガ
ス、各種工場廃ガスには、硫化水素などが含有されてお
り、これらをそのまま燃料ガスとして使用すると燃焼時
にイオウ酸化物が生成して大気汚染を招いたり、またそ
のまま原料ガスとして使用すると反応機器等が腐食した
り、触媒が劣化したり、製品が汚染されるなどの問題が
ある。したがって、コークス炉ガス等の硫化水素含有ガ
スは、脱硫したのち各種の用途に使用される。従来の脱
硫技術としては、硫化水素を金属鉄と反応させて固定す
る乾式脱硫法の他に、いわゆるレドックス系触媒を用い
る湿式脱硫法が知られている。この湿式脱硫法は、多量
のガスを脱硫するのに適しており、代表的な湿式脱硫法
としては、ピクリン酸を用いるフマックス法、アントラ
キノンスルホン酸塩を用いるストレッドフォード法、ナ
フトキノンスルホン酸塩を用いるタカハックス法などが
挙げられる。これらの方法は、いずれもレドックス系触
媒を含むアルカリ性溶液に硫化水素含有ガスを接触させ
て硫化水素を吸収分離し、硫化水素を吸収した吸収液を
酸素含有ガスで再生し、その再生液を再び吸収液として
循環使用し、硫化水素をイオウやイオウ化合物として回
収する方法である。
2. Description of the Related Art Coke oven gas, petroleum cracked gas, natural gas, and various industrial waste gases contain hydrogen sulfide and the like, and if these are used as fuel gas as they are, sulfur oxides are generated during combustion to produce atmospheric air. If it is used as a raw material gas as it is, the reaction equipment and the like are corroded, the catalyst is deteriorated, and the product is contaminated. Accordingly, hydrogen sulfide-containing gas such as coke oven gas is used for various purposes after desulfurization. As a conventional desulfurization technique, in addition to a dry desulfurization method in which hydrogen sulfide is reacted with metallic iron and fixed, a wet desulfurization method using a so-called redox catalyst is known. This wet desulfurization method is suitable for desulfurizing a large amount of gas, and typical wet desulfurization methods include the Fumax method using picric acid, the Stredford method using anthraquinone sulfonate, and naphthoquinone sulfonate. The Takahax method to be used is exemplified. In each of these methods, a hydrogen sulfide-containing gas is brought into contact with an alkaline solution containing a redox catalyst to absorb and separate hydrogen sulfide, and the absorbing solution that has absorbed hydrogen sulfide is regenerated with an oxygen-containing gas, and the regenerated solution is again used. This is a method in which hydrogen sulfide is recovered as sulfur or a sulfur compound by circulating it as an absorbing solution.

【0003】その脱硫反応機構は、例えばフマックス法
によりコークス炉ガスを脱硫する場合、次のとおりであ
る。まず、吸収塔において、コークス炉ガスは、アンモ
ニア(NH3)、硫化水素 (H2 S) 及びシアン化水素
(HCN) が水硫化アンモニウム(NH4 HS)及びシ
アン化アンモニウム(NH4 CN)として吸収液に吸収
され、水硫化アンモニウムは吸収液中のピクリン酸で酸
化されてイオウ(S)を分離する。このイオウは吸収塔
で生成する多硫化アンモニウム((NH4)2 X+1)のイオ
ウ源として消費されると共にシアン化アンモニウムと反
応してロダン酸アンモニウム(NH4 SCN)を生成す
る。この際、ピクリン酸のNO2 基は還元されてNHO
H基となり、硫化水素に対するピクリン酸の量が少ない
とNHOH基はさらに還元されてNH2 基になる。
The desulfurization reaction mechanism is as follows when desulfurizing a coke oven gas by the Humax method, for example. First, in the absorption tower, coke oven gas includes ammonia (NH 3 ), hydrogen sulfide (H 2 S) and hydrogen cyanide.
(HCN) is absorbed in the absorbing solution as ammonium bisulfide (NH 4 HS) and ammonium cyanide (NH 4 CN), and the ammonium bisulfide is oxidized by picric acid in the absorbing solution to separate sulfur (S). This sulfur is consumed as a sulfur source of ammonium polysulfide ((NH 4 ) 2 S X + 1 ) generated in the absorption tower and reacts with ammonium cyanide to form ammonium rhodate (NH 4 SCN). At this time, the NO 2 group of picric acid is reduced to NHO
When the amount of picric acid relative to hydrogen sulfide is small, the NHOH group is further reduced to an NH 2 group.

【0004】一方、再生塔において、吸収液中の水硫化
アンモニウムは酸素含有ガスで酸化されてチオシアン酸
アンモニウムが生成すると共に、還元状態のピクリン酸
は再生塔で酸素含有ガスで酸化され、元のピクリン酸に
再生される。湿式脱硫におけるピクリン酸の反応は下記
式のとおりである。
On the other hand, in the regeneration tower, ammonium hydrosulfide in the absorbing solution is oxidized by the oxygen-containing gas to form ammonium thiocyanate, and picric acid in a reduced state is oxidized by the oxygen-containing gas in the regeneration tower to recover the original acid. Regenerated into picric acid. The reaction of picric acid in wet desulfurization is as follows.

