JPH11274597A - Magnetic reluctance element - Google Patents

Magnetic reluctance element

Info

Publication number
JPH11274597A
JPH11274597A JP10075344A JP7534498A JPH11274597A JP H11274597 A JPH11274597 A JP H11274597A JP 10075344 A JP10075344 A JP 10075344A JP 7534498 A JP7534498 A JP 7534498A JP H11274597 A JPH11274597 A JP H11274597A
Authority
JP
Japan
Prior art keywords
electrode
ferromagnetic
insulating film
film
mno3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10075344A
Other languages
Japanese (ja)
Inventor
Shinobu Fujita
忍 藤田
Koichiro Inomata
浩一郎 猪俣
Tetsushi Tanamoto
哲史 棚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10075344A priority Critical patent/JPH11274597A/en
Publication of JPH11274597A publication Critical patent/JPH11274597A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods

Abstract

PROBLEM TO BE SOLVED: To provide an element having magnetic reluctance effect wherein large magnetic reluctance ratio which can be used for a memory element even at room temperature and low magnetic field. SOLUTION: La1-x Srx MnO3 (x>0.17) of large Sr composition which becomes ferromagnetic substance and La1-x Srx MnO3 (x<0.17) of small Sr composition which becomes paramagnetic insulator are used for a tunnel insulation film 3. Since La1-x Srx MnO3 of the same constituent element is used for an insulation film 5, spin scattering of an interface can be restrained and furthermore, a film thickness can be controlled by film formation. Therefore, it is excellent in uniformity of element characteristics unlike the one composed of Fe/Al2 O3 . If an insulation film is constructed to be held by ferromagnetic metal and alloy such as La1-x Srx MnO3 and Fe, CO, Ni, it is easy to use as a memory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はMn酸化物を用いた
磁気抵抗素子に関する。
The present invention relates to a magnetoresistive element using a Mn oxide.

【0002】[0002]

【従来の技術】磁場の有無によって電気抵抗が変化する
磁気抵抗効果を利用した素子は、ハードディスクの再生
磁気ヘッドや、磁気センサーとして用いられている。ま
た、磁気抵抗効果を使って強磁性体のスピンの向きを読
み出すメモリー素子として用いる試みも行われている。
2. Description of the Related Art An element utilizing a magnetoresistance effect in which electric resistance changes depending on the presence or absence of a magnetic field is used as a reproducing magnetic head of a hard disk or a magnetic sensor. Attempts have also been made to use it as a memory element for reading out the spin direction of a ferromagnetic material using the magnetoresistance effect.

【0003】再生磁気ヘッドや磁気センサーとしては、
室温で比較的大きな磁気抵抗効果が得られている強磁性
金属と常磁性金属との多層膜を用いた磁性人工格子(ス
ピンバルブ)膜が用いられてきた。しかしながらメモリ
ー素子としては、磁性人工格子膜では、磁気抵抗効果が
まだ小さく、強磁性体のスピンの向きを十分に読み出す
ことができないため実用レベルには至っていない。
As a reproducing magnetic head or a magnetic sensor,
A magnetic artificial lattice (spin valve) film using a multilayer film of a ferromagnetic metal and a paramagnetic metal, which has a relatively large magnetoresistance effect at room temperature, has been used. However, as a memory element, the magnetic artificial lattice film has not yet reached a practical level because the magnetoresistance effect is still small and the spin direction of the ferromagnetic material cannot be read sufficiently.

【0004】そこで大きな磁気抵抗効果を得る素子とし
て、Fe/Al2O3/Feのように強磁性金属で薄い常磁性絶縁
膜を挟んだ磁気抵抗素子が報告されている(文献:J. M
agn.Magn. Matter.,vOl.139, L321(1995) )。この磁
気抵抗素子は、室温で10% 以上の大きな磁気抵抗効果
(トンネル磁気抵抗効果)が得られている。この磁気抵
抗素子は、絶縁膜を電子がトンネルするときに、強磁性
体のフェルミ面における状態密度がスピンによって異な
るため、2つの強磁性膜のスピンが平行な場合より反平
行なほうがトンネルコンダクタンスが小さいため、高い
抵抗変化率を生じる。
Therefore, as a device for obtaining a large magnetoresistance effect, a magnetoresistance device having a thin paramagnetic insulating film sandwiched between a ferromagnetic metal such as Fe / Al2O3 / Fe has been reported (J. M.
agn.Magn. Matter., vOl.139, L321 (1995)). This magnetoresistive element has a large magnetoresistance effect (tunnel magnetoresistance effect) of 10% or more at room temperature. In this magnetoresistive element, when electrons tunnel through an insulating film, the density of states on the Fermi surface of the ferromagnetic material differs depending on the spin, so that the tunnel conductance is higher when the spins of the two ferromagnetic films are antiparallel than when the spins are parallel. Since it is small, a high rate of change in resistance occurs.

【0005】この抵抗変化率(磁気抵抗比:MR)は、絶
縁膜を挟む2つの強磁性のスピン分極率をそれぞれP1、
P2とすると、式(1)のように与えられる。 MR = 2 P1P2 / (1-P1P2) ....(1) 式(1)から分かるように、強磁性金属で薄い常磁性絶
縁膜を挟んだ磁気抵抗素子は、スピン分極率P1、P2が大
きな強磁性金属を用いれば大きな磁気抵抗比が得られ
る。
The rate of change in resistance (magnetoresistive ratio: MR) is obtained by calculating the spin polarizabilities of two ferromagnetic layers sandwiching an insulating film by P1 and P2, respectively.
If P2, it is given as in equation (1). MR = 2 P1P2 / (1-P1P2) .... (1) As can be seen from the equation (1), the magnetoresistance element sandwiching a thin paramagnetic insulating film with a ferromagnetic metal has a spin polarizability P1 and P2. If a large ferromagnetic metal is used, a large magnetoresistance ratio can be obtained.

【0006】例えば従来知られているFe/Al2O3/Feの場
合では、18% 程度の抵抗変化が室温で得られる。しかし
ながらこの程度の変化では、電気信号としてSi集積回
路で読みださせようとすると、回路ノイズと同程度の信
号となり安定したメモリー素子として用いることができ
ない。
For example, in the case of Fe / Al2O3 / Fe which is conventionally known, a resistance change of about 18% can be obtained at room temperature. However, with such a change, if an attempt is made to read out as an electric signal by the Si integrated circuit, the signal becomes almost the same as the circuit noise and cannot be used as a stable memory element.

【0007】一方室温で大きなスピン分極を有する強磁
性材料としてLa1-x Srx MnO3 を代表とするぺロ
ブスカイト型Mn酸化物を用いた磁気抵抗素子が知られ
ている。この磁気抵抗素子は、キューリー点が高く室温
まで強磁性体であるLa1-xSrx MnO3 (x>0.17)
を強磁性体として用い、絶縁膜としてSrTiO3 (厚さ
6nm )を挟んだLa1-x Srx MnO3 (x>0.17)/ S
rTiO3 / La1-x Srx MnO3 (x>0.17)多層構造
である。
On the other hand, a magnetoresistive element using a perovskite type Mn oxide represented by La1-x Srx MnO3 as a ferromagnetic material having a large spin polarization at room temperature is known. This magnetoresistive element has a high Curie point and is a ferromagnetic La1-xSrx MnO3 (x> 0.17) up to room temperature.
Is used as a ferromagnetic material, and SrTiO3 (thickness
6nm) La1-x Srx MnO3 (x> 0.17) / S
rTiO3 / La1-x Srx MnO3 (x> 0.17) multilayer structure.

【0008】しかしながらこの磁気抵抗素子は、温度4.
2Kでは最大380 %の磁気抵抗比を得られるが、温度250K
以上では、磁気抵抗比はほぼ0になってしまう。この理
由はSrTiO3 絶縁膜 /La1-x Srx MnO3 強磁性
体膜界面構造に起因すると考えられている。(文献:App
lied Physics Letters, v Olume69, p3266, 1996 )
However, this magnetoresistive element has a temperature of 4.
At 2K, a maximum magnetoresistance ratio of 380% can be obtained, but at a temperature of 250K
Above, the magnetoresistance ratio becomes almost zero. This reason is considered to be due to the interface structure between the SrTiO3 insulating film and the La1-x Srx MnO3 ferromagnetic film. (Literature: App
lied Physics Letters, v Olume69, p3266, 1996)

【0009】[0009]

【発明が解決しようとする課題】上述のように、従来メ
モリー素子の読み出しに使えるような室温で十分大きな
磁気抵抗比を示す磁気抵抗素子は得られていない。本発
明は室温で高い磁気抵抗比を有する磁気抵抗素子を提供
することを目的とする。
As described above, a magnetoresistive element having a sufficiently large magnetoresistance ratio at room temperature, which can be used for reading data from a memory element, has not been obtained. An object of the present invention is to provide a magnetoresistance element having a high magnetoresistance ratio at room temperature.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、単結晶または多結晶からなり、使用温度で
強磁性を示すLa1-x Srx MnO3 導電膜からなる第
1の電極と、この第1の電極上に形成され、使用温度で
常磁性を示すLa1-y Sry MnO3 絶縁膜と、このL
1-y Sry MnO3 膜絶縁膜上に形成された強磁性体
からなる第2の電極とを具備し、前記第1の電極と前記
第2の電極間に電位差がある場合、電子が前記La1-y
Sry MnO3 絶縁膜をトンネルすることを特徴とする
磁気抵抗素子を提供する。
Means for Solving the Problems The present invention to achieve the above object, consists of a single crystal or polycrystalline, the first consisting of La 1-x Sr x MnO 3 conductive film exhibiting ferromagnetism at the temperature of use and electrodes are formed on the first electrode, and La 1-y Sr y MnO 3 insulating film exhibiting paramagnetic at the temperature of use, the L
and a second electrode consisting of a 1-y Sr y MnO 3 layer insulating film which is formed in ferromagnetic material, when there is a potential difference between said first electrode and the second electrode, electrons La 1-y
The sr y MnO 3 insulating film to provide a magnetic resistance element, characterized in that the tunnel.

【0011】また本発明は、前記第2の電極が、単結晶
または多結晶からなり、使用温度で強磁性を示すLa
1-z Srz MnO3 導電膜からなることを特徴とする磁
気抵抗素子を提供する。
Further, according to the present invention, the second electrode is made of a single crystal or a polycrystal, and exhibits a ferromagnetic property at a use temperature.
Providing a magnetoresistive element characterized by comprising a 1-z Sr z MnO 3 conductive film.

【0012】また本発明は、前記第2の電極が、鉄、コ
バルト、クロム、マンガンあるいはニッケルあるいはこ
れらを含む合金であることを特徴とする磁気抵抗素子を
提供する。
The present invention also provides a magnetoresistive element, wherein the second electrode is made of iron, cobalt, chromium, manganese, nickel or an alloy containing these.

【0013】また本発明は、前記La1-y Sry MnO
3 絶縁膜が結晶あるいはアモルファスであることを特徴
とする磁気抵抗素子を提供する。また本発明は、前記第
1の電極に電流を流すことで該第1の電極が一時的に常
磁性金属に相転移することを特徴とする磁気抵抗素子を
提供する。
[0013] The present invention, the La 1-y Sr y MnO
(3) To provide a magnetoresistive element characterized in that the insulating film is crystalline or amorphous. Further, the present invention provides a magnetoresistive element characterized in that the first electrode temporarily undergoes a phase transition to paramagnetic metal by flowing a current through the first electrode.

【0014】また本発明は、前記第1の電極に光をあて
て加熱することで該第1の電極が一時的に常磁性金属に
相転移することを特徴とする磁気抵抗素子を提供する。
また本発明は、単結晶層または多結晶層からなり、使用
温度で強磁性を示すLa1-x Srx MnO3 導電膜から
なる第1の電極と、この第1の電極上に形成され、使用
温度で常磁性を示すLa1-y Sry MnO3 絶縁膜と、
このLa1-y Sry MnO3 絶縁膜上に形成された強磁
性を示す第2の電極と、前記La1-y Sry MnO3
縁膜上に形成された強磁性を示す第3の電極とを具備
し、前記第2の電極と前記第3の電極は前記第1の電極
を介して電気的に直列に接続され、前記第2の電極と前
記第3の電極間に電位差がある場合、電子が前記La
1-y Sry MnO3 絶縁膜をトンネルすることを特徴と
する磁気抵抗素子を提供する。
[0014] The present invention also provides a magnetoresistive element characterized in that the first electrode temporarily undergoes a phase transition to a paramagnetic metal by irradiating the first electrode with light and heating.
Further, the present invention provides a first electrode made of a La 1-x Sr x MnO 3 conductive film which is composed of a single crystal layer or a polycrystalline layer and exhibits ferromagnetism at a use temperature, and formed on the first electrode, and La 1-y Sr y MnO 3 insulating film exhibiting paramagnetic at the temperature of use,
The third electrode showing the La and 1-y Sr y MnO 3 second electrode showing the formed ferromagnetic on the insulating film, the formed ferromagnetic to the La 1-y Sr y MnO 3 insulating film The second electrode and the third electrode are electrically connected in series via the first electrode, and there is a potential difference between the second electrode and the third electrode. , The electron is the La
The 1-y Sr y MnO 3 insulating film to provide a magnetic resistance element, characterized in that the tunnel.

【0015】また本発明は、前記第2の電極と前記第3
の電極が、単結晶または多結晶からなり、使用温度で強
磁性を示すLa1-z Srz MnO3 導電膜からなること
を特徴とする磁気抵抗素子を提供する。
Further, according to the present invention, the second electrode and the third electrode
Electrodes, made of single crystal or polycrystalline, provides a magnetoresistive element characterized by comprising La 1-z Sr z MnO 3 conductive film exhibiting ferromagnetism at use temperatures.

【0016】また本発明は、前記第2の電極と前記第3
の電極が、鉄、コバルトあるいはニッケルあるいはこれ
らの合金であることを特徴とする磁気抵抗素子を提供す
る。前記La1-y Sry MnO3 絶縁膜が結晶あるいは
アモルファスであることを特徴とする磁気抵抗素子を提
供する。
Further, according to the present invention, the second electrode and the third electrode
Wherein the electrode is made of iron, cobalt, nickel, or an alloy thereof. The La 1-y Sr y MnO 3 insulating film to provide a magnetoresistive element which is a crystal or amorphous.

【0017】また本発明は、前記第1の電極に電流を流
すことで該第1の電極が一時的に常磁性金属に相転移す
ることを特徴とする磁気抵抗素子を提供する。また本発
明は、前記第1の電極に光をあてて加熱することで該第
1の電極が一時的に常磁性金属に相転移することを特徴
とする磁気抵抗素子を提供する。
Further, the present invention provides a magnetoresistive element characterized in that the first electrode temporarily undergoes a phase transition to a paramagnetic metal by passing a current through the first electrode. The present invention also provides a magnetoresistive element characterized in that the first electrode temporarily transitions to a paramagnetic metal by irradiating the first electrode with light and heating.

【0018】また本発明は、単結晶または多結晶からな
り、使用温度で強磁性を示すLa1-x Srx MnO3
電膜からなる第1の電極と、この第1の電極上に形成さ
れ、使用温度で常磁性を示す、一般式ABO3 (AがP
r、Nd、Gd、Y或いはSr、BがSc、Rh、Sb、Zr、Sn、C
d或いはRe)で表され、LaMnO3 との格子不整合が
2%以下である絶縁膜と、この絶縁膜上に形成された強
磁性体からなる第2の電極とを具備し、前記第1の電極
と前記第2の電極間に電位差がある場合、電子が前記絶
縁膜をトンネルすることを特徴とする磁気抵抗素子を提
供する。
[0018] The present invention comprises a single crystal or polycrystalline, a first electrode consisting of La 1-x Sr x MnO 3 conductive film exhibiting ferromagnetism at the temperature of use, it is formed on the first electrode The general formula ABO 3 (A is P
r, Nd, Gd, Y or Sr, B are Sc, Rh, Sb, Zr, Sn, C
d or Re), comprising an insulating film having a lattice mismatch with LaMnO 3 of 2% or less, and a second electrode made of a ferromagnetic material formed on the insulating film. And an electron tunnels through the insulating film when there is a potential difference between the first electrode and the second electrode.

