JPH11273713A - Manufacture of battery with rolled electrode body - Google Patents

Manufacture of battery with rolled electrode body

Info

Publication number
JPH11273713A
JPH11273713A JP10076024A JP7602498A JPH11273713A JP H11273713 A JPH11273713 A JP H11273713A JP 10076024 A JP10076024 A JP 10076024A JP 7602498 A JP7602498 A JP 7602498A JP H11273713 A JPH11273713 A JP H11273713A
Authority
JP
Japan
Prior art keywords
separator
temperature
core
hydrophilic organic
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10076024A
Other languages
Japanese (ja)
Inventor
Toru Yamaguchi
徹 山口
Shinichiro Iwai
慎一郎 岩井
Masayuki Terasaka
雅行 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10076024A priority Critical patent/JPH11273713A/en
Publication of JPH11273713A publication Critical patent/JPH11273713A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To use a separator having hydrophilic organic materials on the surfaces of fibers, and thermally deform in a short time the separator remaining in the space left after a winding core is removed without generating the decomposition, modification of the hydrophilic organic material even if the heating temperature of a through hole expanding rod is raised. SOLUTION: A separator 13 made of nylon nonwoven fabric having hydrophilic organic material on the surfaces of fibers is used, and a through hole expanding rod 20 for deforming the central part of the separator 13 to the inner circumferential wall of a space left after a winding core is removed is used. The through hole expanding rod 20 is heated to a temperature capable of thermally molding the separator 13 or higher but less than a temperature at which the hydrophilic organic material is decomposed or vaporized, then the through hole expanding rod 20 is pressed against a separator 13a remaining in a space S left after the winding core is removed for the specified short time to deform the separator 13a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、帯状の正・負極板間にセパレー
タを介在させて渦巻状に卷回した渦巻状電極体を備えた
電池の製造方法に関する。
The present invention relates to a method for manufacturing a battery having a spiral electrode body which is spirally wound with a separator interposed between a belt-like positive / negative electrode plate.

【0002】[0002]

【従来の技術】一般に、ニッケル−カドミウム蓄電池、
ニッケル−水素化物蓄電池などのアルカリ蓄電池は、正
極板および負極板の間にセパレータを介在させて、これ
らを渦巻状に巻回して渦巻状電極体を形成し、この渦巻
状電極体の上下端部に正・負極集電体を接続する。つい
で、この渦巻状電極体を金属製外装缶に収納して、一方
の集電体から延出する集電リード部を封口体の下面に溶
接した後、外装缶の開口に絶縁ガスケットを介在させて
封口体を装着することにより密閉して構成するようにし
ている。
2. Description of the Related Art Generally, nickel-cadmium storage batteries,
In an alkaline storage battery such as a nickel-hydride storage battery, a separator is interposed between a positive electrode plate and a negative electrode plate, and these are spirally wound to form a spiral electrode body.・ Connect the negative electrode current collector. Then, the spiral electrode body is housed in a metal outer can, and a current collecting lead extending from one current collector is welded to the lower surface of the sealing body, and then an insulating gasket is inserted into the opening of the outer can. It is configured to be hermetically closed by attaching a sealing body.

【0003】ところで、帯状の正極板および帯状の負極
板の間に帯状のセパレータを介在させて、これらを渦巻
状に巻回して渦巻状電極体を形成するに際して、例え
ば、図4(a)に示すような端面2の中心部を通る縦方
向のスリット3が設けられた巻芯棒1を用い、このスリ
ット3に帯状のセパレータ4の中央部あるいは2枚重ね
た帯状のセパレータ4の端部を挟んで、巻芯棒1を約1
回転させた後、帯状の正極板あるいは帯状の負極板がセ
パレータ4間に介在するように配置し、巻芯棒1を回転
させて渦巻状に卷回した後、この渦巻状に卷回された渦
巻状電極体から巻芯棒1を引き抜く方法が採用されてい
る。
When a strip-shaped separator is interposed between a strip-shaped positive electrode plate and a strip-shaped negative electrode plate and these are spirally wound to form a spiral electrode body, for example, as shown in FIG. A core rod 1 provided with a longitudinal slit 3 passing through the center of a simple end surface 2 is used, and the slit 3 is sandwiched between the center of the band-shaped separator 4 or the end of the two band-shaped separators 4 stacked. , About 1 core rod
After the rotation, the strip-shaped positive electrode plate or the strip-shaped negative electrode plate was arranged so as to be interposed between the separators 4, and the core rod 1 was rotated and wound in a spiral shape, and then wound in the spiral shape. A method of pulling out the core rod 1 from the spiral electrode body is adopted.

【0004】このように、渦巻状に卷回された渦巻状電
極体から巻芯棒1を引き抜くと、図4(b)に示すよう
に、巻芯棒1が引き抜かれた後の空間(巻芯跡空間)5
の中心部にこの空間5を分割するようにセパレータ4が
残存する。このため、この渦巻状電極体の一方の集電体
から延出する集電リード部を一方の端子を兼ねる金属製
外装缶の内底面にスポット溶接するための電極棒をこの
巻芯跡空間5に挿入しようとした場合に、空間5を分割
するように残存したセパレータ4が邪魔になって、スポ
ット溶接作業を繁雑にしていた。
[0004] When the core rod 1 is pulled out of the spirally wound spiral electrode body, the space (winding) after the core rod 1 is pulled out as shown in FIG. Core trace space) 5
The separator 4 remains at the center of the space so as to divide the space 5. For this reason, an electrode rod for spot welding a current collecting lead portion extending from one current collector of the spiral electrode body to the inner bottom surface of a metal outer can also serving as one terminal is provided in the core trace space 5. However, the separator 4 remaining so as to divide the space 5 hinders the spot welding operation, thereby complicating the spot welding operation.