【化1】 Embedded image

【0005】上記の再生工程で消費される酸素量は、処
理される硫化水素の約0.7モル倍が必要となり、例え
ばコークス炉ガス処理能力10万Nm3 /hrの脱硫設
備では、空気量として約1万Nm3 /hr(空気利用効
率10%の場合)にも達する。それゆえ、このような規
模の脱硫設備の吸収液再生装置は、高さ25m、直径1
0mの巨大な再生塔と、巨大な空気ブローワー、吸収液
循環ポンプなどで構成され、莫大な設備費用と動力費用
に加えて、腐食性のガス、液体を処理する設備であるの
で多額の保守費用を必要とする。
[0005] The amount of oxygen consumed in the regeneration step needs to be about 0.7 mole times the amount of hydrogen sulfide to be treated. For example, in a desulfurization facility with a coke oven gas treatment capacity of 100,000 Nm 3 / hr, the amount of air About 10,000 Nm 3 / hr (in the case of an air use efficiency of 10%). Therefore, the absorbent regenerating device of such a desulfurization facility has a height of 25 m and a diameter of 1 m.
It consists of a huge regeneration tower of 0 m, a huge air blower, an absorption liquid circulating pump, etc., and in addition to huge equipment and power costs, is a facility that treats corrosive gases and liquids, so a large amount of maintenance costs Need.

【0006】従来の脱硫設備では、この再生用空気を再
生塔の下部から装入し、塔上部から吸収液を降らせて向
流接触させる、いわゆる気中再生(気相酸化)方式が採
用されることが多かった。しかしながら、この気中再生
方式は、液の分散効率が高くないうえ気液の接触時間も
短いので、空気利用効率が5〜10%と低く、巨大な再
生装置を必要とし、動力費も多大なものにならざるをえ
なかった。また、タカハックス法のように液中再生(液
相酸化)方式では、被処理ガスと吸収液とを予め混合し
て再生塔に装入するプレミックス法(特公昭58−4
9,590号公報参照)や、横向気液混合法(特開昭6
2−192,490号公報参照)などが知られている。
この液中再生方式は、比較的コンパクトな設備とするこ
とができるが、気中再生方式で建設された装置を液中再
生方式に変更するには、塔自体に大幅な改造を要し、ま
たポンプやブロワーの吐出圧力をかなり高くする必要が
あり、経済性の面からほぼ不可能に近い。
In a conventional desulfurization facility, a so-called air regeneration (gas phase oxidation) system is adopted in which the regeneration air is charged from the lower part of the regeneration tower, and the absorbent is dropped from the upper part of the tower and brought into countercurrent contact. There were many things. However, this air regeneration system does not have a high liquid dispersion efficiency and a short gas-liquid contact time, so that the air use efficiency is as low as 5 to 10%, requires a huge regeneration device, and requires a large power cost. I had to become something. In the in-liquid regeneration (liquid-phase oxidation) method such as the Takahax method, a premix method in which a gas to be treated and an absorbing solution are preliminarily mixed and charged into a regeneration tower (Japanese Patent Publication No. 58-4)
No. 9,590) and a horizontal gas-liquid mixing method (Japanese Patent Laid-Open No.
2-192,490) and the like.
This submerged regeneration system can be a relatively compact facility, but changing the equipment constructed by the aerial regeneration system to the submerged regeneration system requires significant remodeling of the tower itself, It is necessary to make the discharge pressure of the pump and the blower considerably high, which is almost impossible in terms of economy.

【0007】さらに、特開平3−42,011号公報に
は、吸収塔と再生塔とをその下部で自然連結し、再生塔
からの再生吸収液を脱気槽を経由して吸収塔に循環する
液中再生方式が提案されている。この方式では、再生空
気吹き込みに前記特開昭62−192,490号公報記
載の高価な気液混合ノズルが用いられており、設備費用
がかさみ、また気中再生方式の装置をこの方式に改造す
るには、数カ月間脱硫設備を停止しなければならないこ
とから、コークス炉稼働率の高い状況下では採用できな
いという問題がある。
Further, Japanese Patent Application Laid-Open No. 3-42,011 discloses that an absorption tower and a regeneration tower are spontaneously connected at a lower portion thereof, and a regenerated absorbent from the regeneration tower is circulated to the absorption tower via a deaeration tank. A submerged regeneration method has been proposed. In this method, an expensive gas-liquid mixing nozzle described in JP-A-62-192490 is used for blowing the regeneration air, so that the equipment cost increases, and the apparatus of the air regeneration method is modified to this method. In order to achieve this, the desulfurization facility must be shut down for several months, so that there is a problem that it cannot be used in a situation where the operating rate of the coke oven is high.