【0019】[0019]

【発明の実施の形態】以下、図面を用いて本発明の好ま
しい実施形態について説明する。図1はLa1-x Srx
MnO3 系の電子相図である。横軸はLaとSrの組成
比(x)を示し、縦軸は温度(K)を示す。図中TNは
反強磁性の相転位温度、TCは強磁性の相転位温度、T
Sは構造相転位温度を示す。またPIは常時性絶縁体相、
PMは常時性導電体相、AFI は反強磁性絶縁体相、FIは強
磁性絶縁体相、FMは強磁性導電体相を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows La1-x Srx
FIG. 3 is an electronic phase diagram of a MnO3 system. The horizontal axis shows the composition ratio (x) of La and Sr, and the vertical axis shows the temperature (K). In the figure, TN is the antiferromagnetic phase transition temperature, TC is the ferromagnetic phase transition temperature, T
S indicates the structural phase transition temperature. PI is always an insulator phase,
PM indicates a permanent conductor phase, AFI indicates an antiferromagnetic insulator phase, FI indicates a ferromagnetic insulator phase, and FM indicates a ferromagnetic conductor phase.

【0020】本発明は、使用温度(特に常温付近)で強
磁性導電体(図1中FMの領域)となるLa1-x Srx M
nO3 膜上に、使用温度(特に常温付近)で常磁性絶縁
体(図1中PIの領域)となるLa1-x Srx MnO3 膜
を積層し、さらにこのLa1-x Srx MnO3 膜常磁性
絶縁体上に強磁性体を積層したLa1-x Srx MnO3
強磁性導電体膜/ La1-x Srx MnO3 常磁性絶縁
体膜/強磁性体構造のトンネル接合型磁気抵抗素子であ
る。
According to the present invention, La1-x Srx M which becomes a ferromagnetic conductor (the region of FM in FIG. 1) at a use temperature (particularly around normal temperature).
On the nO3 film, a La1-x Srx MnO3 film which becomes a paramagnetic insulator (the area of PI in FIG. 1) at the operating temperature (especially near normal temperature) is laminated, and the La1-x Srx MnO3 film is further laminated on the paramagnetic insulator. La1-x Srx MnO3 with ferromagnetic material laminated
It is a tunnel junction type magnetoresistive element having a ferromagnetic conductor film / La1-x Srx MnO3 paramagnetic insulator film / ferromagnetic structure.

【0021】本発明では使用温度で100%スピン分極
したLa1-x Srx MnO3 強磁性導電膜を用いた磁気
抵抗効果素子であるので、式(1)から分かるように高
い磁気抵抗比を得ることができる。さらに本発明ではL
a1-x Srx MnO3 強磁性導電膜/ La1-x Srx
MnO3 常磁性絶縁膜の界面が、構成元素が同じホモ接
合であるため界面の状態が良好である。従ってトンネル
接合界面の状態が良くない従来のLa1-x Srx MnO
3 強磁性導電膜/SrTiO3絶縁体/ La1-x Srx
MnO3 強磁性導電膜のトンネル接合型磁気抵抗素子に
比較して、本発明は界面構造に起因するスピン散乱を抑
制でき、常温付近においても高い磁気抵抗比を得ること
が可能となる。
In the present invention, since the magnetoresistance effect element uses the La1-x Srx MnO3 ferromagnetic conductive film which is 100% spin-polarized at the operating temperature, a high magnetoresistance ratio can be obtained as can be seen from the equation (1). it can. Further, in the present invention, L
a1-x Srx MnO3 ferromagnetic conductive film / La1-x Srx
Since the interface of the MnO3 paramagnetic insulating film is a homojunction having the same constituent elements, the state of the interface is good. Therefore, the conventional La1-x Srx MnO in which the state of the tunnel junction interface is not good.
3 Ferromagnetic conductive film / SrTiO3 insulator / La1-x Srx
Compared with a tunnel junction type magnetoresistive element made of a MnO3 ferromagnetic conductive film, the present invention can suppress the spin scattering caused by the interface structure, and can obtain a high magnetoresistance ratio even at around room temperature.

【0022】使用温度特に常温(297K)付近では、
La1-x Srx MnO3 膜はSrの組成が(x>0.17)で強
磁性体となり、(x<0.17)では常磁性絶縁体となる。従
って本発明は、La1-x Srx MnO3(x>0.17) 強磁性
導電膜/ La1-x Srx MnO3 (x<0.17)常磁性絶
縁膜/強磁性体の構造であればよい。但し温度マージン
を稼ぐためにそれぞれの膜のSr組成の差は0.04以上あ
ることが好ましい。
At the operating temperature, especially around room temperature (297K),
The La1-x Srx MnO3 film becomes a ferromagnetic material when the composition of Sr is (x> 0.17), and becomes a paramagnetic insulator when (x <0.17). Therefore, the present invention only needs to have a structure of La1-x Srx MnO3 (x> 0.17) ferromagnetic conductive film / La1-x Srx MnO3 (x <0.17) paramagnetic insulating film / ferromagnetic material. However, in order to obtain a temperature margin, the difference between the Sr compositions of the respective films is preferably 0.04 or more.

【0023】また本発明では、 La1-x Srx MnO
3 強磁性導電膜を基板上に成膜後、連続してLa1-x S
rx MnO3 常時性絶縁膜を直接成膜することによっ
て、膜厚を制御できる。従ってFe/Al2O3 系のように構
成元素が異なる系に比較して素子特性の均一性にも優れ
ている。
In the present invention, La1-x Srx MnO
3 After forming a ferromagnetic conductive film on the substrate,
The film thickness can be controlled by directly forming the rx MnO3 permanent insulating film. Therefore, as compared with a system having different constituent elements such as an Fe / Al2O3 system, the device characteristics are more uniform.

【0024】また本発明は、強磁性体としてFe, Ni, C
Oやこれらの合金を用い、 La1-xSrx MnO3 強磁
性導電膜/ La1-x Srx MnO3 常磁性絶縁膜/ F
e, Ni, COやこれらを含む合金強磁性体の構造とするこ
とができる。この構造では上層がエッチングしやすい金
属であるので、 容易に加工することができる。また本発
明は、 強磁性体としてFe, Ni, C Oやこれらの合金を用
い、 La1-xSrx MnO3 強磁性導電膜/ La1-x
Srx MnO3 常磁性絶縁膜/ La1-x Srx MnO
3 強磁性導電膜の構造とすることができる。 この構造
は、強磁性体を両方ともLa1-x Srx MnO3 膜で形
成しているので、 さらに大きな磁気抵抗効果を実現でき
る。 この構造で、 それぞれの強磁性伝導膜のSrの組成
は、互いに同じであってもいいし違っていてもいい。次
に本発明の磁気抵抗効果素子をメモリーに用いた場合に
ついて説明する。 (実施例1)本実施例は、 La1-x Srx MnO3 強磁
性導電膜/ La1-x Srx MnO3常磁性絶縁膜/ F
e,Co, Niなどの強磁性金属の構造の磁気抵抗効果素子
をメモリーにした例である。 標準形(金属電極単一) 図2は本発明の実施例1にかかる磁気抵抗効果素子の断
面図である。
The present invention also relates to a ferromagnetic material such as Fe, Ni, C
Using La and their alloys, La1-xSrxMnO3 ferromagnetic conductive film / La1-xSrxMnO3 paramagnetic insulating film / F
e, Ni, CO or an alloy ferromagnetic material containing these can be used. In this structure, the upper layer is a metal that is easily etched, so that it can be easily processed. The present invention also relates to a ferromagnetic conductive material using Fe, Ni, CO, or an alloy thereof, and using a La1-xSrxMnO3 ferromagnetic conductive film / La1-x
Srx MnO3 paramagnetic insulating film / La1-x Srx MnO
3 The structure can be a ferromagnetic conductive film. In this structure, since both ferromagnetic materials are formed of La1-x Srx MnO3 films, a greater magnetoresistance effect can be realized. In this structure, the composition of Sr in each ferromagnetic conductive film may be the same or different. Next, a case where the magnetoresistive element of the present invention is used for a memory will be described. (Embodiment 1) In this embodiment, a La1-x Srx MnO3 ferromagnetic conductive film / La1-x Srx MnO3 paramagnetic insulating film / F
This is an example in which a magnetoresistive element having a structure of a ferromagnetic metal such as e, Co, or Ni is used as a memory. Standard type (single metal electrode) FIG. 2 is a cross-sectional view of the magnetoresistive element according to the first embodiment of the present invention.

【0025】この磁気抵抗効果素子は、(001)面が
でたSrTiO3 基板1上に形成されたLa1-x Srx M
nO3 (x=0.3 )強磁性導電膜2、この強磁性導電膜2
上に形成されたLa1-x Srx MnO3 (x=0.1 )常磁
性絶縁膜3、この常磁性絶縁膜3上に各ビット毎に形成
されたCoからなる強磁性金属膜4、この強磁性金属膜
4上に形成されたSiO2 絶縁膜5、この絶縁膜5上に形
成されたTiAuからなる磁場発生用配線6から形成されて
いる。La1-x Srx MnO3 (x=0.1 )常磁性絶縁膜
3はトンネル絶縁膜として作用し、強磁性導電膜2、4
間に電圧を印加すると電流が流れるようになっている。
この時強磁性導電膜中のスピンの向きが揃っているとき
電流が流れやすくなり、揃っていないときは電流が流れ
にくくなる。この磁気抵抗効果素子は磁気抵抗効果が大
きく、スピンが揃っている場合と揃っていない場合の電
流比が大きくとれる。
This magnetoresistive element is composed of La1-x Srx M formed on a SrTiO3 substrate 1 having a (001) plane.
nO3 (x = 0.3) ferromagnetic conductive film 2, this ferromagnetic conductive film 2
La1-x Srx MnO3 (x = 0.1) paramagnetic insulating film 3 formed thereon, ferromagnetic metal film 4 of Co formed for each bit on this paramagnetic insulating film 3, this ferromagnetic metal film 4, a SiO2 insulating film 5 formed on the insulating film 5, and a magnetic field generating wiring 6 made of TiAu formed on the insulating film 5. The La1-x Srx MnO3 (x = 0.1) paramagnetic insulating film 3 acts as a tunnel insulating film, and the ferromagnetic conductive films 2, 4
When a voltage is applied in between, a current flows.
At this time, when the spin directions in the ferromagnetic conductive film are aligned, the current easily flows, and when they are not aligned, the current hardly flows. This magnetoresistive element has a large magnetoresistive effect, and can provide a large current ratio when spins are aligned and when spins are not aligned.

【0026】次に、この磁気抵抗効果素子の作製方法に
ついて説明する。先ず、超高真空装置内に(001)面
がでたSrTiO3 基板1を設定する。次に分子線エピタ
キシー(MBE )法により、超高真空装置に酸素またはオ
ゾンを導入しLa、Sr、Mnがそれぞれ入っているル
ツボを加熱し、各成分を昇華させて分子線として基板に
照射し、La1-x Srx MnO3 (x=0.3 )単結晶膜2
を700nm の厚さに成長させた。 La1-x Srx MnO
3 (x=0.3 )単結晶膜2の組成は、 La、Sr、Mn
がそれぞれ入っているルツボの温度を調整して各原料の
分子線フラックスの量を変えて制御した。基板温度は65
0 ℃とした。図1から分かるように、 La1-x Srx
MnO3 (x=0.3 )単結晶膜2は、この素子の使用温度
(通常の地球上の環境 223K〜323K)で強磁性導電体で
ある。
Next, a method of manufacturing the magnetoresistive element will be described. First, an SrTiO3 substrate 1 having a (001) plane is set in an ultrahigh vacuum apparatus. Next, oxygen or ozone is introduced into an ultrahigh vacuum apparatus by a molecular beam epitaxy (MBE) method, and the crucible containing La, Sr, and Mn is heated to sublimate each component and irradiate the substrate as a molecular beam. , La1-x Srx MnO3 (x = 0.3) single crystal film 2
Was grown to a thickness of 700 nm. La1-x Srx MnO
3 (x = 0.3) The composition of the single crystal film 2 is La, Sr, Mn
The temperature of the crucible containing each of the raw materials was adjusted to control the amount of the molecular beam flux of each raw material. Substrate temperature is 65
0 ° C. As can be seen from FIG. 1, La1-x Srx
The MnO3 (x = 0.3) single crystal film 2 is a ferromagnetic conductor at the operating temperature of this device (normal earth environment: 223K to 323K).

【0027】次に、真空を破らずに連続してLa、S
r、Mnがそれぞれ入っているルツボの温度を変えて膜
厚0.6nm のLa1-x Srx MnO3 (x=0.1 )層3を成
膜した。図1から分かるように、 La1-x Srx Mn
O3 (x=0.1)単結晶膜2は、この素子の使用温度(通
常の地球上の環境 223K〜323K)で常磁性絶縁体であ
る。また膜厚0.6nm のLa1-x Srx MnO3 (x=0.1
)層3はトンネル絶縁膜として用いることができる。
Next, La, S are continuously applied without breaking the vacuum.
The La1-x Srx MnO3 (x = 0.1) layer 3 having a thickness of 0.6 nm was formed by changing the temperature of the crucible containing r and Mn. As can be seen from FIG. 1, La1-x Srx Mn
The O3 (x = 0. 1) single crystal film 2 is a paramagnetic insulator at the operating temperature of this device (normal earth environment 223K to 323K). Further, a La1-x Srx MnO3 (x = 0.1
) Layer 3 can be used as a tunnel insulating film.

【0028】次に、強磁性導電膜2、常磁性絶縁膜3が
形成された基板1を超高真空装置内から取り出し、スパ
ッタ法で常磁性絶縁膜3表面にCoを50nm堆積した。そ
の後、プラズマCVD法で基板温度300 ℃でSiO2 絶縁
膜を100nm 堆積した。
Next, the substrate 1 on which the ferromagnetic conductive film 2 and the paramagnetic insulating film 3 were formed was taken out of the ultrahigh vacuum apparatus, and Co was deposited to a thickness of 50 nm on the paramagnetic insulating film 3 by sputtering. Thereafter, a 100 nm SiO2 insulating film was deposited at a substrate temperature of 300 DEG C. by a plasma CVD method.

【0029】次に、フォリソグラフィーで、表面に0.5
ミクロン四方のレジストマスク(1ビット相当分)を設
けた後、弗化アンモニウムで選択的にSiO2 絶縁膜を除
去し、 Si O2 絶縁膜5を形成した。
Next, 0.5 μm on the surface by photolithography
After providing a resist mask (corresponding to one bit) of a micron square, the SiO2 insulating film was selectively removed with ammonium fluoride to form a SiO2 insulating film 5.

【0030】次に、レジストを有機溶剤で除去してから
低加速のイオンミリングにて、SiO2 絶縁膜5をマスク
とし、Co膜の一部を除去して強磁性膜4を形成した。
次に、再び熱CVD法でジシランと酸素を原料にして、
基板表面に配線用絶縁膜としてSiO2 絶縁膜(図示せ
ず)を200nm 堆積した。
Next, after removing the resist with an organic solvent, a part of the Co film was removed by ion milling at low acceleration using the SiO 2 insulating film 5 as a mask to form a ferromagnetic film 4.
Next, using disilane and oxygen as raw materials again by the thermal CVD method,
A 200 nm thick SiO2 insulating film (not shown) was deposited on the surface of the substrate as a wiring insulating film.