【0008】[0008]

【発明が解決しようとする課題】したがって、本発明の
目的は、湿式脱硫設備において、空気利用効率が高く、
設置や保守も容易でかつ設備費用、運転費用が低廉な液
中再生装置を提供することにある。また、本発明の他の
目的は、脱硫設備の操業を停止することなく、かかる液
中再生装置の簡便な取付け方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a wet desulfurization facility having a high air utilization efficiency,
An object of the present invention is to provide a submerged regenerating apparatus that can be easily installed and maintained, and has low equipment costs and operating costs. Another object of the present invention is to provide a simple mounting method of such a submerged regenerating apparatus without stopping the operation of a desulfurization facility.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、硫
化水素含有ガスを吸収塔においてレドックス系触媒含有
吸収液と接触させて硫化水素を吸収除去し、この硫化水
素含有吸収液を再生塔において酸素含有ガスで接触酸化
してイオウを遊離させると共にレドックス系触媒を再生
し、再生された吸収液を前記吸収塔に循環する湿式脱硫
において、再生塔の底部側壁に酸素含有ガス噴出用の多
孔式ノズルを複数個設置してなる湿式脱硫における液中
再生装置である。
That is, the present invention relates to a hydrogen sulfide-containing gas which is brought into contact with a redox catalyst-containing absorbing solution in an absorption tower to absorb and remove hydrogen sulfide, and the hydrogen sulfide-containing absorbing solution is recovered in a regeneration tower. In wet desulfurization in which sulfur is released by contact oxidation with an oxygen-containing gas to release sulfur and regenerate the redox catalyst, and the regenerated absorbent is circulated to the absorption tower, a porous type for jetting the oxygen-containing gas is provided on the bottom side wall of the regeneration tower. This is a submerged regeneration device in wet desulfurization in which a plurality of nozzles are installed.

【0010】また、本発明は、硫化水素含有ガスを吸収
塔においてレドックス系触媒含有吸収液と接触させて硫
化水素を吸収除去し、この硫化水素含有吸収液を再生塔
において酸素含有ガスで接触酸化してイオウを遊離させ
ると共にレドックス系触媒を再生し、再生された吸収液
を前記吸収塔に循環する湿式脱硫において、再生塔の底
部側壁に不断穿孔法により複数の取付け孔を穿孔した
後、該複数の各取付け孔に、酸素含有ガスの噴出量を調
整するバルブに連結された酸素含有ガス噴出用の多孔式
ノズルを設置することを特徴とする湿式脱硫における液
中再生装置の取付け方法である。
The present invention also relates to a hydrogen sulfide-containing gas which is brought into contact with a redox catalyst-containing absorbing solution in an absorption tower to absorb and remove hydrogen sulfide, and the hydrogen sulfide-containing absorbing solution is oxidized with an oxygen-containing gas in a regeneration tower. In order to liberate sulfur and regenerate the redox catalyst, and in the wet desulfurization in which the regenerated absorbent is circulated to the absorption tower, a plurality of mounting holes are pierced in the bottom side wall of the regeneration tower by a continuous perforation method. A method for mounting a submerged regenerating apparatus in wet desulfurization, comprising: installing, in each of a plurality of mounting holes, a porous nozzle for discharging an oxygen-containing gas connected to a valve that adjusts a discharge amount of an oxygen-containing gas. .

【0011】以下、本発明について詳細に説明する。本
発明の液中再生装置には、再生塔の酸素含有ガス噴出用
ノズルとして、複雑で製作費用の高い従来の気液混合ノ
ズルに代えて、構造が簡単で製作費用が低廉な多孔式ノ
ズルを用いるものである。この多孔式ノズルは、ノズル
前面に貫通孔を多数設け、この貫通孔と気室が連通する
構造のものであり、気室は空気等の酸素含有ガス配管と
接続される。これらの貫通孔は、ノズルの中心及びその
同心円周上に規則正しく配置されていることが好まし
い。また、酸素含有ガスを液中に効率よく分散させるに
は、ノズル前面が平板状のものより、その中心が周縁よ
り突出した形状のものがよい。ノズル孔径と孔数は、再
生塔の液深、酸素含有ガスの吐出圧力により、酸素含有
ガスの利用効率を勘案して適宜決めればよい。
Hereinafter, the present invention will be described in detail. In the submerged liquid regeneration apparatus of the present invention, a porous nozzle having a simple structure and a low production cost is used as a nozzle for ejecting the oxygen-containing gas of the regeneration tower in place of a conventional gas-liquid mixing nozzle having a complicated and high production cost. It is used. This multi-hole nozzle has a structure in which a large number of through holes are provided on the front surface of the nozzle, and the through holes communicate with the air chamber. The air chamber is connected to an oxygen-containing gas pipe such as air. It is preferable that these through holes are regularly arranged on the center of the nozzle and on the concentric circumference thereof. Further, in order to efficiently disperse the oxygen-containing gas in the liquid, it is preferable that the center of the nozzle protrudes from the peripheral edge rather than the flat front face of the nozzle. The nozzle hole diameter and the number of holes may be determined as appropriate according to the liquid depth of the regeneration tower and the discharge pressure of the oxygen-containing gas in consideration of the utilization efficiency of the oxygen-containing gas.

【0012】本発明に用いる多孔式ノズルは、上記のよ
うな構造のものであれば特に制限はないが、図5に示す
ように、多孔式ノズル35、収納ボックス36、振れ止
め37、スタッフインボックス38、噴出量調整バルブ
39及びグランドパッキン40などを備えてなるノズル
セット34として設置することが好ましい。また、多孔
式ノズル35と噴出量調整バルブ39との間に洗浄用ス
チーム管(図示せず)を接続しておくと、再生装置を停
止することなく、ノズルのスチーム洗浄を随時行うこと
ができる。
The porous nozzle used in the present invention is not particularly limited as long as it has the above-mentioned structure, but as shown in FIG. 5, the porous nozzle 35, the storage box 36, the steady rest 37, the stuff-in nozzle It is preferable to install the nozzle set 34 including the box 38, the ejection amount adjustment valve 39, the gland packing 40, and the like. In addition, if a cleaning steam pipe (not shown) is connected between the multi-hole nozzle 35 and the ejection amount adjusting valve 39, steam cleaning of the nozzle can be performed at any time without stopping the regenerating device. .

【0013】また、本発明の液中再生装置には、脱硫設
備の設備能力に応じて複数個の多孔式ノズルを設置す
る。その設置箇所は、気液の接触効率を高めるため、可
能な限り塔底に近い塔側壁に規則的に設置することがよ
い。これらの複数個のノズルは、塔側壁からの距離が一
定になるように設置してもよいが、液内に気泡を均一に
分散させるため短いものと長いものを交互に設置するこ
とが好ましい。
Further, in the submerged regenerating apparatus of the present invention, a plurality of perforated nozzles are installed according to the capacity of the desulfurization facility. In order to increase the gas-liquid contact efficiency, the installation location should be regularly installed on the side wall of the tower as close to the bottom as possible. The plurality of nozzles may be installed so that the distance from the tower side wall is constant, but it is preferable to alternately install short nozzles and long nozzles in order to uniformly disperse bubbles in the liquid.

【0014】本発明の液中再生装置は、新設の湿式脱硫
設備に設置してもよいが、特に既設の気中再生方式の脱
硫設備を液中再生方式に改造するのに適している。ま
た、必要に応じて、既設の気中再生方式に加えて、本発
明の液中再生装置を追加設置することもできる。この場
合、吸収液の再生能力が増えるので、既設の湿式脱硫設
備の処理能力を増強するのに効果的である。
Although the submerged regeneration apparatus of the present invention may be installed in a newly installed wet desulfurization facility, it is particularly suitable for converting an existing air regeneration type desulfurization facility to a submerged regeneration system. If necessary, the submerged regeneration apparatus of the present invention can be additionally installed in addition to the existing air regeneration system. In this case, since the regeneration capacity of the absorbing solution is increased, it is effective to enhance the processing capacity of the existing wet desulfurization equipment.

【0015】既設の気中再生方式の脱硫設備を液中再生
方式に改造したり、液中再生装置を追加設置するには、
通常、数カ月の工事期間中脱硫設備の操業を停止するこ
とになる。したがって、予めコークスを造り溜めしてお
き、コークス炉の操業率を落とし、この間に改造工事を
行うなどコークス生産計画に合わせた工事スケジュール
とせざるをえなかった。
In order to convert an existing air regeneration type desulfurization system to a submerged regeneration system or to additionally install a submerged regeneration device,
Usually, the operation of the desulfurization facility will be stopped during the construction period of several months. Therefore, the coke must be prepared and stored in advance, the operation rate of the coke oven must be reduced, and during this time the remodeling work has to be carried out in accordance with the coke production plan.

【0016】本発明においては、改良された不断ノズル
挿入法を採用することにより、脱硫設備の操業を停止す
ることなく、安全かつ確実に設備の改造工事を行うこと
ができる。まず、再生塔の側壁に不断穿孔法により複数
の取付け孔を穿孔し、これらの各取付け孔に酸素含有ガ
ス噴出用の多孔式ノズルを設置するが、予めこの多孔式
ノズルに酸素含有ガス噴出量調整用バルブを連結してお
く。この調整用バルブを閉止した状態で不断穿孔用バル
ブに取り付けた後、不断穿孔用バルブを開いて多孔式ノ
ズルのスプレーノズルを塔内に挿入する。最後に、調整
用バルブに酸素含有ガス配管を接続することによって、
取付け工事が終了する。この間、既存の気中再生装置は
操業したままでよく、吸収液の再生操作は継続してお
り、脱硫設備を停止する必要がない。このようにして設
置した液中再生装置は、噴出量調整用バルブを開き、酸
素含有ガス(空気)を多孔式ノズルに送風することによ
り操業を開始することができる。なお、この改良された
不断ノズル挿入法は、再生塔の改造工事に限らず、吸収
塔の改造工事を始め、各種化学プラントの改造、改修工
事などに広く適用できるものである。
In the present invention, by adopting the improved continuous nozzle insertion method, the remodeling work of the equipment can be performed safely and reliably without stopping the operation of the desulfurization equipment. First, a plurality of mounting holes are drilled on the side wall of the regeneration tower by a continuous drilling method, and a porous nozzle for jetting the oxygen-containing gas is installed in each of these mounting holes. Connect the adjustment valve. After the adjustment valve is closed and attached to the valve for continuous perforation, the valve for continuous perforation is opened and the spray nozzle of the porous nozzle is inserted into the tower. Finally, by connecting the oxygen-containing gas pipe to the regulating valve,
Installation work is completed. During this time, the existing aerial regeneration device may be operated, the regeneration operation of the absorbent is continued, and there is no need to stop the desulfurization equipment. The submerged regenerating apparatus thus installed can start operation by opening the ejection amount adjusting valve and sending oxygen-containing gas (air) to the porous nozzle. The improved continuous nozzle insertion method can be widely applied to not only the remodeling work of the regeneration tower but also the remodeling work of the absorption tower, as well as the remodeling and renovation work of various chemical plants.