【0031】次に、この基板を電子ビーム蒸着装置内に
移し、Ti膜を100nm、Au膜を500nm蒸着した。
次にフォトリソグラフィーで、C O強磁性電極4に磁場
を印加するための幅0.5 ミクロンのTi/Au配線6を形成
した。この時Ti膜はAu膜と下地のSiO2 絶縁膜5との接
着性を向上させるために用いた。
Next, the substrate was transferred into an electron beam evaporation apparatus, and a Ti film was deposited to a thickness of 100 nm and an Au film was deposited to a thickness of 500 nm.
Next, a Ti / Au wiring 6 having a width of 0.5 μm for applying a magnetic field to the CO ferromagnetic electrode 4 was formed by photolithography. At this time, the Ti film was used to improve the adhesion between the Au film and the underlying SiO2 insulating film 5.

【0032】最後にLa1-x Srx MnO3 (x=0.3 )
強磁性導電膜2とCo強磁性金属4に接触用の電極を形
成して、磁気抵抗効果素子を作成した。この磁気抵抗効
果素子のC O強磁性金属4とLa1-x Srx MnO3
(x=0.3)強磁性導電膜2の間に適当な大きさの直流電
圧を印加し、トンネル電流が最も多く流れるように調整
する。
Finally, La1-x Srx MnO3 (x = 0.3)
Electrodes for contact were formed on the ferromagnetic conductive film 2 and the Co ferromagnetic metal 4 to form a magnetoresistive element. In this magnetoresistive element, the CO ferromagnetic metal 4 and La1-x Srx MnO3 were used.
(X = 0.3) Appropriate DC voltage is applied between the ferromagnetic conductive films 2 so that the tunnel current flows most.

【0033】この磁気抵抗効果素子では、Co強磁性金
属の保磁力は、0.5ミクロン四方、膜厚50nmであるの
で100 Oe 程度で、 La1-x Srx MnO3 (x=0.3
)強磁性導電膜2の保持力は、数Oe であった。従っ
て印加磁場が50Oe では、Co強磁性金属4のスピンは
動かずに、 La1-x Srx MnO3 強磁性導電膜2の
スピンのみが反転する。それぞれのスピンが平行な場合
から反平行な場合に移り変わり抵抗が増大する。この磁
気抵抗効果素子のトンネル磁気抵抗効果を調べたとこ
ろ、印加磁場が50Oe (但し、1 Oe =103/4p A/m)
で、約90%の磁気抵抗比が室温で得られた。
In this magnetoresistive effect element, the coercive force of the Co ferromagnetic metal is about 0.5 Om square and 50 nm thick, so that it is about 100 Oe, and La1-x Srx MnO3 (x = 0.3
3.) The holding power of the ferromagnetic conductive film 2 was several Oe. Therefore, when the applied magnetic field is 50 Oe, the spin of the La1-x Srx MnO3 ferromagnetic conductive film 2 is inverted without the spin of the Co ferromagnetic metal 4 moving. The resistance changes from the case where the spins are parallel to the case where the spins are anti-parallel. When the tunnel magnetoresistance effect of this magnetoresistance effect element was examined, the applied magnetic field was 50 Oe (1 Oe = 103 / 4pA / m).
As a result, a magnetoresistance ratio of about 90% was obtained at room temperature.

【0034】本実施例の磁気抵抗効果素子は、La1-x
Srx MnO3 強磁性導電体がCo等の強磁性金属に比
較して、一般に保磁力が小さく、小さな磁場で容易にス
ピンを反転させることができる点を利用した。強磁性体
金属としてC Oの他にFeやNi、これらの合金からなる強
磁性金属、またはCrやMnを含む強磁性金属を用いても
よい。
The magnetoresistive element of this embodiment has a La1-x
The Srx MnO3 ferromagnetic conductor is generally used because it has a smaller coercive force than ferromagnetic metals such as Co and can easily reverse spins with a small magnetic field. As the ferromagnetic metal, a ferromagnetic metal made of Fe, Ni, an alloy thereof, or a ferromagnetic metal containing Cr or Mn may be used in addition to CO.

【0035】次に、このようにして作成した磁気抵抗効
果素子をメモリーとして動作させる方法、すなわち情報
の書き込みと読み出し方法についてを説明する。情報の
書き込み方法は、磁場発生用配線6に保持力が大きい方
の強磁性膜4のスピンの向きを右向きか左向きに書き換
える程度の電流、すなわちC O強磁性金属4 の保磁力
(数100 Oe )を上回るような磁場を誘起するに足りる
電流をTiAu磁場発生用配線6に流してスピンを反転させ
れば良い。例えば右向きを0、左向きを1と定義してや
ればよい。
Next, a method of operating the magnetoresistive element thus produced as a memory, that is, a method of writing and reading information will be described. The method of writing information is such a current that the spin direction of the ferromagnetic film 4 having the larger coercive force is rewritten rightward or leftward in the magnetic field generating wiring 6, that is, the coercive force of the CO ferromagnetic metal 4 (several 100 Oe). The current may be sufficient to induce a magnetic field exceeding the above-mentioned value) through the TiAu magnetic field generating wiring 6 to reverse the spin. For example, a rightward direction may be defined as 0, and a leftward direction may be defined as 1.

【0036】次に、情報の読み出し方法を図3を用いて
説明する。図3の横軸は時間変化を表し、図3(a)の
縦軸は磁場発生用配線6に流す電流の変化量、図3
(b)、(c)、(d)、(e)の縦軸は強磁性膜4/
La1-x Srx MnO3 常磁性トンネル絶縁膜3/L
a1-x Srx MnO3 強磁性導電膜2間に流れるトンネ
ル電流値を表す。また図3(b)、(c)、(d)、
(e)の上の矢印は強磁性膜4のスピンの向き、下の矢
印はLa1-x Srx MnO3 強磁性導電膜2のスピンの
向きを表す。
Next, a method of reading information will be described with reference to FIG. The horizontal axis in FIG. 3 represents a time change, and the vertical axis in FIG. 3A represents the amount of change in the current flowing through the magnetic field generating wiring 6.
The vertical axes of (b), (c), (d) and (e) indicate the ferromagnetic film 4 /
La1-x Srx MnO3 paramagnetic tunnel insulating film 3 / L
a1-x Srx MnO3 represents a tunnel current value flowing between the ferromagnetic conductive films 2. 3 (b), (c), (d),
The upper arrow in (e) indicates the spin direction of the ferromagnetic film 4, and the lower arrow indicates the spin direction of the La1-x Srx MnO3 ferromagnetic conductive film 2.

【0037】先ず、図3(a)に示すように、磁場発生
用配線6に、強磁性膜4のスピンは反転させないが、
La1-x Srx MnO3 (x=0.3 )強磁性導電膜2のス
ピンの向きを反転させる程度の電流I1を流す。この時L
a1-x Srx MnO3 (x=0.3 )強磁性導電膜2のスピ
ンの向きを変えながら、トンネル電流I2の変化を測る。
First, as shown in FIG. 3A, the spin of the ferromagnetic film 4 is not reversed in the magnetic field generating wiring 6,
La1-x Srx MnO3 (x = 0.3) A current I1 is applied to the extent that the spin direction of the ferromagnetic conductive film 2 is reversed. At this time L
a1-x Srx MnO3 (x = 0.3) The change in the tunnel current I2 is measured while changing the spin direction of the ferromagnetic conductive film 2.

【0038】図3(b)に示すように、初期状態が強磁
性金属膜4のスピンの向きが右向き、 La1-x Srx
MnO3 強磁性導電膜2のスピンの向きが左向きの場
合、図3(a)のように電流I1を変化させたとき、電
流I2は小→小→大と変化する。
As shown in FIG. 3B, in the initial state, the spin direction of the ferromagnetic metal film 4 is rightward, and La1-x Srx
When the spin direction of the MnO3 ferromagnetic conductive film 2 is to the left, when the current I1 is changed as shown in FIG. 3A, the current I2 changes from small to small to large.

【0039】また図3(c)に示すように、初期状態が
強磁性金属膜4のスピンの向きが右向き、 La1-x S
rx MnO3 強磁性導電膜2のスピンの向きが右向きの
場合、図3(a)のように電流I1を変化させたとき、
電流I2は大→小→大と変化する。
As shown in FIG. 3C, in the initial state, the spin direction of the ferromagnetic metal film 4 is rightward, and La1-xS
When the spin direction of the rx MnO3 ferromagnetic conductive film 2 is rightward, when the current I1 is changed as shown in FIG.
The current I2 changes from large to small to large.

【0040】また図3(d)に示すように、初期状態が
強磁性金属膜4のスピンの向きが左向き、 La1-x S
rx MnO3 強磁性導電膜2のスピンの向きが左向きの
場合、図3(a)のように電流I1を変化させたとき、
電流I2は大→大→小と変化する。
As shown in FIG. 3D, in the initial state, the spin direction of the ferromagnetic metal film 4 is leftward, and La1-xS
When the spin direction of the rx MnO3 ferromagnetic conductive film 2 is to the left, when the current I1 is changed as shown in FIG.
The current I2 changes from large to large to small.

【0041】また図3(e)に示すように、初期状態が
強磁性金属膜4のスピンの向きが左向き、 La1-x S
rx MnO3 強磁性導電膜2のスピンの向きが右向きの
場合、図3(a)のように電流I1を変化させたとき、
電流I2は小→大→小と変化する。
As shown in FIG. 3E, in the initial state, the spin direction of the ferromagnetic metal film 4 is leftward, and La1-xS
When the spin direction of the rx MnO3 ferromagnetic conductive film 2 is rightward, when the current I1 is changed as shown in FIG.
The current I2 changes from small to large to small.

【0042】このように情報が書き込まれているCo強
磁性金属4のスピンの向きは、磁場誘起用配線6の電流
の向きが変わる時のI2の増減で分かるので、このスピン
を0、1に対応させればメモリーの読み出しが出来る。
The direction of the spin of the Co ferromagnetic metal 4 to which the information is written can be determined by the increase or decrease of I2 when the direction of the current of the magnetic field inducing wire 6 changes. If it corresponds, the memory can be read.

【0043】次に上記読み出し方法とは別の読み出し方
法について図4を用いて説明する。図4の横軸は時間変
化を表し、図4(a)の縦軸は磁場発生用配線6に流す
電流の変化量、図4(b)、(c)、(d)の縦軸は強
磁性膜4/ La1-x SrxMnO3 常磁性トンネル絶
縁膜3/La1-x Srx MnO3 強磁性導電膜2間に流
れるトンネル電流値を表す。また図3(b)、(c)、
(d)の上の矢印は強磁性膜4のスピンの向き、下の矢
印はLa1-x Srx MnO3 強磁性導電膜2のスピンの
向きを表す。
Next, another reading method different from the above-mentioned reading method will be described with reference to FIG. The horizontal axis in FIG. 4 represents a time change, the vertical axis in FIG. 4 (a) represents the amount of change in the current flowing through the magnetic field generating wiring 6, and the vertical axes in FIGS. 4 (b), (c), and (d) represent strong values. The tunnel current value flowing between the magnetic film 4 / La1-xSrxMnO3 paramagnetic tunnel insulating film 3 / La1-xSrxMnO3 ferromagnetic conductive film 2 is shown. 3 (b), (c),
The upper arrow in (d) indicates the spin direction of the ferromagnetic film 4 and the lower arrow indicates the spin direction of the La1-x Srx MnO3 ferromagnetic conductive film 2.

【0044】この読み出し方法は、Co強磁性金属4だ
けでなく、La1-x Srx MnO3強磁性導電膜2もス
ピンの書き込み対象とし、C O強磁性金属4、 La1-
x Srx MnO3 強磁性導電膜2両方のスピンを読み出
す方法である。
In this read method, not only the Co ferromagnetic metal 4 but also the La1-x Srx MnO3 ferromagnetic conductive film 2 is subjected to spin writing, and the CO ferromagnetic metal 4, La1-
x Srx MnO3 This is a method of reading out both spins of the ferromagnetic conductive film 2.

【0045】先ず、図4(a)に示すように、磁場発生
用配線6に、強磁性膜4のスピンは反転させないが、
La1-x Srx MnO3 (x=0.3 )強磁性導電膜2のス
ピンの向きを反転させる程度の電流I1を流す。この時L
a1-x Srx MnO3 (x=0.3 )強磁性導電膜2のスピ
ンの向きを変えながら、トンネル電流I2の変化を測る。
First, as shown in FIG. 4A, the spin of the ferromagnetic film 4 is not inverted in the magnetic field generating wiring 6,
La1-x Srx MnO3 (x = 0.3) A current I1 is applied to the extent that the spin direction of the ferromagnetic conductive film 2 is reversed. At this time L
a1-x Srx MnO3 (x = 0.3) The change in the tunnel current I2 is measured while changing the spin direction of the ferromagnetic conductive film 2.

【0046】図4(b)に示すように、初期状態が強磁
性金属膜4のスピンの向きが左向き、La1-x Srx M
nO3 強磁性導電膜2のスピンの向きが右向きの場合、
図4(a)の実線ように電流I1を変化させたとき、電
流I2は小→大→小と変化する。最初に小→大と変化す
ることで(強磁性金属4 左スピン, La1-x Srx
MnO3 (x=0.3 )強磁性導電膜2 右スピン)の組み
合わせが分かる。このとき最後に図4(a)の実線のよ
うに電流変化させているので、初期状態のスピンの組み
合わせが保存される。
As shown in FIG. 4B, in the initial state, the spin direction of the ferromagnetic metal film 4 is leftward, and La1-x Srx M
When the spin direction of the nO3 ferromagnetic conductive film 2 is right,
When the current I1 is changed as indicated by the solid line in FIG. 4A, the current I2 changes from small to large to small. First, change from small to large (ferromagnetic metal 4 left spin, La1-x Srx
The combination of MnO3 (x = 0.3) ferromagnetic conductive film 2 right spin) can be seen. At this time, since the current is finally changed as shown by the solid line in FIG. 4A, the combination of spins in the initial state is preserved.

【0047】次に、図4(c)の上側に示すように、初
期状態が強磁性金属膜4のスピンの向きが左向き、La
1-x Srx MnO3 強磁性導電膜2のスピンの向きが左
向きの場合、図4(a)の実線、最後に点線のように電
流I1を変化させたとき、電流I2は大→大→大と変化
する。最初に大→大と変化することで(強磁性金属4左
スピン, La1-x Srx MnO3 (x=0.3 )強磁性導
電膜2 左スピン)の組み合わせが分かる。このとき最
後に図4(a)の点線のように電流変化させているの
で、初期状態のスピンの組み合わせが保存される。
Next, as shown in the upper part of FIG. 4C, the initial state is such that the spin direction of the ferromagnetic metal film 4 is left,
When the spin direction of the 1-x Srx MnO3 ferromagnetic conductive film 2 is to the left, when the current I1 is changed as shown by the solid line in FIG. Change. By changing from large to large first, the combination of (ferromagnetic metal 4 left spin, La1-x Srx MnO3 (x = 0.3) ferromagnetic conductive film 2 left spin) can be understood. At this time, since the current is finally changed as shown by the dotted line in FIG. 4A, the combination of spins in the initial state is preserved.

【0048】次に、図4(c)の下側に示すように、初
期状態が強磁性金属膜4のスピンの向きが右向き、La
1-x Srx MnO3 強磁性導電膜2のスピンの向きが左
向きの場合、図4(a)の実線、最後に点線のように電
流I1を変化させたとき、電流I2は小→小→小と変化
する。最初に小→小と変化することで(強磁性金属4右
スピン, La1-x Srx MnO3 (x=0.3 )強磁性導
電膜2 左スピン)の組み合わせが分かる。このとき最
後に図4(a)の点線のように電流変化させているの
で、初期状態のスピンの組み合わせが保存される。
Next, as shown in the lower part of FIG. 4C, the initial state is such that the spin direction of the ferromagnetic metal film 4 is right,
When the spin direction of the 1-x Srx MnO3 ferromagnetic conductive film 2 is to the left, when the current I1 is changed as shown by the solid line in FIG. Change. By changing from small to small first, the combination of (ferromagnetic metal 4 right spin, La1-x Srx MnO3 (x = 0.3) ferromagnetic conductive film 2 left spin) can be understood. At this time, since the current is finally changed as shown by the dotted line in FIG. 4A, the combination of spins in the initial state is preserved.

【0049】次に、図4(d)に示すように、初期状態
が強磁性金属膜4のスピンの向きが右向き、La1-x S
rx MnO3 強磁性導電膜2のスピンの向きが右向きの
場合、図4(a)の実線ように電流I1を変化させたと
き、電流I2は大→小→大と変化する。最初に大→小と
変化することで(強磁性金属4 右スピン, La1-x
Srx MnO3 (x=0.3 )強磁性導電膜2 右スピン)
の組み合わせが分かる。このとき最後に図4(a)の実
線のように電流変化させているので、初期状態のスピン
の組み合わせが保存される。
Next, as shown in FIG. 4D, in the initial state, the spin direction of the ferromagnetic metal film 4 is rightward, and the La1-xS
When the spin direction of the rx MnO3 ferromagnetic conductive film 2 is rightward, when the current I1 is changed as indicated by the solid line in FIG. 4A, the current I2 changes from large to small to large. First, change from large to small (ferromagnetic metal 4 right spin, La1-x
Srx MnO3 (x = 0.3) ferromagnetic conductive film 2 right spin)
You can see the combination of At this time, since the current is finally changed as shown by the solid line in FIG. 4A, the combination of spins in the initial state is preserved.

【0050】このようにこの読み出し方法を用いると、
4つの異なる状態を読み出すことが可能となるので、4
ビットの情報を一つのセルに保存できる。電流値I2変化
からのスピン方向の判断と、それに伴う磁場誘導電流I1
の制御は、外部にCMOS 回路やTTL 回路を設けることで
行える。本発明では、上述した図1に示す磁気抵抗効果
素子を基板上に多数配列させ、シリコンのCMOS 回路や
TTL 回路等を組み合わせて、 I1 の制御とI2の変化の判
断を行うことで高密度集積化回路を実現できる。本発明
では、シリコン集積回路のノイズレヴェルよりも十分に
大きなI2の変化量を得られるので、各ビット毎の読み出
しが正確に行われる。
Thus, using this reading method,
Since it is possible to read out four different states,
Bit information can be stored in one cell. Judgment of spin direction from change in current value I2 and accompanying magnetic field induced current I1
Can be controlled by providing a CMOS circuit or TTL circuit externally. In the present invention, a large number of the above-described magnetoresistive elements shown in FIG.
By controlling I1 and judging changes in I2 by combining TTL circuits, etc., a high-density integrated circuit can be realized. According to the present invention, the amount of change in I2 that is sufficiently larger than the noise level of the silicon integrated circuit can be obtained, so that reading for each bit can be performed accurately.

【0051】また、本発明で、La1-x Srx MnO3
常磁性絶縁膜3の代わりに、Mnを昇華させないで成膜
したLa1-x Srx Oy 常磁性絶縁膜やLa+ Sr:M
n:Oの組成比が1:1:3からずれている常時性絶縁
膜や、これらにさらに他の金属イオンを不純物ドープし
たものもトンネル絶縁膜として用いることもできる。こ
れは、以下の総ての実施例おいても有効である。
In the present invention, La1-x Srx MnO3
Instead of the paramagnetic insulating film 3, La1-x Srx Oy formed without sublimation of Mn paramagnetic insulating film or La + Sr: M
A permanent insulating film in which the composition ratio of n: O deviates from 1: 1: 3, or a film obtained by further doping other metal ions with impurities can also be used as the tunnel insulating film. This is also valid in all of the following embodiments.

【0052】上述したように本構造では、 La1-x S
rx MnO3 強磁性導電膜の保磁力が小さいので、それ
を改善するために、La1-x Srx MnO3 強磁性導電
膜とFe, C O, Niなどの強磁性金属との保磁力が互いに
異なるので保磁力の大きい方の強磁性層を記憶層とする
ことで、やや磁気抵抗は小さくなるが、不揮発性メモリ
ーとして利用しやすい素子にできる。
As described above, in this structure, La1-x S
Since the coercive force of the rx MnO3 ferromagnetic conductive film is small, the coercive force of the La1-x Srx MnO3 ferromagnetic conductive film is different from that of the ferromagnetic metal such as Fe, CO and Ni. By using the ferromagnetic layer having the larger magnetic force as the storage layer, the magnetoresistance is slightly reduced, but the element can be easily used as a nonvolatile memory.

【0053】また、本実施例において、C O強磁性膜4
の代わりに、図5に示すように常温で強磁性絶金属とな
りLa1-x Srx MnO3 (x>0.17 ここではx=
0.3)層で、かつ下層のLa1-x Srx MnO3 (x=
0.3 )強磁性導電膜2とはSr組成が異なり、保磁力に
差がある膜を使っても良い。2層目のLa1-x Srx M
nO3 強磁性導電膜7は、MBE 法で絶縁膜に続いて成長
すればよい。La1-x Srx MnO3 常時性絶縁膜3を
挟むLa1-x Srx MnO3 強磁性導電膜2、7が両方
ともスピン分極率ほぼ100 %なので磁気抵抗効果はもっ
と大きくなり、最大で約150 %が得られた。
In this embodiment, the CO ferromagnetic film 4
Instead, as shown in FIG. 5, it becomes a ferromagnetic metal at room temperature and becomes La1-x Srx MnO3 (x> 0.17 where x = 0.17).
0.3) layer and the lower layer La1-x Srx MnO3 (x =
0.3) A film having a different Sr composition from the ferromagnetic conductive film 2 and having a difference in coercive force may be used. La1-x Srx M of the second layer
The nO3 ferromagnetic conductive film 7 may be grown following the insulating film by MBE. La1-x Srx MnO3 Both the La1-x Srx MnO3 ferromagnetic conductive films 2 and 7 sandwiching the insulating film 3 have a spin polarizability of almost 100%, so the magnetoresistance effect is further increased and a maximum of about 150% is obtained. Was.

【0054】この構造では小さな磁場に対しても、大き
な磁気抵抗効果を示すので、メモリーだけでなく高感度
な磁気ヘッド、磁気センサーにも適している。 (実施例2)標準形の多結晶La1-xSrxMnO3+アモルファス絶縁
膜(金属電極単一) 図6は本発明の実施例2にかかる磁気抵抗効果素子の断
面図である。
Since this structure exhibits a large magnetoresistance effect even with a small magnetic field, it is suitable not only for memories but also for highly sensitive magnetic heads and magnetic sensors. (Example 2) Standard type polycrystalline La1-xSrxMnO3 + amorphous insulating film (single metal electrode) FIG. 6 is a sectional view of a magnetoresistive element according to Example 2 of the present invention.

【0055】この磁気抵抗効果素子は、Si基板8 上に形
成された多結晶La1-x Srx MnO3 (x=0.35)強磁
性導電膜9 、この強磁性導電膜9 上に形成されたLa1-
x Srx MnO3 (x=0.1 )常磁性絶縁膜10、この常磁
性絶縁膜10上に各ビット毎に形成されたCOFeからな
る強磁性金属膜11、この強磁性金属膜11上に形成された
SiO2 絶縁膜5、この絶縁膜5上に形成されたTiAuから
なる磁場発生用配線6から形成されている。La1-x S
rx MnO3 (x=0.1 )常磁性絶縁膜10はトンネル絶縁
膜として作用し、強磁性導電膜9 、11間に電圧を印加す
ると電流が流れるようになっている。この時強磁性導電
膜中のスピンの向きが揃っているとき電流が流れやすく
なり、揃っていないときは電流が流れにくくなる。この
磁気抵抗効果素子は磁気抵抗効果が大きく、スピンが揃
っている場合と揃っていない場合の電流比が大きくとれ
る。
This magnetoresistive element is composed of a polycrystalline La1-x Srx MnO3 (x = 0.35) ferromagnetic conductive film 9 formed on a Si substrate 8 and a La1-x Srx MnO3 (x = 0.35) ferromagnetic conductive film 9 formed on the ferromagnetic conductive film 9.
x Srx MnO3 (x = 0.1) paramagnetic insulating film 10, ferromagnetic metal film 11 made of COFe formed for each bit on paramagnetic insulating film 10, and formed on ferromagnetic metal film 11
It is formed of a SiO2 insulating film 5 and a magnetic field generating wiring 6 made of TiAu formed on the insulating film 5. La1-x S
The rx MnO3 (x = 0.1) paramagnetic insulating film 10 functions as a tunnel insulating film, and a current flows when a voltage is applied between the ferromagnetic conductive films 9 and 11. At this time, when the spin directions in the ferromagnetic conductive film are aligned, the current easily flows, and when they are not aligned, the current hardly flows. This magnetoresistive element has a large magnetoresistive effect, and can provide a large current ratio when spins are aligned and when spins are not aligned.

【0056】次に、この磁気抵抗素子の作製方法につい
て説明する。MBE 法で基板温度は、550 ℃でSi基板8の
上に多結晶La1-x Srx MnO3(x=0.35)強磁性導
電膜9を300nmの厚さに成長させた。
Next, a method of manufacturing this magnetoresistive element will be described. A polycrystalline La1-x Srx MnO3 (x = 0.35) ferromagnetic conductive film 9 was grown to a thickness of 300 nm on a Si substrate 8 at a substrate temperature of 550 DEG C. by MBE.

【0057】次に、基板温度を100 ℃以下まで下げ、こ
の強磁性導電膜9上に、Sr組成を下げて厚さ0.4nm だ
けアモルファスLa1-x Srx MnO3 (x=0.1 )常磁
性絶縁膜10を成膜した。この常磁性絶縁膜10は、図
1に示すように素子動作温度(227K〜327K)に
おいて常磁性絶縁体となりトンネル絶縁膜として用いる
ことができる。次にこの基板を取り出し、スパッタ法で
基板表面にC OFeを500nm 堆積した。その後、実施例1
と同様な方法にて0.5ミクロン四方の大きさに素子分
離し、アモルファスLa1-x Srx MnO3 (x=0.1 )
常磁性絶縁膜10上にCOFe強磁性金属膜11、SiO
2絶縁膜5を形成した。
Next, the substrate temperature is lowered to 100 ° C. or lower, and an amorphous La1-x Srx MnO3 (x = 0.1) paramagnetic insulating film 10 having a thickness of 0.4 nm is formed on the ferromagnetic conductive film 9 by reducing the Sr composition. Was formed. As shown in FIG. 1, this paramagnetic insulating film 10 becomes a paramagnetic insulator at an element operating temperature (227 K to 327 K) and can be used as a tunnel insulating film. Next, the substrate was taken out, and 500 nm of COFe was deposited on the substrate surface by a sputtering method. Then, Example 1
In the same manner as described above, the element is separated into a square of 0.5 μm square and amorphous La1-x Srx MnO3 (x = 0.1)
COFe ferromagnetic metal film 11 on paramagnetic insulating film 10, SiO
Two insulating films 5 were formed.

【0058】次に、実施例1と同様に幅0.5 ミクロンの
Ti/Auからなる磁場発生用配線6をフォトリソグラフィ
ーとリフトオフの技術で形成した。次に、多結晶La1-
x Srx MnO3 (x=0.35)強磁性導電膜9、COFe
強磁性金属膜11に接触用の電極を形成して、 COFe強
磁性金属膜11と多結晶La1-x Srx MnO3 (x=0.
35)強磁性導電膜9の間に適当な大きさの直流電圧を印
加し、トンネル電流が最も多く流れるように調整した。
Next, in the same manner as in the first embodiment,
The Ti / Au magnetic field generating wiring 6 was formed by photolithography and lift-off techniques. Next, the polycrystalline La1-
x Srx MnO3 (x = 0.35) Ferromagnetic conductive film 9, COFe
An electrode for contact is formed on the ferromagnetic metal film 11, and the COFe ferromagnetic metal film 11 and the polycrystalline La1-x Srx MnO3 (x = 0.
35) A DC voltage of an appropriate magnitude was applied between the ferromagnetic conductive films 9 so as to adjust the tunnel current to flow most.

【0059】このように作成した磁気抵抗効果素子のト
ンネル磁気抵抗効果を調べたところ、印加磁場が10Oe
(但し、1 Oe =103/4p A/m)の下で、約70%の抵抗
変化が室温で見られた。 この場合CoFe強磁性金属膜
11のスピンは動かずに、多結晶La1-x Srx MnO
3 強磁性導電膜9のスピンのみが反転することで、それ
ぞれのスピンが平行な場合から反平行な場合に移り変わ
り抵抗が増大している。
When the tunnel magnetoresistive effect of the magnetoresistive element thus produced was examined, the applied magnetic field was 10 Oe.
(However, 1 Oe = 10 3 / 4p A / m) under the resistance change of about 70% was observed at room temperature. In this case, the spin of the CoFe ferromagnetic metal film 11 does not move and the polycrystalline La1-x Srx MnO
3 When only the spins of the ferromagnetic conductive film 9 are inverted, the resistance changes from a case where the respective spins are parallel to a case where the respective spins are antiparallel.

【0060】本実施例で、アモルファスLa1-x Srx
MnO3(x=0.1)常磁性絶縁膜10を作る方法には、上の
方法以外に次の方法を使うと基板温度を変えずに成膜す
ることが可能である。
In this embodiment, the amorphous La1-x Srx
If the following method is used to form the MnO3 (x = 0.1) paramagnetic insulating film 10 in addition to the above method, the film can be formed without changing the substrate temperature.

【0061】先ず多結晶La1-x Srx MnO3 強磁性
導電膜9上に、多結晶La1-x Srx MnO3(x=0.1)
常磁性絶縁膜が成長できる条件で、同時に不純物として
ボロン、または炭素、またはリンを同時に供給する。ぞ
れぞれ原料には、B2O3 、カーボン、P2O5 などが適当
である。
First, a polycrystalline La1-x Srx MnO3 (x = 0.1) is placed on the polycrystalline La1-x Srx MnO3 ferromagnetic conductive film 9.
At the same time, boron, carbon, or phosphorus is simultaneously supplied as an impurity under the condition that the paramagnetic insulating film can be grown. B2O3, carbon, P2O5, etc. are suitable for the respective raw materials.

【0062】次にこの基板をレーザーアブレーションま
たはスパッタ法で昇華させる。これにより、多結晶La
1-x Srx MnO3 常磁性絶縁膜が、微結晶La1-x S
rxMnO3 常磁性絶縁体12のまわりをアモルファス
La1-x Srx MnO3 常磁性絶縁膜13が取り囲む構
造に変化する。アモルファス構造が微結晶体の周りを取
り囲んでいるので、微結晶界面でのリーク電流を防ぎ、
0.4nm〜10nmでもピンホールのない良質のトン
ネル常磁性絶縁膜となる。この構造においても多結晶L
a1-x Srx MnO3 強磁性導電膜9とアモルファスL
a1-x Srx MnO3 常磁性絶縁膜10の界面構造は良
好となり、不要な電子の散乱を防ぐことができる。
Next, this substrate is sublimated by laser ablation or sputtering. Thereby, the polycrystalline La
1-x Srx MnO3 paramagnetic insulating film is composed of microcrystalline La1-xS
The structure changes to a structure in which the amorphous La1-x Srx MnO3 paramagnetic insulating film 13 surrounds the rxMnO3 paramagnetic insulator 12. Since the amorphous structure surrounds the microcrystalline body, it prevents leakage current at the microcrystalline interface,
Even at 0.4 nm to 10 nm, a high-quality tunnel paramagnetic insulating film having no pinhole can be obtained. Even in this structure, the polycrystalline L
a1-x Srx MnO3 ferromagnetic conductive film 9 and amorphous L
The interface structure of the a1-x Srx MnO3 paramagnetic insulating film 10 is improved, and unnecessary scattering of electrons can be prevented.