【0017】[0017]

【発明の実施の態様】以下、図面により本発明を具体的
に説明する。図1は、湿式脱硫設備の概念を示す説明
図、図2及び図3は、本発明に用いられる多孔式ノズル
の一例を示す側面断面図とその正面図、図4は、本発明
の液中再生装置の一例を示す再生塔の底部断面図であ
る。図5は、不断ノズル挿入法により、再生塔内に本発
明の多孔式ノズルを設置する方法を示す組立断面図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing the concept of a wet desulfurization facility, FIGS. 2 and 3 are side sectional views and an elevation view showing an example of a porous nozzle used in the present invention, and FIG. It is a bottom sectional view of a regeneration tower showing an example of a regeneration device. FIG. 5 is an assembly sectional view showing a method of installing the multi-hole nozzle of the present invention in the regeneration tower by a continuous nozzle insertion method.

【0018】図1において、硫化水素、シアン化水素等
を含有するコークス炉ガス(COG)1は、吸収液散布
ノズルと充填材を備えた吸収塔2に装入され、再生塔6
からの循環吸収液と向流接触して脱硫され、精製COG
3として次工程へ送り出される。硫化水素等を吸収した
吸収液4は、吸収塔2の液溜から抜き出され、ポンプ5
で再生塔6に装入される。再生用の酸素含有ガス(空
気)7は、空気ブローワー8により昇圧されたのち多孔
式ノズル9から再生塔6の液溜中に噴出される。ここで
は、触媒を再生すると共にイオウ化合物等の酸化が行わ
れる。再生された吸収液10は循環ポンプ11で吸収塔
2に循環され、再生用空気は廃ガス12として排出され
る。
In FIG. 1, a coke oven gas (COG) 1 containing hydrogen sulfide, hydrogen cyanide and the like is charged into an absorption tower 2 provided with an absorption liquid spray nozzle and a filler, and a regeneration tower 6 is provided.
In countercurrent contact with the circulating absorbent from
It is sent to the next process as 3. The absorbing liquid 4 that has absorbed hydrogen sulfide and the like is withdrawn from the liquid reservoir of the absorption tower 2 and is pumped.
At the regeneration tower 6. The oxygen-containing gas (air) 7 for regeneration is pressurized by an air blower 8 and then ejected from a perforated nozzle 9 into a liquid reservoir of a regeneration tower 6. Here, the catalyst is regenerated and oxidation of the sulfur compound and the like is performed. The regenerated absorbent 10 is circulated to the absorption tower 2 by a circulation pump 11, and the air for regeneration is discharged as waste gas 12.

【0019】本発明において、再生用空気を噴出させる
のに用いる多孔式ノズルの一例は、図2及び図3に示す
とおり、ノズル前面に多数の噴出孔21を備え、噴出孔
21はノズル内部の気室22に貫通している。空気の分
散効率を高めるために、ノズル前面は、その中心が周縁
より突出した形状となっている。図3に示す噴出孔21
は、ノズル中心と二つの同心円上に配列されているが、
この同心円は更に多くしてもよい。
In the present invention, one example of a multi-hole nozzle used for jetting the air for regeneration has a large number of jet holes 21 on the front surface of the nozzle as shown in FIGS. 2 and 3, and the jet holes 21 are provided inside the nozzle. It penetrates into the air chamber 22. In order to enhance the air dispersion efficiency, the nozzle front surface has a shape in which the center protrudes from the peripheral edge. Jet hole 21 shown in FIG.
Are arranged on the nozzle center and two concentric circles,
This concentric circle may be more.

【0020】また、図4に示すように、液中再生装置に
おける多孔式ノズルAは、再生塔の底部に近い側壁に、
短いものと長いものを交互に複数個規則的に設置する
と、液中に気泡がより均一に分散する。また、多孔式ノ
ズルAの空気配管に洗浄用スチーム管Bを接続しておく
と、再生装置を停止することなくノズルのスチーム洗浄
を随時行うことができる。これらの多孔式ノズルAは、
再生塔の底部に近くに塔の周壁に沿って配置された空気
供給用のサークル管Cに設置することがよい。
Further, as shown in FIG. 4, the porous nozzle A in the submerged regenerating apparatus is provided on a side wall near the bottom of the regenerating tower.
When a plurality of short and long ones are alternately arranged, bubbles are more uniformly dispersed in the liquid. If the cleaning steam pipe B is connected to the air pipe of the multi-hole nozzle A, steam cleaning of the nozzle can be performed at any time without stopping the regenerating device. These multi-hole nozzles A
It is preferable to install in a circle pipe C for air supply arranged near the bottom of the regeneration tower and along the peripheral wall of the tower.