【0063】また、本実施例で、La1-x Srx MnO
3 常磁性絶縁膜10を作る方法には、下層のLa1-x S
rx MnO3 強磁性導電膜9を成長させた後で、酸素雰
囲気中で基板を高温(例えば1100℃程度)加熱して表面
付近を過剰酸化してアモルファス化させる方法もある。
この場合、歪みのため基板垂直方向に単位胞毎に結晶層
がアモルファス化されていきやすいので、成膜法と同様
に高精度の厚さ制御が可能になる。
In this embodiment, La1-x Srx MnO
3 The method of forming the paramagnetic insulating film 10 includes a method of forming an underlying La1-xS
After growing the rx MnO3 ferromagnetic conductive film 9, there is also a method in which the substrate is heated to a high temperature (for example, about 1100 DEG C.) in an oxygen atmosphere to excessively oxidize the vicinity of the surface to make it amorphous.
In this case, the crystal layer is likely to be amorphized for each unit cell in the vertical direction of the substrate due to distortion, so that the thickness can be controlled with high precision as in the case of the film forming method.

【0064】本実施例の磁気抵抗効果素子も前記実施例
1と同様に不揮発性メモリーとして使用できる。この場
合、素子の周囲のシリコン基板領域にCMOS回路やTTL 回
路を作ると、モノリシックなメモリー素子となり、磁気
抵抗素子とシリコン素子を別個に作りハイブリッドに実
装するよりも、低コストで小型にできるという利点が生
まれる。
The magnetoresistive element of this embodiment can be used as a nonvolatile memory as in the first embodiment. In this case, if a CMOS circuit or TTL circuit is made in the silicon substrate area around the element, it will be a monolithic memory element, and it can be reduced in cost and size compared to separately making a magnetoresistive element and a silicon element and mounting it in a hybrid. Benefits are born.

【0065】また、本実施例の磁気抵抗効果素子メモリ
ーも実施例1と同様の動作原理により多結晶La1-x S
rx MnO3 強磁性導電膜9や強磁性膜11のスピンを
読みだしたり書込んだりできる。
The magnetoresistive element memory according to the present embodiment also employs a polycrystalline La1-x S
The spin of the rx MnO3 ferromagnetic conductive film 9 and the ferromagnetic film 11 can be read and written.

【0066】また、本実施例において、CoFe強磁性膜
11の代わりに、使用温度で強磁性導電膜となるLa1-
x Srx MnO3 (例えばx>0.17)層を用いることが
できる。またこの時下層のLa1-x Srx MnO3 (x=
0.35)強磁性導電膜9とはSr組成が異なり、保磁力に
差がある膜を使っても良い。この場合、上層のLa1-x
Srx MnO3 強磁性導電膜は、MBE 法でアモルファス
La1-x Srx MnO3 絶縁膜10に続いて成長すれば
よい。この素子も前記同様高感度磁気ヘッド、磁気セン
サーとして用いることが出来る。
In this embodiment, instead of the CoFe ferromagnetic film 11, La1-
An xSrx MnO3 (e.g., x> 0.17) layer can be used. At this time, the lower layer La1-x Srx MnO3 (x =
0.35) A film having a different Sr composition from the ferromagnetic conductive film 9 and having a difference in coercive force may be used. In this case, the upper layer La1-x
The Srx MnO3 ferromagnetic conductive film may be grown following the amorphous La1-x Srx MnO3 insulating film 10 by MBE. This element can also be used as a high-sensitivity magnetic head and a magnetic sensor as described above.

【0067】(実施例3) La1-xSrxMnO3 どうしのトン
ネル接合(複電極) 図8は本発明の実施例3にかかる磁気抵抗効果素子の断
面図である。本実施例の磁気抵抗効果素子ではLa1-x
Srx MnO3 強磁性導電膜/La1-x Srx MnO3
常磁性絶縁膜/ La1-x Srx MnO3 強磁性導電膜
の構造を直列接続した例である。
Example 3 Tunnel junction between La1-xSrxMnO3 (multiple electrodes) FIG. 8 is a sectional view of a magnetoresistive element according to Example 3 of the present invention. In the magnetoresistance effect element of this embodiment, La1-x
Srx MnO3 ferromagnetic conductive film / La1-x Srx MnO3
This is an example in which the structure of the paramagnetic insulating film / La1-xSrxMnO3 ferromagnetic conductive film is connected in series.

【0068】図8に示すように、本実施例の磁気抵抗効
果素子は、基板1上に形成されたLa1-x Srx MnO
3 強磁性導電膜2、この強磁性導電膜2上に形成された
2つのLa1-x Srx MnO3 常磁性トンネル絶縁膜
3、この常磁性トンネル絶縁膜3上にそれぞれ形成され
たLa1-x Srx MnO3 強磁性導電膜14からなり、
La1-x Srx MnO3 強磁性導電膜14はそれぞれ電
源を介して直列に接続されている。
As shown in FIG. 8, the magnetoresistive element of this embodiment is composed of La1-x Srx MnO formed on the substrate 1.
3 Ferromagnetic conductive film 2, two La1-x Srx MnO3 paramagnetic tunnel insulating films formed on the ferromagnetic conductive film 2, La1-x Srx MnO3 formed on the paramagnetic tunnel insulating film 3, respectively. Consisting of a ferromagnetic conductive film 14,
The La1-x Srx MnO3 ferromagnetic conductive films 14 are connected in series via a power supply.

【0069】次に、この磁気抵抗効果素子の製造方法を
説明する。先ず、ターゲットとして焼結法でLa1-x S
rx MnO3 (x=0.1 )多結晶とLa1-x Srx MnO
3 (x=0.3)多結晶を形成する。
Next, a method of manufacturing this magnetoresistive element will be described. First, La1-xS
rx MnO3 (x = 0.1) polycrystal and La1-x Srx MnO
3 (x = 0.3) Polycrystal is formed.

【0070】次に、真空炉中内に(001)面が出たS
rTiO3 基板1を設置する。次にこの真空炉内に酸素を
数TOrr導入し、レーザーアブレーション法によっ
て、La1-x Srx MnO3 (x=0.3)多結晶ターゲッ
トにエキシマレーザーを照射して、 SriTiO3 基板
1上に単結晶La1-x Srx MnO3 (x=0.3)強磁性
導電膜を1500nm形成する。同様にLa1-x Srx
MnO3 (x=0.1 )多結晶ターゲットにエキシマレーザ
ーを照射して、単結晶La1-x Srx MnO3 (x=0.
3)強磁性導電膜上に単結晶La1-x Srx MnO3
(x=0.1)常磁性絶縁膜を1nm形成する。同様にし
て、 La1-x Srx MnO3 (x=0.3)多結晶ターゲ
ットにエキシマレーザーを照射して、単結晶La1-x S
rx MnO3 (x=0.1)常磁性絶縁膜上に単結晶La1-
x Srx MnO3 (x=0.3)強磁性導電膜を200nm
順次成長させる。
Next, in the vacuum furnace, the (001) plane
An rTiO3 substrate 1 is set. Next, oxygen is introduced into the vacuum furnace by several TOrr, and an excimer laser is irradiated on the La1-x Srx MnO3 (x = 0.3) polycrystalline target by a laser ablation method, so that the single crystal La1 is placed on the SriTiO3 substrate 1. -x Srx MnO3 (x = 0.3) A ferromagnetic conductive film is formed to a thickness of 1500 nm. Similarly, La1-x Srx
A polycrystalline target of MnO3 (x = 0.1) is irradiated with an excimer laser to obtain a single crystal La1-x Srx MnO3 (x = 0.
3) Single crystal La1-x Srx MnO3 on ferromagnetic conductive film
(X = 0.1) A 1 nm paramagnetic insulating film is formed. Similarly, an excimer laser is irradiated on a La1-x Srx MnO3 (x = 0.3) polycrystalline target to obtain a single-crystal La1-xS
rx MnO3 (x = 0.1) Single crystal La1-
x Srx MnO3 (x = 0.3) ferromagnetic conductive film of 200 nm
Grow sequentially.

【0071】次に、フォトリソにより2ミクロン四方の
領域だけ単結晶La1-x Srx MnO3 (x=0.3)強磁
性導電膜/ 単結晶La1-x Srx MnO3 (x=0.1)
常磁性絶縁膜/単結晶La1-x Srx MnO3 (x=0.
3)強磁性導電膜が残るように基板1界面までエッチン
グ加工する。
Next, single-crystal La1-x Srx MnO3 (x = 0.3) ferromagnetic conductive film / single-crystal La1-x Srx MnO3 (x = 0.1) only in a 2-micron square region by photolithography.
Paramagnetic insulating film / single crystal La1-x Srx MnO3 (x = 0.
3) Etching is performed up to the interface of the substrate 1 so that the ferromagnetic conductive film remains.

【0072】次に、この基板上にプラズマCVD法でS
iNを50nm表面に堆積させる。続いてZEP等電子
ビーム用レジストを表面に塗布し、2ミクロン四方領域
の中央に線状に電子ビーム露光し、現像して100nm サイ
ズのレジストマスクを作る。これをマスクにして弗化ア
ンモニウムでまずSiNのみをエッチングする。次にS
iNをマスクにして、低加速イオンミリングで表面から
エッチングして、基板上のLa1-x Srx MnO3 (x=
0.3)強磁性導電膜2の途中までエッチングし、図8の
ように100nm幅の溝を掘り、表面のLa1-x Srx
MnO3 (x=0.3)強磁性導電膜14と単結晶La1-x
Srx MnO3 (x=0.1)常磁性絶縁膜3を2つの領域
に分離する。
Next, S was deposited on this substrate by plasma CVD.
iN is deposited on the 50 nm surface. Subsequently, a resist for electron beam, such as ZEP, is applied on the surface, and the center of a 2-micron square region is linearly exposed to electron beam and developed to form a resist mask of 100 nm size. Using this as a mask, only SiN is first etched with ammonium fluoride. Then S
Using iN as a mask, etching was performed from the surface by low-acceleration ion milling, and La1-x Srx MnO3 (x =
0.3) Etch halfway through the ferromagnetic conductive film 2 and dig a groove with a width of 100 nm as shown in FIG. 8 to obtain La1-x Srx on the surface.
MnO3 (x = 0.3) Ferromagnetic conductive film 14 and single crystal La1-x
The Srx MnO3 (x = 0.1) paramagnetic insulating film 3 is divided into two regions.

【0073】次に、実施例1と同様な方法で、2つの領
域及び下層のLa1-x Srx MnO3 (x=0.3)層にそ
れぞれコンタクト電極を設ける。コンタクト電極にそれ
ぞれ適当なバイアス電圧をかけトンネル電流が流れるよ
うにし磁気効果素子を作成した。
Next, contact electrodes are provided in the two regions and the lower La1-x Srx MnO3 (x = 0.3) layer in the same manner as in the first embodiment. Appropriate bias voltages were applied to the contact electrodes so that a tunnel current flowed, thereby producing a magnetic effect element.

【0074】このトンネル電流は磁気抵抗効果によっ
て、磁場に対し変動する。 La1-xSrx MnO3 (x
=0.3)は100%スピン分極しており、磁気抵抗効果
は大きくなる。磁場0と数Oe においての二重のトンネ
ル電流の変化率は室温で約170%になる。前記までの
実施例同様にメモリー、高感度の磁気ヘッド、磁気セン
サーとして利用できる。
This tunnel current fluctuates with respect to the magnetic field due to the magnetoresistance effect. La1-xSrx MnO3 (x
= 0.3) is 100% spin-polarized, and the magnetoresistance effect is large. The rate of change of the double tunnel current at zero magnetic field and several Oe is about 170% at room temperature. It can be used as a memory, a high-sensitivity magnetic head, and a magnetic sensor as in the above embodiments.

【0075】本実施例では左右のLa1-x Srx MnO
3 強磁性導電膜14のサイズを同じにしたが、サイズを
左右で変えることで、左右で保磁力を異ならせることが
できる。強磁性体の保持力は、電極の幅をW 、厚さをt
とすると、W がt に比べ十分大きい(約10倍以上)場合
には、t/W に比例する。従って左右の強磁性体の幅や厚
さを変えることで自由に保磁力を調整できる。左右の強
磁性体の保持力を変えると、磁気抵抗効果の変化率が複
数存在することになり多値のメモリーに使える。また左
右の強磁性体の保持力に差を付ける方法として、La1-
x Srx MnO3 のSr組成を変える方法がある。
In this embodiment, the left and right La1-x Srx MnO
3 Although the size of the ferromagnetic conductive film 14 is the same, the coercive force can be made different between the left and right by changing the size between the left and right. The coercive force of the ferromagnetic material is expressed by the width of the electrode as W and the thickness as t.
Then, if W is sufficiently large (about 10 times or more) compared to t, it is proportional to t / W. Therefore, the coercive force can be freely adjusted by changing the width and thickness of the left and right ferromagnetic materials. When the coercive force of the left and right ferromagnetic materials is changed, there are a plurality of rates of change of the magnetoresistance effect, which can be used for a multivalued memory. As a method for providing a difference in the holding power between the left and right ferromagnetic materials, La1-
There is a method of changing the Sr composition of xSrxMnO3.

【0076】(実施例4) La1-xSrxMnO3 と強磁性金属
間のトンネル(複電極) 図9は本発明の実施例4にかかる半導体素子の断面図で
ある。本実施例の磁気抵抗効果素子ではLa1-x Srx
MnO3 強磁性金属膜/La1-x Srx MnO3 常磁性
絶縁膜/Fe、Co、Ni等の強磁性金属膜の構造を直列接
続した例である。
(Example 4) Tunnel between La1-xSrxMnO3 and ferromagnetic metal (multiple electrodes) FIG. 9 is a sectional view of a semiconductor device according to Example 4 of the present invention. In the magnetoresistive element of this embodiment, La1-x Srx
This is an example in which the structures of a MnO3 ferromagnetic metal film / La1-x Srx MnO3 paramagnetic insulating film / a ferromagnetic metal film such as Fe, Co, and Ni are connected in series.

【0077】図9に示すように、本実施例の磁気抵抗効
果素子は、基板1上に形成されたLa1-x Srx MnO
3 強磁性導電膜15、この強磁性導電膜15上に形成さ
れた2つのLa1-x Srx MnO3 常磁性トンネル絶縁
膜16、この常磁性トンネル絶縁膜16上にそれぞれ形
成されたFe、C o、Ni等の強磁性金属膜17からなり、
強磁性金属膜17はそれぞれ電源を介して直列に接続さ
れている。
As shown in FIG. 9, the magnetoresistive element according to the present embodiment is composed of La1-x Srx MnO formed on the substrate 1.
3 Ferromagnetic conductive film 15, two La1-x Srx MnO3 paramagnetic tunnel insulating films 16 formed on the ferromagnetic conductive film 15, Fe, Co, Made of a ferromagnetic metal film 17 such as Ni,
The ferromagnetic metal films 17 are respectively connected in series via a power supply.

【0078】次に、この磁気抵抗効果素子の作成方法に
ついて説明する。先ず、実施例3と同様にターゲットを
作成しレーザーアブレーション方によって、単結晶La
1-x Srx MnO3 (x=0.5 )強磁性導電膜15を15
00nm、単結晶La1-x Srx MnO3 (x=0.05)常
磁性絶縁膜16を1nm基板1上に順次形成する。この
場合実施例2と同様な方法で、La1-x Srx MnO3
(x=0.5 )強磁性導電膜15を多結晶、 La1-x Sr
x MnO3 (x=0.05)常磁性絶縁膜16をアモルファス
にしても良い。
Next, a method for producing this magnetoresistive element will be described. First, a target was prepared in the same manner as in Example 3, and a single crystal La was formed by laser ablation.
1-x Srx MnO3 (x = 0.5)
A single crystal La1-x Srx MnO3 (x = 0.05) paramagnetic insulating film 16 having a thickness of 00 nm is sequentially formed on the substrate 1 with a thickness of 1 nm. In this case, La1-x Srx MnO3 was obtained in the same manner as in Example 2.
(X = 0.5) Ferromagnetic conductive film 15 is polycrystalline, La1-x Sr
The xMnO3 (x = 0.05) paramagnetic insulating film 16 may be made amorphous.