【0021】次に、不断ノズル挿入法による工事方法の
一例を図5により説明する。 (1)再生塔の側板31に不断穿孔用ノズル32を溶接
する。 (2)不断穿孔用バルブ33を閉止した状態で取り付け
る。 (3)不断穿孔用バルブ33に不断穿孔機(図示せず)
を取り付ける。 (4)不断穿孔用バルブ33を開き、塔側板31を穿孔
する。 (5)不断穿孔を完了した後、不断穿孔用バルブ33を
閉止する。 (6)不断穿孔機を取り外す。 (7)予め組み立てておいたノズルセット34(多孔式
ノズル35、収納ボックス36、振れ止め37、スタッ
フインボックス38、噴出量調整バルブ39など)を不
断穿孔用バルブ33のフランジに取り付ける。 (8)不断穿孔用バルブ33を開き、多孔式ノズル35
を挿入する。この時、噴出量調整バルブ39は閉止し、
不断穿孔用バルブ33は開いておく。この時、スタッフ
インボックス38のグランドパッキン40をグランドパ
ッキン押え41で締め付け、塔内の気液の漏洩を防止す
る。 (9)噴出量調整バルブ39の上流側に吹き込み用の空
気配管(図示せず)を接続する。 (10)噴出量調整バルブ39を開き、塔内へ空気を吹
き込み、液中再生装置の使用を開始する。
Next, an example of a construction method using the continuous nozzle insertion method will be described with reference to FIG. (1) The nozzle 32 for continuous drilling is welded to the side plate 31 of the regeneration tower. (2) The perforated valve 33 is mounted in a closed state. (3) Continuous drilling machine (not shown) for valve 33 for continuous drilling
Attach. (4) The valve 33 for continuous perforation is opened, and the tower side plate 31 is perforated. (5) After completing the continuous perforation, the valve 33 for continuous perforation is closed. (6) Remove the continuous drilling machine. (7) The nozzle set 34 (such as the multi-hole nozzle 35, the storage box 36, the steady rest 37, the stuff-in box 38, and the ejection amount adjusting valve 39) that has been assembled in advance is attached to the flange of the valve 33 for continuous drilling. (8) Open the valve 33 for continuous perforation and open the perforated nozzle 35
Insert At this time, the ejection amount adjustment valve 39 is closed,
The valve for continuous perforation 33 is kept open. At this time, the gland packing 40 of the stuff-in box 38 is tightened by the gland packing presser 41 to prevent gas-liquid leakage in the tower. (9) An air pipe (not shown) for blowing is connected to the upstream side of the ejection amount adjusting valve 39. (10) The ejection amount adjustment valve 39 is opened, air is blown into the tower, and the use of the submerged regeneration device is started.

【0022】[0022]

【実施例】実施例1 気中再生装置を備えた湿式脱硫設備(処理能力17.5
万Nm3 /hr、再生用空気量13,000Nm3 /h
r)を、図2〜図3に示す多孔式ノズルを図4に示すよ
うに取り付け、液中再生方式と気中再生方式が併用可能
な設備に改造した。液中再生装置には、孔径5.3m
m、孔数24個を有する多孔式ノズル合計12個を前記
の不断ノズル挿入法により設置した。この脱硫設備を用
いてCOGを脱硫したところ、COG処理量19.5万
Nm3 /hrで、再生する吸収液3000Nm3 /h
r、再生塔の液深6.0m、液中再生空気1,000N
3 /hr、気中再生空気13,000Nm3 /hrと
して、吸収液は目標値に再生できた。この改造により、
COGの処理量が17.5万Nm3 /hr(気中再生方
式)から19.5万Nm3 /hrに向上した。また、改
造工事中も脱硫設備を停止することなく、操業を継続で
きた。
EXAMPLES Example 1 Wet desulfurization equipment equipped with an in-air regeneration device (processing capacity 17.5
Ten thousand Nm 3 / hr, air for regeneration amount 13,000Nm 3 / h
r) was modified so that the porous nozzle shown in FIGS. 2 and 3 was attached as shown in FIG. The underwater regeneration device has a pore diameter of 5.3m.
m, a total of 12 perforated nozzles having 24 holes were installed by the above-described continuous nozzle insertion method. When COG was desulfurized using this desulfurization equipment, the COG treatment amount was 195,000 Nm 3 / hr, and the absorbent to be regenerated was 3000 Nm 3 / h.
r, regenerating tower liquid depth 6.0m, regenerating air in liquid 1,000N
The absorption liquid was able to be regenerated to the target value at m 3 / hr and air regenerated air of 13,000 Nm 3 / hr. With this remodeling,
The COG throughput increased from 175,000 Nm 3 / hr (in-air regeneration method) to 1950 Nm 3 / hr. In addition, the operation could be continued without stopping the desulfurization equipment during the remodeling work.

【0023】実施例2 実施例1で改造された湿式脱硫設備において、気中再生
用ノズルへの通気を完全にストップし、液中再生方式の
みで吸収液の再生を行った。コークス炉ガスの処理量1
7.0万Nm3 /hrのとき、再生する吸収液3000
Nm3 /hr、再生塔の液深6.0mとし、液中再生空
気4,000Nm3 /hrで吸収液は目標値に再生でき
た。これによって、再生空気量は従来の気中再生方式の
13,000Nm3 /hrから4,000Nm3 /hr
と大幅に削減でき、空気利用効率が5%から20%に著
しく改善された。これによって空気ブローワーを小型の
ものに取り換えることが可能となり、動力費を著しく低
減できる。
Example 2 In the wet desulfurization facility modified in Example 1, the ventilation to the aerial regeneration nozzle was completely stopped, and the absorption liquid was regenerated only by the in-liquid regeneration method. Coke oven gas throughput 1
At 70,000 Nm 3 / hr, the absorbing liquid to be regenerated 3000
Nm 3 / hr, a regenerator of liquid depth 6.0 m, the absorption liquid in the liquid in the regeneration air 4,000 nm 3 / hr could play the target value. As a result, the amount of regeneration air is reduced from 13,000 Nm 3 / hr of the conventional air regeneration method to 4,000 Nm 3 / hr.
The air use efficiency was significantly improved from 5% to 20%. This makes it possible to replace the air blower with a smaller one, and the power cost can be significantly reduced.

【0024】[0024]

【発明の効果】湿式脱硫設備において、本発明の多孔式
ノズルを設置した液中再生装置は、気中再生装置よりも
所要空気量が少なく、従来の気液混合型ノズルを用いた
液中再生装置よりも改造費用が1/10程度ですみ、保
守費用も低減できた。また、改良された不断ノズル挿入
法の採用により、脱硫設備を操業しながら安全かつ確実
な改造が可能となった。
In the wet desulfurization equipment, the submerged regenerator equipped with the perforated nozzle of the present invention requires a smaller amount of air than the in-air regenerator, and regenerates in liquid using a conventional gas-liquid mixing type nozzle. The remodeling cost was about 1/10 of that of the equipment, and the maintenance cost was reduced. In addition, the adoption of the improved continuous nozzle insertion method enabled safe and reliable remodeling while operating the desulfurization equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】湿式脱硫設備の概念を示す説明図である。FIG. 1 is an explanatory view showing the concept of a wet desulfurization facility.

【図2】多孔式ノズルの一例を示す側面断面図である。FIG. 2 is a side sectional view showing an example of a multi-hole nozzle.

【図3】多孔式ノズルの一例を示す正面図である。FIG. 3 is a front view showing an example of a multi-hole nozzle.

【図4】本発明の液中再生装置の一例を示す再生塔の底
部断面図である。
FIG. 4 is a bottom sectional view of a regeneration tower showing an example of the submerged regeneration device of the present invention.

【図5】不断ノズル挿入法により、再生塔内に多孔式ノ
ズルを設置する方法を示す組立断面図である。
FIG. 5 is an assembly sectional view showing a method of installing a perforated nozzle in a regeneration tower by a continuous nozzle insertion method.

【符号の説明】[Explanation of symbols]

1 : COG 2 : 吸収塔 3 : 精製COG 4 : 吸収液 6 : 再生塔 8 : 空気ブローワー 9、A、35 : 多孔式ノズル 11 : 循環ポンプ 21 : 噴出口 22 : 気室 32 : 不断穿孔用ノズル 33 : 不断穿孔用バルブ 34 : ノズルセット 39 : 噴出量調整バルブ 1: COG 2: Absorption tower 3: Purified COG 4: Absorption liquid 6: Regeneration tower 8: Air blower 9, A, 35: Perforated nozzle 11: Circulation pump 21: Spout 22: Air chamber 32: Nozzle for continuous perforation 33: Permanent drilling valve 34: Nozzle set 39: Ejection amount adjustment valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硫化水素含有ガスを吸収塔においてレド
ックス系触媒含有吸収液と接触させて硫化水素を吸収除
去し、この硫化水素含有吸収液を再生塔において酸素含
有ガスで接触酸化してイオウを遊離させると共にレドッ
クス系触媒を再生し、再生された吸収液を前記吸収塔に
循環する湿式脱硫において、再生塔の底部側壁に酸素含
有ガス噴出用の多孔式ノズルを複数個設置してなる湿式
脱硫における液中再生装置。
1. A hydrogen sulfide-containing gas is brought into contact with a redox catalyst-containing absorption solution in an absorption tower to absorb and remove hydrogen sulfide, and the hydrogen sulfide-containing absorption solution is contact-oxidized with an oxygen-containing gas in a regeneration tower to remove sulfur. In the wet desulfurization in which the redox catalyst is released and regenerated and the regenerated absorbent is circulated to the absorption tower, wet desulfurization is provided by installing a plurality of porous nozzles for jetting oxygen-containing gas on the bottom side wall of the regeneration tower. Submerged regenerating device.
【請求項2】 硫化水素含有ガスを吸収塔においてレド
ックス系触媒含有吸収液と接触させて硫化水素を吸収除
去し、この硫化水素含有吸収液を再生塔において酸素含
有ガスで接触酸化してイオウを遊離させると共にレドッ
クス系触媒を再生し、再生された吸収液を前記吸収塔に
循環する湿式脱硫において、再生塔の底部側壁に不断穿
孔法により複数の取付け孔を穿孔した後、該複数の各取
付け孔に、酸素含有ガスの噴出量を調整するバルブに連
結された酸素含有ガス噴出用の多孔式ノズルを設置する
ことを特徴とする湿式脱硫における液中再生装置の取付
け方法。
2. A hydrogen sulfide-containing gas is brought into contact with a redox catalyst-containing absorption solution in an absorption tower to absorb and remove hydrogen sulfide, and the hydrogen sulfide-containing absorption solution is contact-oxidized with an oxygen-containing gas in a regeneration tower to remove sulfur. In wet desulfurization in which the redox catalyst is regenerated and the regenerated absorbent is circulated to the absorption tower, a plurality of mounting holes are formed in a bottom side wall of the regenerator by a continuous perforation method, and then each of the plurality of mounting holes is removed. A method for mounting a submerged regenerating apparatus in wet desulfurization, wherein a perforated nozzle for jetting oxygen-containing gas is connected to a valve for adjusting the jetting amount of oxygen-containing gas in the hole.
JP10087061A 1998-03-31 1998-03-31 Device for submerged regeneration in wet desulfurizing Withdrawn JPH11276841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10087061A JPH11276841A (en) 1998-03-31 1998-03-31 Device for submerged regeneration in wet desulfurizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10087061A JPH11276841A (en) 1998-03-31 1998-03-31 Device for submerged regeneration in wet desulfurizing