【0079】次に、単結晶La1-x Srx MnO3(x=0.
05) 常磁性絶縁膜16上にC oFe強磁性金属膜を形成知
る。次に、フォトリソにより2ミクロン四方の領域だけ
単結晶La1-x Srx MnO3 (x=0.5 )強磁性導電膜
/ 単結晶La1-x Srx MnO3 (x=0.05)常磁性絶
縁膜/C oFe強磁性金属膜が残るように基板1界面まで
エッチング加工する。
Next, the single crystal La1-x Srx MnO3 (x = 0.
05) Form a CoFe ferromagnetic metal film on the paramagnetic insulating film 16. Next, a single-crystal La1-x Srx MnO3 (x = 0.5) ferromagnetic conductive film / single-crystal La1-x Srx MnO3 (x = 0.05) paramagnetic insulating film / CoFe ferromagnetic metal in a 2-micron square region by photolithography Etching is performed up to the interface of the substrate 1 so that the film remains.

【0080】次に、この基板上にプラズマCVD法でS
iNを50nm表面に堆積させる。続いてZEP等電子
ビーム用レジストを表面に塗布し、2ミクロン四方領域
の中央に線状に電子ビーム露光し、現像して0. 1ミク
ロンサイズのレジストマスクを作る。これをマスクにし
て弗化アンモニウムでまずSiN絶縁膜のみをエッチン
グし、SiN絶縁膜5を形成する。次に、このSiN絶
縁膜5をマスクにして、低加速イオンミリングで表面か
らエッチングして、基板上の強磁性金属膜17を図9に
ようにエッチング加工して2つの領域に分離する。この
とき強磁性金属膜17は、下地のLa1-x Srx MnO
3(x=0.05) 常磁性トンネル絶縁膜16と十分高いエッチ
ング比をとることができるので、強磁性金属膜17のみ
を選択的にエッチングできる。
Next, S was formed on the substrate by plasma CVD.
iN is deposited on the 50 nm surface. Subsequently, an electron beam resist such as ZEP is applied to the surface, and the center of a 2 micron square region is linearly exposed to an electron beam and developed to form a 0.1 micron resist mask. Using this as a mask, first, only the SiN insulating film is etched with ammonium fluoride to form a SiN insulating film 5. Next, using the SiN insulating film 5 as a mask, the surface is etched by low-acceleration ion milling to separate the ferromagnetic metal film 17 on the substrate into two regions by etching as shown in FIG. At this time, the ferromagnetic metal film 17 is formed of the underlying La1-x Srx MnO.
3 (x = 0.05) Since a sufficiently high etching ratio can be obtained with the paramagnetic tunnel insulating film 16, only the ferromagnetic metal film 17 can be selectively etched.

【0081】次に、SiN絶縁膜5上にフォトリソによ
って、磁場発生用配線6を形成する。磁場発生電極の電
流方向と電流値を同じにする。3つの強磁性電極にそれ
ぞれコンタクト電極を設け、コンタクト電極にそれぞれ
適当なバイアス電圧をかけトンネル電流が流れるように
する。この様にして本実施例の磁気抵抗素子を形成し
た。この磁気抵抗素子も、La1-x Srx MnO3(x=0.
5)強磁性導電膜15が100%スピン分極しているため
に大きなトンネル磁気抵抗効果が見られる。
Next, a magnetic field generating wiring 6 is formed on the SiN insulating film 5 by photolithography. The current direction and the current value of the magnetic field generating electrode are made the same. A contact electrode is provided on each of the three ferromagnetic electrodes, and an appropriate bias voltage is applied to each of the contact electrodes so that a tunnel current flows. Thus, the magnetoresistive element of this example was formed. This magnetoresistive element also has La1-x Srx MnO3 (x = 0.
5) Since the ferromagnetic conductive film 15 is 100% spin-polarized, a large tunnel magnetoresistance effect is observed.

【0082】本実施例の磁気抵抗効果素子も図2、図3
と同様なタイミングでLa1-x Srx MnO3 層のみが
スピン反転するような磁場を加えると、実施例1と同様
の原理により、トンネル電流の変化からCoFeのスピン
の向きを読み取ることができ、メモリーとして用いるこ
とが出来る。
The magnetoresistive element of this embodiment is also shown in FIGS.
When a magnetic field that causes only the La1-x Srx MnO3 layer to undergo spin reversal is applied at the same timing as in the first embodiment, the spin direction of CoFe can be read from the change in the tunnel current according to the same principle as in the first embodiment. Can be used.

【0083】尚、本実施例の磁気抵抗効果素子は、左右
の強磁性金属膜17の電極サイズを変えることで、保磁
力を調整することができる。電極の幅をW 、厚さをt と
すると、W がt に比べ十分大きい(約10倍以上)場合に
は、保磁力はt/W に比例するので、左右のW を変えるこ
とで自由に保磁力を調整できる。左右の幅を違えて、保
磁力に差をつけることもできる。
In the magnetoresistive element of this embodiment, the coercive force can be adjusted by changing the electrode sizes of the left and right ferromagnetic metal films 17. If the width of the electrode is W and the thickness is t, if W is sufficiently larger than t (about 10 times or more), the coercive force is proportional to t / W. The coercive force can be adjusted. The coercive force can be differentiated by changing the width on the left and right.

【0084】(実施例5) LaMnO3 基板Sr拡散型 図10は本発明の実施例5にかかる磁気抵抗効果素子の
断面図である。本実施例の磁気抵抗効果素子は、 La
1-x Srx MnO3 常磁性絶縁膜中に、Srを拡散して
La1-x Srx MnO3 強磁性導電領域を形成し、基板
面方向にLa1-x Srx MnO3 強磁性導電膜/ La
1-x Srx MnO3 強磁性導電膜/ La1-x Srx M
nO3 強磁性導電膜構造を作り込んだものである。
(Embodiment 5) LaMnO3 substrate Sr diffusion type FIG. 10 is a sectional view of a magnetoresistive element according to Embodiment 5 of the present invention. The magnetoresistive effect element of the present embodiment is: La
Sr is diffused into the 1-x Srx MnO3 paramagnetic insulating film to form a La1-x Srx MnO3 ferromagnetic conductive region, and the La1-x Srx MnO3 ferromagnetic conductive film / La is formed in the direction of the substrate surface.
1-x Srx MnO3 ferromagnetic conductive film / La1-x Srx M
This is an nO3 ferromagnetic conductive film structure.

【0085】すなわち本実施例の磁気抵抗効果素子は、
基板1上に形成されたLaMnO3常磁性絶縁膜と、こ
のLaMnO3 常磁性絶縁膜18中に拡散して形成され
た2つのLa1-x Srx MnO3 強磁性導電領域19と
で構成され、前記2つのLa1-x Srx MnO3 強磁性
導電領域19はLaMnO3 常磁性トンネル絶縁膜を介
してトンネル接合するようになっている。
That is, the magnetoresistive element of this embodiment is
The LaMnO3 paramagnetic insulating film formed on the substrate 1 and the two La1-x Srx MnO3 ferromagnetic conductive regions 19 formed by diffusing in the LaMnO3 paramagnetic insulating film 18; The -x Srx MnO3 ferromagnetic conductive region 19 is configured to tunnel-join through a LaMnO3 paramagnetic tunnel insulating film.

【0086】次に、この磁気抵抗素子の作製方法を説明
する。先ず、MBE法またはレーザーアブレーション法
またはスパッター法などでLaMnO3 常磁性絶縁膜1
8を500nm ほど基板1上に成長する。次に、 LaMn
O3 常磁性絶縁膜18を2ミクロン四方の素子領域にエ
ッチング加工する。
Next, a method for manufacturing this magnetoresistive element will be described. First, the LaMnO3 paramagnetic insulating film 1 was formed by MBE, laser ablation, or sputtering.
8 is grown on the substrate 1 to a thickness of about 500 nm. Next, LaMn
The O3 paramagnetic insulating film 18 is etched into a 2 micron square device region.

【0087】次に、このLaMnO3 常磁性絶縁膜18
上に、CVD法でSiO2 を200nm 堆積する。次に、フォ
トリソグラフィーか電子ビームリソグラフィーを使っ
て、2ミクロン四方の素子領域の中に0.05ミクロン開け
て1mm×0.8mm の大きさの窓を2箇所レジストを用いて
作成する。
Next, the LaMnO 3 paramagnetic insulating film 18
On top of this, 200 nm of SiO2 is deposited by CVD. Next, by using photolithography or electron beam lithography, a window having a size of 1 mm × 0.8 mm is formed at two locations by opening 0.05 μm in an element area of 2 μm square using resist.

【0088】次に、前記レジストの窓の部分のSiO2
を反応性イオンエッチング法で垂直に加工しLaMnO
3 層を露出させ、続いてフッ化アンモニウムにて基板面
に水平方向に当方的にエッチングして、SiO2 の幅を10
nmまで狭める。
Next, the SiO 2 in the window portion of the resist was
Is vertically processed by reactive ion etching to obtain LaMnO.
After exposing the three layers, the substrate is horizontally anisotropically etched with ammonium fluoride to reduce the width of SiO2 to 10
Narrow down to nm.

【0089】次に、レジストを有機溶剤で除去した後ス
パッタ法で表面に厚さ20nmのSr21を堆積する。これ
を酸素雰囲気中で900 ℃で加熱すると表面からSrが拡
散してLa1-x Srx MnO3 強磁性導電領域19が形
成される。組成xは空間的に分布するが、拡散領域はほ
ぼ全てx>0.175 の組成領域が強磁性導電体となる。こ
のときSiO2 層の下にも拡散層が進行し、10nm以下のL
aMnO3 常磁性絶縁体を挟んで、幅約0.9 ミクロンの
La1-x Srx MnO3 強磁性細線領域が2箇所形成で
きたことになる。
Next, after removing the resist with an organic solvent, 20 nm thick Sr21 is deposited on the surface by sputtering. When this is heated at 900 ° C. in an oxygen atmosphere, Sr diffuses from the surface to form a La1-x Srx MnO3 ferromagnetic conductive region 19. Although the composition x is spatially distributed, almost all of the diffusion regions have a composition region where x> 0.175 is a ferromagnetic conductor. At this time, the diffusion layer advances under the SiO2 layer, and the L
This means that two La1-x Srx MnO3 ferromagnetic wire regions having a width of about 0.9 micron were formed with the aMnO3 paramagnetic insulator therebetween.

【0090】次に、 La1-x Srx MnO3 強磁性導
電領域19の上に前実施例同様の方法でコンタクト電極
を形成し磁気抵抗効果素子を作成した。この素子はLa
1-xSrx MnO3 が100%スピン分極しているため、ト
ンネル磁気抵抗効果が大きく、室温で100%近いものが得
られた。この素子は高感度磁気センサーとして使うこと
が出来る。また、コンタクト電極の代わりにC O等の強
磁性電極を設けることで、前記実施例と同様の原理によ
り書込み可能なメモリーとしても用いることができる。
Next, a contact electrode was formed on the La1-x Srx MnO3 ferromagnetic conductive region 19 in the same manner as in the previous embodiment, to produce a magnetoresistive element. This element is La
Since 1-xSrx MnO3 is 100% spin-polarized, the tunnel magnetoresistive effect is large, and nearly 100% at room temperature was obtained. This element can be used as a high-sensitivity magnetic sensor. Further, by providing a ferromagnetic electrode such as CO instead of the contact electrode, it can be used as a writable memory according to the same principle as in the above embodiment.

【0091】また、本実施例の磁気抵抗効果素子は、プ
レーナー型であるので集積化して用いる際に有利であ
る。 (実施例6)図11は本発明の実施例6にかかる磁気抵
抗効果素子の断面図である。本実施例の磁気抵抗効果素
子は、基板面方向にLa1-x Srx MnO3 強磁性導電
領域/ La1-x Srx MnO3 常磁性トンネル絶縁領
域/ La1-x SrxMnO3(x=0.5)強磁性導電領域の
構造を原子間力顕微鏡により作成したものである。
The magnetoresistive element of this embodiment is of a planar type, which is advantageous when integrated and used. (Embodiment 6) FIG. 11 is a sectional view of a magnetoresistive element according to Embodiment 6 of the present invention. The magnetoresistive element of this embodiment has a structure of a La1-x Srx MnO3 ferromagnetic conductive region / La1-x Srx MnO3 paramagnetic tunnel insulating region / La1-x SrxMnO3 (x = 0.5) ferromagnetic conductive region in the substrate surface direction. Was prepared by an atomic force microscope.

【0092】本実施例の磁気抵抗効果素子の作成方法を
説明する。先ず、基板1上にLa1-x Srx MnO3 強
磁性導電膜を数10nmだけ成長する。次に、空気中で原子
間力顕微鏡のプローブ24に金属コートしたものを使っ
て、電流を流し局所的に酸化する(酸素の組成を増や
す)ことで10nm程度のLa1-x Srx MnO3 +y常磁
性絶縁膜22を作ることができる。これは、Ti電極等の
ナノメータサイズの加工のために使われている方法と原
理的に同じである(文献:Japanese JOurnal Of Appl
ied Physics, vOl.32, L553, (1993))。また、常磁性
絶縁領域を作成する方法は、La1-x Srx MnO3 強
磁性導電膜に電子ビームをあてて酸素を脱離させて、常
磁性絶縁化させてもよい。
A method for fabricating the magnetoresistive element of this embodiment will be described. First, a La1-x Srx MnO3 ferromagnetic conductive film is grown on the substrate 1 by several tens of nm. Next, a current is passed and locally oxidized (increased oxygen composition) using a probe coated with a metal of the atomic force microscope probe 24 in the air to obtain La1-x Srx MnO3 + y paramagnetic of about 10 nm. An insulating film 22 can be formed. This is in principle the same as the method used for processing nanometer-sized Ti electrodes and the like (Reference: Japanese Journal of Appl.
ied Physics, vOl.32, L553, (1993)). The paramagnetic insulating region may be formed by applying an electron beam to the La1-x Srx MnO3 ferromagnetic conductive film to desorb oxygen to make the film paramagnetic insulative.

【0093】本実施例では、La1-x Srx MnO3 層
に通電したり、光をあてて温度を上げることで、一時的
にLa1-x Srx MnO3 を常磁性金属に相転移させて
磁場を印加して冷却中にスピンを磁場方向に固定させる
方式である。
In this embodiment, by applying a current to the La1-x Srx MnO3 layer or raising the temperature by irradiating light, the La1-x Srx MnO3 is temporarily transformed into a paramagnetic metal to apply a magnetic field. In this method, the spin is fixed in the direction of the magnetic field during cooling.

【0094】最後にLa1-x Srx MnO3(x=0.5)強磁
性導電領域23に電極を形成して、本実施例の磁気抵抗
効果素子を作成した。本実施例の磁気抵抗効果素子も高
い磁気抵抗比を得ることができた。
Finally, an electrode was formed in the La1-x Srx MnO3 (x = 0.5) ferromagnetic conductive region 23 to complete the magnetoresistive element of this embodiment. The magnetoresistive element of this example could also obtain a high magnetoresistance ratio.

【0095】(実施例7)熱で書き込み消去する 図12は本発明の実施例7にかかる磁気抵抗効果素子の
断面図である。強磁性薄膜の基本構成は、実施例1と同
一である。違いはLa1-x Srx MnO3 強磁性導電膜
2にも別個にコンタクト電極を取って、直流または交流
の電源につなぐことである。一方、 La1-x Srx M
nO3 常磁性絶縁膜3上の強磁性金属電極4にはC O等
の保磁力の大きい材料を用い、スピンは固定しておく。
(Embodiment 7) Writing and erasing by heat FIG. 12 is a sectional view of a magnetoresistive element according to Embodiment 7 of the present invention. The basic configuration of the ferromagnetic thin film is the same as that of the first embodiment. The difference is that a separate contact electrode is also provided for the La1-x Srx MnO3 ferromagnetic conductive film 2 and connected to a DC or AC power supply. On the other hand, La1-x Srx M
For the ferromagnetic metal electrode 4 on the nO3 paramagnetic insulating film 3, a material having a large coercive force such as CO is used, and the spin is fixed.