Publications (1)

Publication Number Publication Date
JPH11276841A true JPH11276841A (en) 1999-10-12

Family

ID=13904434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10087061A Withdrawn JPH11276841A (en) 1998-03-31 1998-03-31 Device for submerged regeneration in wet desulfurizing

Country Status (1)

Country Link
JP (1) JPH11276841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766125B1 (en) 2006-07-19 2007-10-12 비앤이테크(주) Hydrogen sulfide removal apparatus using the liquid phase-catalyst
CN109569193A (en) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 It is a kind of to absorb the sulfur method synchronous with regeneration
CN110396447A (en) * 2019-09-04 2019-11-01 重庆科技学院 Natural gas static state desulphurization system and method
CN113416587A (en) * 2021-06-30 2021-09-21 中石化中原石油工程设计有限公司 Oxidation regeneration tower of natural gas desulfurization system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766125B1 (en) 2006-07-19 2007-10-12 비앤이테크(주) Hydrogen sulfide removal apparatus using the liquid phase-catalyst
CN109569193A (en) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 It is a kind of to absorb the sulfur method synchronous with regeneration
CN109569193B (en) * 2017-09-28 2021-10-29 中国石油化工股份有限公司 Desulfurization method with synchronous absorption and regeneration
CN110396447A (en) * 2019-09-04 2019-11-01 重庆科技学院 Natural gas static state desulphurization system and method
CN110396447B (en) * 2019-09-04 2024-03-22 重庆科技学院 Natural gas static desulfurization system and method
CN113416587A (en) * 2021-06-30 2021-09-21 中石化中原石油工程设计有限公司 Oxidation regeneration tower of natural gas desulfurization system
CN113416587B (en) * 2021-06-30 2024-04-09 中石化石油工程技术服务有限公司 Oxidation regeneration tower of natural gas desulfurization system

Similar Documents

Publication Publication Date Title
JP5070100B2 (en) Desulfurization decarburization equipment
JP5177859B2 (en) Desulfurization decarburization equipment
JP2007136251A (en) Method and apparatus for wetly desulfurizing hydrogen sulfide-containing gas
RU96102565A (en) INSTALLATION OF A WET TYPE FOR SULFURING FUEL GASES AND A METHOD FOR USING A SOLID SULFURIZING SUBSTANCE
KR101800517B1 (en) Wet-type Apparatus and Method for Removing Harmful Substance from Exhaust Gas
RU2135268C1 (en) Method and apparatus for removing sulfur dioxide from gas
KR101462054B1 (en) Apparatus for Eliminating Hydrogen Sulfide and Harmful Gas
JP5573460B2 (en) Coke oven gas desulfurization equipment
US11534717B2 (en) Ammonia desulphurization and oxidation apparatus and method
JPS62183835A (en) Method and device for desulfurizing gas containing hydrogen sulfide
CN111362394A (en) Device and method for efficiently oxidizing waste alkali liquor with fractal distribution of large bubbles and small bubbles
KR100285102B1 (en) Oxygen-containing gas blower of wet flue gas desulfurizer and flue gas desulfurizer
JPH11276841A (en) Device for submerged regeneration in wet desulfurizing
KR100963004B1 (en) Desulpurization and catalyst regeneration apparatus
JP5515624B2 (en) Coke oven gas desulfurization equipment
US3822339A (en) Method for removing sulfur dioxide from the exhaust of a combustion furnace
JP3337382B2 (en) Exhaust gas treatment method
JPS6134026Y2 (en)
JPH1121567A (en) Method for regenerating wet-process desulfurization absorbent
KR102276557B1 (en) Exhaust gas treatment equipment for removing nitrogen oxide and sulfur oxide
JP2017200682A (en) Fuel gas treatment method and fuel gas treatment device
JP2004025039A (en) Method for removing hydrogen sulfide from gas containing hydrogen sulfide
JP3786786B2 (en) Flue gas desulfurization method
Massey et al. Economics and alternatives for sulfur removal from coke oven gas
JP2000262850A (en) Flue-gas desulfurization method and system therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607