【0096】La1-x Srx MnO3 強磁性導電膜2の
スピンを反転させるのは、強磁性金属電極4の保磁力よ
りも小さな磁場で行う。本実施例の磁気抵抗効果素子の
特徴は、La1-x Srx MnO3 強磁性導電膜2に電流
を流し、温度を上げることでスピンの向きを一括してば
らばらにし、情報を消去することが出来る点にある。こ
れは、La1-x Srx MnO3 強磁性導電体を、図1に
示す常磁性金属に相転移する温度以上に加熱して、スピ
ンの向きをバラバラにする方法である。相転移温度はS
r組成0.25で約70℃、0.3 以上で約100 ℃である。少な
い電流で加熱できるようにLa1-x Srx MnO3 強磁
性導電膜2の厚さは100nm 以下にする。また、消去後の
冷却速度を上げるため、素子の周囲は表面積を大きくし
ておくなど熱伝導率を上げる工夫をしておく。
The spin of the La1-x Srx MnO3 ferromagnetic conductive film 2 is inverted with a magnetic field smaller than the coercive force of the ferromagnetic metal electrode 4. The feature of the magnetoresistive effect element of this embodiment is that the direction of spins can be collectively changed by passing a current through the La1-x Srx MnO3 ferromagnetic conductive film 2 and raising the temperature to erase information. It is in. In this method, the La1-x Srx MnO3 ferromagnetic conductor is heated to a temperature higher than the temperature at which phase transition to the paramagnetic metal shown in FIG. The phase transition temperature is S
The r composition is about 70 ° C. for 0.25 and about 100 ° C. for 0.3 or more. The thickness of the La1-x Srx MnO3 ferromagnetic conductive film 2 is set to 100 nm or less so that heating can be performed with a small current. Further, in order to increase the cooling rate after erasing, the surface area around the element is increased so as to increase the thermal conductivity.

【0097】また、レーザーを照射して、照射部のLa
1-x Srx MnO3 強磁性導電膜2の温度を上げて、ス
ピン情報を消去することも可能である。 (実施例8)絶縁膜が他のペロブスカイト(電極単一) 図13は本発明の実施例8にかかる磁気抵抗効果素子の
断面図である。本実施例では、実施例1の構造で常磁性
絶縁膜を、使用温度で常磁性を示す、一般式ABO3
(AがPr、Nd、Gd、Y或いはSr、BがSc、Rh、Sb、Z
r、Sn、Cd或いはRe)で表され、LaMnO3 との格子
不整合が2%以下である絶縁膜にした例である。これら
の膜もLa1-x Srx MnO3 と同じペロブスカイト結
晶構造を持つので、均一で良質なヘテロ接合を形成でき
る。
Further, laser irradiation is performed, and La at the irradiated portion is irradiated.
It is also possible to erase the spin information by increasing the temperature of the 1-x Srx MnO3 ferromagnetic conductive film 2. (Example 8) Another perovskite having an insulating film (single electrode) FIG. 13 is a sectional view of a magnetoresistive element according to Example 8 of the present invention. In the present embodiment, a paramagnetic insulating film having the structure of the first embodiment is formed by a general formula ABO3 which exhibits paramagnetism at a use temperature.
(A is Pr, Nd, Gd, Y or Sr, B is Sc, Rh, Sb, Z
This is an example in which the insulating film is represented by (r, Sn, Cd or Re) and has a lattice mismatch with LaMnO3 of 2% or less. Since these films also have the same perovskite crystal structure as La1-x Srx MnO3, a uniform and high quality heterojunction can be formed.

【0098】本実施例の磁気抵抗効果素子は、 SrTi
O3 基板1上に形成されたLa1-xSrx MnO3 (x=
0.4)強磁性導電膜2、この常磁性導電膜2上に形成さ
れたSr(Rh0.5Sb0.5)O3 常磁性トンネル絶縁膜25、
この常磁性絶縁膜25上に形成されたC oFe強磁性金属
膜26、この強磁性金属膜26上に形成されたSiN絶
縁膜27、この絶縁膜27上に形成されたTi/Au磁場
発生用配線28からなる。
The magnetoresistive element of this embodiment is made of SrTi
La1-xSrx MnO3 (x =
0.4) Ferromagnetic conductive film 2, Sr (Rh0.5Sb0.5) O3 paramagnetic tunnel insulating film 25 formed on paramagnetic conductive film 2,
A CoFe ferromagnetic metal film 26 formed on the paramagnetic insulating film 25, a SiN insulating film 27 formed on the ferromagnetic metal film 26, and a Ti / Au magnetic field generated on the insulating film 27 It consists of wiring 28.

【0099】次に、本実施例の磁気抵抗効果素子の作製
方法について説明する。先ず、MBE 法でSrTiO3 基板
1上にLa1-x Srx MnO3 (x=0.4)強磁性導電膜
2の単結晶膜を3 00nmの厚さに成長させた。基板温度
は、850 ℃であった。
Next, a method for manufacturing the magnetoresistive element of this embodiment will be described. First, a single crystal film of a La1-x Srx MnO3 (x = 0.4) ferromagnetic conductive film 2 was grown to a thickness of 300 nm on an SrTiO3 substrate 1 by MBE. The substrate temperature was 850 ° C.

【0100】次に、Sr(Rh0.5Sb0.5)O3 層常磁性トン
ネル絶縁膜25を2nm 成膜した。この膜は、La1-x S
rx MnO3 との格子不整合が小さいため、厚さ2nm の
薄膜でも欠陥の少ない良質の絶縁膜が得られる。
Next, an Sr (Rh0.5Sb0.5) O3 layer paramagnetic tunnel insulating film 25 was formed to a thickness of 2 nm. This film is made of La1-x S
Since the lattice mismatch with rx MnO3 is small, a high-quality insulating film with few defects can be obtained even with a thin film having a thickness of 2 nm.

【0101】次に、基板を真空炉から取り出し、スパッ
タ法で基板表面にC oFe強磁性金属膜26を500nm 堆積
し、この上にSiN絶縁膜27を形成した。その後、
0.5ミクロン四方の大きさに素子分離した。
Next, the substrate was taken out of the vacuum furnace, a 500 nm CoFe ferromagnetic metal film 26 was deposited on the surface of the substrate by sputtering, and a SiN insulating film 27 was formed thereon. afterwards,
The element was separated into a square of 0.5 micron.

【0102】次に、C oFe強磁性電極26やLa1-x S
rx MnO3 (x=0.4)強磁性導電膜2に磁場を印加す
るための幅0.5 ミクロンのTiAu磁場発生用配線をフォト
リソグラフィーとリフトオフの技術で形成した。
Next, the CoFe ferromagnetic electrode 26 and La1-xS
A 0.5 μm wide TiAu magnetic field generating wiring for applying a magnetic field to the rx MnO3 (x = 0.4) ferromagnetic conductive film 2 was formed by photolithography and lift-off techniques.

【0103】次に、La1-x Srx MnO3 (x=0.4 )
強磁性導電膜2に接触用の電極を形成して、 CoFe磁場
発生用電極28とLa1-x Srx MnO3 (x=0.4 )強
磁性導電膜2の間に適当な大きさの直流電圧を印加し、
トンネル電流が最も多く流れるように調整する。
Next, La1-x Srx MnO3 (x = 0.4)
An electrode for contact is formed on the ferromagnetic conductive film 2, and an appropriate DC voltage is applied between the electrode 28 for generating a CoFe magnetic field and the La1-x Srx MnO3 (x = 0.4) ferromagnetic conductive film 2. ,
Adjust so that the tunnel current flows the most.

【0104】このようにして本実施例の磁気抵抗効果素
子を作成した。この磁気抵抗効果素子のトンネル磁気抵
抗効果を調べたところ、印加磁場が10Oe (但し、1 O
e =103/4p A/m)の下で、約60%の抵抗変化が室温で
見られた。これら本実施例の素子も前記実施例1と同様
に不揮発性メモリーとして使用できる。また、実施例1
と同様の動作原理により強磁性層La1-x Srx MnO
3 強磁性導電膜2のスピンを読みだし・ 書込みの対象と
するメモリーとして使うこともできる。
Thus, the magnetoresistive element of this example was manufactured. Examination of the tunnel magnetoresistance effect of this magnetoresistance effect element revealed that the applied magnetic field was 10 Oe (however, 1 Oe
Under e = 10 3 / 4p A / m), the resistance change of about 60% was observed at room temperature. These elements of this embodiment can also be used as a nonvolatile memory as in the first embodiment. Example 1
The ferromagnetic layer La1-x Srx MnO is operated according to the same operation principle as
3 The ferromagnetic conductive film 2 can be used as a memory for reading and writing spins.

【0105】また、本実施例において、 CoFe強磁性膜
の代わりに、常温で強磁性絶金属となりLa1-x Srx
MnO3 (x>0.17)層で、かつ下層のLa1-x Srx
MnO3 (x=0.4 )とはSr組成が異なり、保磁力に差
がある膜を使っても良い。この場合、2層目の強磁性体
La1-x Srx MnO3 は、MBE 法でアモルファス絶縁
膜に続いて成長すればよい。この素子も前記同様高感度
磁気ヘッド、磁気センサーとして用いることが出来る。
In this embodiment, instead of the CoFe ferromagnetic film, La1-x Srx becomes a ferromagnetic metal at room temperature.
MnO3 (x> 0.17) layer and lower La1-x Srx
A film having a different Sr composition from MnO3 (x = 0.4) and having a difference in coercive force may be used. In this case, the second-layer ferromagnetic material La1-x Srx MnO3 may be grown following the amorphous insulating film by MBE. This element can also be used as a high-sensitivity magnetic head and a magnetic sensor as described above.

【0106】また、先の実施例と同様に、La1-x Sr
x MnO3 層は多結晶体でも良い。この場合、磁気抵抗
効果が若干小さくなるが、下地の基板の種類を問わない
ため、大型の基板を用いれるので、量産に適した構造と
なる。以上述べてきた本発明の磁気抵抗効果素子は、
La1-x Srx MnO3 強磁性導電膜とLa1-x Srx
MnO3 常磁性トンネル絶縁膜の界面構造を有する。L
a1-x Srx MnO3 は、[001] 軸方向に0.1 〜0.2nm
周期(周期はSr組成に依存)の単位格子を持つペロブ
スカイト構造と呼ばれる立方晶である。このペロブスカ
イト構造とはMn原子の位置を中心にした8面体の頂点
に酸素が配位し、その周囲をLaまたはSrが取り囲む
構造を単位胞とする。この材料を成膜するときには、こ
の1単位胞づつ形成される傾向にある。素子のトンネル
抵抗はトンネル絶縁膜の厚さに非常に敏感であるが、こ
の性質を用いると、1nm 以下の非常に薄いトンネル絶縁
膜(常磁性絶縁膜)の厚さを正確に制御しながら容易に
作製できる。
Also, as in the previous embodiment, La1-x Sr
The x MnO3 layer may be polycrystalline. In this case, although the magnetoresistive effect is slightly reduced, a large substrate is used regardless of the type of the underlying substrate, so that the structure is suitable for mass production. The magnetoresistance effect element of the present invention described above is
La1-x Srx MnO3 ferromagnetic conductive film and La1-x Srx
MnO3 has an interface structure of a paramagnetic tunnel insulating film. L
a1-x Srx MnO3 is 0.1 to 0.2 nm in the [001] axis direction.
It is a cubic crystal called a perovskite structure having a unit cell with a period (the period depends on the Sr composition). In the perovskite structure, a unit cell is a structure in which oxygen is coordinated at the vertex of an octahedron centered on the position of a Mn atom and La or Sr surrounds the periphery. When this material is formed into a film, the unit cells tend to be formed one by one. The tunnel resistance of the device is very sensitive to the thickness of the tunnel insulating film. By using this property, it is easy to precisely control the thickness of the very thin tunnel insulating film (paramagnetic insulating film) of 1 nm or less. Can be manufactured.

【0107】尚、本発明において用いられるLa1-x S
rx MnO3 に、Laの代わりにPrやNdやSmを、 Sr
の結晶位置にCeまたはCaをある程度添加しても類似の結
晶構造と類似の物性を持つ結晶ができる。これらの元素
またはそれ以外の不純物を常温(通常の地球上の環境−
50℃位〜50℃位)で強磁性が損なわれない程度に添
加した材料を強磁性金属電極として使うことも可能であ
る。以上の実施例においては、複数の磁気抵抗効果素子
を配線で直列につないで、磁気抵抗効果を大きくするこ
とも可能である。
The La1-xS used in the present invention
Pr, Nd, or Sm instead of La for rx MnO3;
Even if Ce or Ca is added to some extent at the crystal position, a crystal having a similar crystal structure and similar physical properties can be obtained. These elements or other impurities at room temperature (normal earth environment-
A material added to such an extent that ferromagnetism is not impaired at about 50 ° C. to 50 ° C.) can be used as the ferromagnetic metal electrode. In the above embodiment, it is possible to increase the magnetoresistance effect by connecting a plurality of magnetoresistance effect elements in series by wiring.

【0108】[0108]

【発明の効果】本発明によれば、スピン分極率100%のL
a1-x Srx MnO3 強磁性導電膜膜とLa1-x Srx
MnO3 常磁性トンネル絶縁膜の積層構造を用いること
で、室温で低磁場で従来の磁性金属材料を使った素子よ
りも大きな磁気抵抗効果を得ることができ、また素子特
性の均一性にも優れているので、メモリー素子や磁気ヘ
ッド、磁気センサーとして用いることができる。
According to the present invention, L having a spin polarizability of 100% is used.
a1-x Srx MnO3 ferromagnetic conductive film and La1-x Srx
By using a stacked structure of MnO3 paramagnetic tunnel insulating films, a larger magnetoresistance effect can be obtained at room temperature and in a low magnetic field than a device using a conventional magnetic metal material, and the device characteristics are excellent in uniformity. Therefore, it can be used as a memory element, a magnetic head, and a magnetic sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態を説明するためのLa1-
x Srx MnO3 層の相図。
FIG. 1 shows La1- for describing an embodiment of the present invention.
Phase diagram of the xSrx MnO3 layer.

【図2】 本発明の実施例1にかかる磁気抵抗効果素子
の断面図。
FIG. 2 is a sectional view of the magnetoresistive element according to the first embodiment of the present invention.

【図3】 本発明の磁気抵抗効果素子をメモリーに用い
た場合の読み出し方法を説明するための図。
FIG. 3 is a diagram for explaining a reading method when the magnetoresistance effect element of the present invention is used for a memory.

【図4】 本発明の磁気抵抗効果素子をメモリーに用い
た場合の読み出し方法を説明するための図。
FIG. 4 is a diagram for explaining a reading method when the magnetoresistance effect element of the present invention is used for a memory.

【図5】 本発明の実施例1にかかる磁気抵抗効果素子
の断面図。
FIG. 5 is a sectional view of the magnetoresistive element according to the first embodiment of the present invention.

【図6】 本発明の実施例2にかかる磁気抵抗効果素子
の断面図。
FIG. 6 is a sectional view of a magnetoresistive element according to a second embodiment of the present invention.

【図7】 アモルファスLa1-x Srx MnO3 常磁性
絶縁膜中に微結晶La1-x Srx MnO3 常磁性絶縁膜
が分散されている図。
FIG. 7 is a diagram in which a microcrystalline La1-x Srx MnO3 paramagnetic insulating film is dispersed in an amorphous La1-x Srx MnO3 paramagnetic insulating film.

【図8】 本発明の実施例3にかかる磁気抵抗効果素子
の断面図。
FIG. 8 is a sectional view of a magnetoresistive element according to a third embodiment of the invention.

【図9】 本発明の実施例4にかかる磁気抵抗効果素子
の断面図。
FIG. 9 is a sectional view of a magnetoresistive element according to a fourth embodiment of the present invention.

【図10】 本発明の実施例5にかかる磁気抵抗効果素
子の断面図。
FIG. 10 is a sectional view of a magnetoresistive element according to a fifth embodiment of the present invention.

【図11】 本発明の実施例6にかかる磁気抵抗効果素
子の断面図。
FIG. 11 is a sectional view of a magnetoresistive element according to a sixth embodiment of the invention.

【図12】 本発明の実施例7にかかる磁気抵抗効果素
子の断面図。
FIG. 12 is a sectional view of a magnetoresistive element according to a seventh embodiment of the present invention.

【図13】 本発明の実施例8にかかる磁気抵抗効果素
子の断面図。
FIG. 13 is a sectional view of a magnetoresistive element according to an eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・ La1-x Srx MnO3 強磁性導電膜 3・・・ La1-x Srx MnO3 常磁性トンネル絶縁
膜 4・・・強磁性金属膜 5・・・絶縁膜 6・・・磁場発生用配線 7・・・ La1-x Srx MnO3 強磁性導電膜 8・・・Si基板 9・・・多結晶La1-x Srx MnO3 強磁性導電膜 10・・・アモルファスLa1-x Srx MnO3 常磁性
トンネル絶縁膜 11・・・強磁性膜 12・・・ 微結晶La1-x Srx MnO3 常磁性絶縁
体 13・・・ アモルファスLa1-x Srx MnO3 常磁
性絶縁層 14・・・La1-x Srx MnO3 強磁性導電膜 15・・・La1-x Srx MnO3 強磁性導電膜 16・・・La1-x Srx MnO3 常磁性トンネル絶縁
膜 17・・・強磁性金属膜 18・・・ LaMnO3 膜 19・・・La1-x Srx MnO3 強磁性導電領域 20・・・SiO2絶縁膜 21・・・Sr膜 22・・・La1-x Srx MnO3+y 常磁性絶縁領域 23・・・La1-x Srx MnO3 強磁性導電領域 24・・・原子間力顕微鏡のプローブ 25・・・Sr(Rh0.5Sb0.5)O3 常磁性絶縁膜 26・・・強磁性金属膜 27・・・絶縁膜 28・・・磁場発生用配線
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... La1-x Srx MnO3 ferromagnetic conductive film 3 ... La1-x Srx MnO3 paramagnetic tunnel insulating film 4 ... ferromagnetic metal film 5 ... insulating film 6 ... Magnetic field generation wiring 7 La1-x Srx MnO3 ferromagnetic conductive film 8 Si substrate 9 polycrystalline La1-x Srx MnO3 ferromagnetic conductive film 10 amorphous La1-x Srx MnO3 paramagnetic Tunnel insulating film 11 ... Ferromagnetic film 12 ... Microcrystalline La1-x Srx MnO3 paramagnetic insulator 13 ... Amorphous La1-x Srx MnO3 paramagnetic insulating layer 14 ... La1-x Srx MnO3 ferromagnetic Conductive film 15 ... La1-x Srx MnO3 Ferromagnetic conductive film 16 ... La1-x Srx MnO3 Paramagnetic tunnel insulating film 17 ... Ferromagnetic metal film 18 ... LaMnO3 film 19 ... La1-x Srx MnO3 ferromagnetic conduction Region 20: SiO2 insulating film 21: Sr film 22: La1-x Srx MnO3 + y Paramagnetic insulating region 23: La1-x Srx MnO3 Ferromagnetic conductive region 24: Atomic force microscope Probe 25 ... Sr (Rh0.5Sb0.5) O3 paramagnetic insulating film 26 ... ferromagnetic metal film 27 ... insulating film 28 ... magnetic field generating wiring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 3/00 H01B 3/12 319 3/12 319 322 322 G01R 33/06 R ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01B 3/00 H01B 3/12 319 3/12 319 322 322 G01R 33/06 R

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】単結晶または多結晶からなり、使用温度で
強磁性を示すLa1-x Srx MnO3導電膜からなる第
1の電極と、この第1の電極上に形成され、使用温度で
常磁性を示すLa1-y Sry MnO3絶縁膜と、このL
1-y Sry MnO3 膜絶縁膜上に形成された強磁性体
からなる第2の電極とを具備し、前記第1の電極と前記
第2の電極間に電位差がある場合、電子が前記La1-y
Sry MnO3 絶縁膜をトンネルすることを特徴とする
磁気抵抗素子。
1. A first electrode made of a single crystal or a polycrystal and made of a La 1-x Sr x MnO 3 conductive film exhibiting ferromagnetism at a use temperature, and a first electrode formed on the first electrode and used at a use temperature. and La 1-y Sr y MnO 3 insulating film exhibiting paramagnetic in this L
and a second electrode consisting of a 1-y Sr y MnO 3 layer insulating film which is formed in ferromagnetic material, when there is a potential difference between said first electrode and the second electrode, electrons La 1-y
Magnetoresistive element characterized by tunneling the sr y MnO 3 insulating film.
【請求項2】前記第2の電極が、単結晶または多結晶か
らなり、使用温度で強磁性を示すLa1-z Srz MnO
3 導電膜からなることを特徴とする請求項1記載の磁気
抵抗素子。
Wherein said second electrode is made of a single crystal or polycrystalline, La 1-z Sr z MnO showing ferromagnetism at use temperatures
2. The magnetoresistive element according to claim 1, comprising three conductive films.
【請求項3】前記第2の電極が、鉄、コバルト、クロ
ム、マンガンあるいはニッケルあるいはこれらを含む合
金からなる強磁性金属であることを特徴とする請求項1
記載の磁気抵抗素子。
3. The method according to claim 1, wherein the second electrode is a ferromagnetic metal made of iron, cobalt, chromium, manganese, nickel or an alloy containing these.
The magnetoresistive element as described in the above.
【請求項4】前記La1-y Sry MnO3 絶縁膜がアモ
ルファスであることを特徴とする請求項1、請求項2あ
るいは請求項3記載の磁気抵抗素子。
Wherein said La 1-y Sr y MnO 3 claim 1 having an insulating film, characterized in that it is amorphous, claim 2 or claim 3 magnetoresistive element according.
【請求項5】前記第1の電極に電流を流すことで該第1
の電極が一時的に常磁性金属に相転移することを特徴と
する請求項1、請求項2、請求項3あるいは請求項4記
載の磁気抵抗素子。
5. The first electrode according to claim 1, wherein a current is applied to said first electrode.
5. The magnetoresistive element according to claim 1, wherein said electrode temporarily undergoes a phase transition to paramagnetic metal.
【請求項6】前記第1の電極に光をあてて加熱すること
で該第1の電極が一時的に常磁性金属に相転移すること
を特徴とする請求項1、請求項2、請求項3あるいは請
求項4記載の磁気抵抗素子。
6. The method according to claim 1, wherein the first electrode is temporarily transformed into a paramagnetic metal by irradiating the first electrode with light and heating. The magnetoresistive element according to claim 3 or 4.
【請求項7】単結晶層または多結晶層からなり、使用温
度で強磁性を示すLa1-x Srx MnO3 導電膜からな
る第1の電極と、この第1の電極上に形成され、使用温
度で常磁性を示すLa1-y Sry MnO3絶縁膜と、こ
のLa1-y Sry MnO3 絶縁膜上に形成された強磁性
を示す第2の電極と、前記La1-y Sry MnO3 絶縁
膜上に形成された強磁性を示す第3の電極とを具備し、
前記第2の電極と前記第3の電極は前記第1の電極を介
して電気的に直列に接続され、前記第2の電極と前記第
3の電極間に電位差がある場合、電子が前記La1-y
y MnO3 絶縁膜をトンネルすることを特徴とする磁
気抵抗素子。
7. A first electrode made of a La 1-x Sr x MnO 3 conductive film which is composed of a single crystal layer or a polycrystal layer and exhibits ferromagnetism at a use temperature, and is formed on the first electrode. and La 1-y Sr y MnO 3 insulating film exhibiting paramagnetic at the temperature of use, and a second electrode showing the formed ferromagnetic this La 1-y Sr y MnO 3 insulating film, the La 1-y ; and a third electrode showing the formed ferromagnetic on sr y MnO 3 insulating film,
The second electrode and the third electrode are electrically connected in series via the first electrode, and when there is a potential difference between the second electrode and the third electrode, electrons are transferred to the La. 1-y S
A magnetoresistive element characterized by tunneling through an r y MnO 3 insulating film.
【請求項8】前記第2の電極と前記第3の電極が、単結
晶または多結晶からなり、使用温度で強磁性を示すLa
1-z Srz MnO3 導電膜からなることを特徴とする請
求項7記載の磁気抵抗素子。
8. The second electrode and the third electrode are made of a single crystal or polycrystal, and exhibit a ferromagnetism at a use temperature.
Magnetoresistive element according to claim 7, characterized in that it consists of 1-z Sr z MnO 3 conductive film.
【請求項9】前記第2の電極と前記第3の電極が、鉄、
コバルト、クロム、マンガンあるいはニッケルあるいは
これらを含む合金からなる強磁性金属であることを特徴
とする請求項7記載の磁気抵抗素子。
9. The method according to claim 9, wherein the second electrode and the third electrode are iron,
8. The magnetoresistive element according to claim 7, wherein the element is a ferromagnetic metal made of cobalt, chromium, manganese, nickel or an alloy containing these.
【請求項10】前記La1-y Sry MnO3 絶縁膜がア
モルファスであることを特徴とする請求項7、請求項8
あるいは請求項9記載の磁気抵抗素子。
Wherein said La 1-y Sr y MnO 3 claim 7 in which the insulating film is characterized in that the amorphous, claim 8
Alternatively, the magnetoresistive element according to claim 9.
【請求項11】前記第1の電極に電流を流すことで該第
1の電極が一時的に常磁性金属に相転移することを特徴
とする請求項7、請求項8、請求項9あるいは請求項1
0記載の磁気抵抗素子。
11. The method according to claim 7, wherein the first electrode temporarily changes its phase to a paramagnetic metal by passing an electric current through the first electrode. Item 1
0. A magnetoresistive element according to item 0.
【請求項12】前記第1の電極に光をあてて加熱するこ
とで該第1の電極が一時的に常磁性金属に相転移するこ
とを特徴とする請求項7、請求項8、請求項9あるいは
請求項10記載の磁気抵抗素子。
12. The method according to claim 7, wherein the first electrode temporarily undergoes a phase transition to a paramagnetic metal by heating by irradiating the first electrode with light. The magnetoresistance element according to claim 9 or 10.
【請求項13】単結晶または多結晶からなり、使用温度
で強磁性を示すLa1-x Srx MnO3導電膜からなる
第1の電極と、この第1の電極上に形成され、使用温度
で常磁性を示す、一般式ABO3 (AがPr、Nd、Gd、Y
或いはSr、BがSc、Rh、Sb、Zr、Sn、Cd或いはRe)で
表され、LaMnO3 との格子不整合が2%以下である
絶縁膜と、この絶縁膜上に形成された強磁性体からなる
第2の電極とを具備し、前記第1の電極と前記第2の電
極間に電位差がある場合、電子が前記絶縁膜をトンネル
することを特徴とする磁気抵抗素子。
13. A first electrode comprising a La 1-x Sr x MnO 3 conductive film which is made of a single crystal or polycrystal and exhibits ferromagnetism at a use temperature, and a first electrode formed on the first electrode and used at a use temperature The general formula ABO 3 (A is Pr, Nd, Gd, Y
Alternatively, Sr and B are represented by Sc, Rh, Sb, Zr, Sn, Cd, or Re), and the lattice mismatch with LaMnO 3 is 2% or less, and the ferromagnetic film formed on the insulation film A magnetoresistive element comprising: a second electrode made of a body; and when there is a potential difference between the first electrode and the second electrode, electrons tunnel through the insulating film.
JP10075344A 1998-03-24 1998-03-24 Magnetic reluctance element Pending JPH11274597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10075344A JPH11274597A (en) 1998-03-24 1998-03-24 Magnetic reluctance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10075344A JPH11274597A (en) 1998-03-24 1998-03-24 Magnetic reluctance element

Publications (1)

Publication Number Publication Date
JPH11274597A true JPH11274597A (en) 1999-10-08

Family

ID=13573555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10075344A Pending JPH11274597A (en) 1998-03-24 1998-03-24 Magnetic reluctance element

Country Status (1)

Country Link
JP (1) JPH11274597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081680A1 (en) * 2002-03-26 2003-10-02 Japan Science And Technology Agency Tunneling magnetoresistance device, semiconductor junction device, magnetic memory, and semiconductor light-emitting device
US6657829B2 (en) 2000-02-04 2003-12-02 Alps Electric Co., Ltd. Tunneling magnetoresistive device
JP2004062962A (en) * 2002-07-26 2004-02-26 Sony Corp Magnetic storage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657829B2 (en) 2000-02-04 2003-12-02 Alps Electric Co., Ltd. Tunneling magnetoresistive device
WO2003081680A1 (en) * 2002-03-26 2003-10-02 Japan Science And Technology Agency Tunneling magnetoresistance device, semiconductor junction device, magnetic memory, and semiconductor light-emitting device
US7309903B2 (en) 2002-03-26 2007-12-18 Japan Science And Technology Agency Tunneling magnetoresistance device semiconductor junction device magnetic memory and semiconductor light-emitting device
US7468282B2 (en) 2002-03-26 2008-12-23 Japan Science And Technology Agency Tunneling magnetoresistive element, semiconductor junction element, magnetic memory and semiconductor light emitting element
JP2004062962A (en) * 2002-07-26 2004-02-26 Sony Corp Magnetic storage

Similar Documents

Publication Publication Date Title
US7276384B2 (en) Magnetic tunnel junctions with improved tunneling magneto-resistance
US6639766B2 (en) Magneto-resistance effect type composite head and production method thereof
US8072714B2 (en) Tunneling magnetoresistance (TMR) device, its manufacture method, magnetic head and magnetic memory using TMR device
KR100886602B1 (en) Tunnel magnetoresistance element
US7420786B2 (en) Arrangement of a magneto-resistance effect element having a surface contacting a side face of an electrode and magnetic memory using this arrangement
US6710986B1 (en) Tunneling magnetoresistive head and a process of tunneling magnetoresistive head
JP3459869B2 (en) Method for manufacturing ferromagnetic tunnel junction device
US6359289B1 (en) Magnetic tunnel junction device with improved insulating tunnel barrier
KR102628591B1 (en) Device and method for spin transfer torque switching of a magnetic layer with volume uniaxial magnetic crystalline anistotropy
US20090097170A1 (en) Ferromagnetic tunnel junction element, magnetic recording device and magnetic memory device
US20040257719A1 (en) Magnetoresistive effect element, magnetic memory element magnetic memory device and manufacturing methods thereof
KR102597922B1 (en) Templating layers for forming highly textured thin films of heusler compounds switchable by application of spin transfer torque
US20110063758A1 (en) Spin filter junction and method of fabricating the same
TW200522403A (en) Magnetoresistance effect element, method of manufacturing the same, magnetic storage and method of manufacturing the same
JP3593472B2 (en) Magnetic element, magnetic memory and magnetic sensor using the same
JP4261454B2 (en) Magnetoresistive element, magnetic head and magnetic reproducing apparatus using the same
JP3472207B2 (en) Method of manufacturing magnetoresistive element
JP2001339110A (en) Magnetism control element, magnetic component using the same and memory device
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
JP2003258335A (en) Manufacturing method for tunneling magneto resistive effect device
CN113488584B (en) FePt material-based magnetization switching device, external magnetic field-free switching method and application
JPH11274597A (en) Magnetic reluctance element
JP3496215B2 (en) Manufacturing method of ferromagnetic tunnel junction device
JP2002368306A (en) Magneto-resistance effect film and memory using the same
JP2004079936A (en) Laminated film having ferromagnetic tunnel junction, manufacturing method thereof, magnetic sensor, magnetic recorder, and magnetic memory unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040702