【0005】そこで、加熱された透孔拡張棒(テーパー
状金属棒)を巻芯跡空間に挿入し、巻芯跡空間に残存す
るセパレータを熱変形させて、巻芯跡空間の内周壁方向
に変位させる方法が特開昭58−66270号公報ある
いは特公昭62−43304号公報等で提案されるよう
になった。
[0005] Therefore, a heated through-hole expansion rod (tapered metal rod) is inserted into the core trace space, and the separator remaining in the core trace space is thermally deformed so as to extend in the direction of the inner peripheral wall of the core trace space. A method of displacing has been proposed in Japanese Patent Application Laid-Open No. Sho 58-66270 or Japanese Patent Publication No. Sho 62-43304.

【0006】[0006]

【発明が解決しようとする課題】上述した特開昭58−
66270号公報で提案された方法にあっては、透孔拡
張棒の加熱温度は50〜100℃と低温であるため、こ
のような温度に加熱された透孔拡張棒を巻芯跡空間に挿
入して、巻芯跡空間に残存するセパレータを熱変形させ
ようとしても、透孔拡張棒の挿入時間が短時間であれ
ば、セパレータを熱変形させることが困難なため、必然
的に長時間に亘って透孔拡張棒を挿入させる必要があ
る。しかしながら、長時間に亘って透孔拡張棒を挿入さ
せると、生産効率が低下するという問題を生じる。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No.
In the method proposed in Japanese Patent No. 66270, since the heating temperature of the through-hole expansion rod is as low as 50 to 100 ° C., the through-hole expansion rod heated to such a temperature is inserted into the core trace space. Then, even if it is attempted to thermally deform the separator remaining in the core trace space, if the insertion time of the through-hole expansion rod is short, it is difficult to thermally deform the separator, so it is inevitably long. It is necessary to insert the through-hole expansion rod across the hole. However, when the through-hole expansion rod is inserted for a long time, there is a problem that the production efficiency is reduced.

【0007】そこで、生産効率を向上させるために透孔
拡張棒の加熱温度を高温にして、挿入時間を短時間にす
ることが考えられるが、上述したような渦巻状電極体に
用いられるセパレータとしては、電気抵抗が低く、耐電
解液性に優れ、かつ電解液の保持性がよいことが必要な
条件になるが、密閉型の蓄電池においては、さらにガス
の透過性に優れていることが必要になる。ところで、こ
のような特性を満足したセパレータとするために、不織
布製のセパレータの繊維表面に親水性の有機物を備えさ
せるようにすることが知られているが、透孔拡張棒の加
熱温度を高温にすると、セパレータの繊維表面に備えら
れた親水性の有機物が分解、変性あるいは脱落し、親水
性を付与した効果が損なわれるという問題を生じる。
In order to improve the production efficiency, it is conceivable to increase the heating temperature of the through-hole expansion rod and shorten the insertion time. However, the separator used in the spiral electrode body as described above is considered. Is a condition that requires low electric resistance, excellent electrolyte resistance, and good retention of electrolyte.However, in a sealed storage battery, gas permeability must be further excellent. become. By the way, in order to obtain a separator satisfying such characteristics, it is known to provide a hydrophilic organic substance on the fiber surface of the nonwoven fabric separator. In this case, a problem arises in that the hydrophilic organic substance provided on the fiber surface of the separator is decomposed, denatured, or dropped, and the effect of imparting hydrophilicity is impaired.

【0008】そして、巻芯跡空間は電解液が電池内へ浸
透するために最も寄与する空間となるため、この部分の
セパレータの親水性が損なわれると、電解液の注液時間
が長くなって生産効率も低下するという問題も生じる。
[0008] Since the core trace space is the most contributing space for the electrolyte to penetrate into the battery, if the hydrophilicity of the separator in this part is impaired, the electrolyte injection time becomes longer. There is also a problem that the production efficiency is reduced.

【0009】[0009]

【課題を解決するための手段およびその作用・効果】そ
こで、本発明は上記課題を解決するためになされたもの
であって、繊維表面に親水性の有機物を備えたセパレー
タを用い、透孔拡張棒の加熱温度を高温にしても親水性
の有機物が分解、変性が生じることなく、短時間で巻芯
跡空間に残存するセパレータを熱変形させことができる
ようにすることをその目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been made by using a separator having a hydrophilic organic material on the surface of a fiber to expand the pores. The object of the present invention is to make it possible to thermally deform the separator remaining in the core trace space in a short time without causing decomposition and denaturation of the hydrophilic organic substance even when the heating temperature of the rod is increased. It is.

【0010】このため、本発明の渦巻状電極体を備えた
電池の製造方法は、セパレータとして繊維表面に親水性
有機物を備えたナイロン不織布製のセパレータを用い、
このセパレータ端部あるいは中央部を巻芯跡空間の内周
壁に変位させる透孔拡張棒を用いるとともに、透孔拡張
棒の加熱温度をセパレータの熱成形可能な温度以上でか
つ親水性有機物の分解あるいは蒸発する温度以下の温度
に調整して同透孔拡張棒を巻芯跡空間に残存するセパレ
ータに所定の短時間押し当てて変位させる方法を採用し
ている。
[0010] For this reason, the method for producing a battery provided with the spiral electrode body of the present invention uses a nylon nonwoven fabric separator having a hydrophilic organic material on the fiber surface as a separator.
Using a through-hole expansion rod that displaces the separator end or center to the inner peripheral wall of the winding core trace space, the heating temperature of the through-hole expansion rod is higher than the temperature at which the separator can be thermoformed, and the decomposition or decomposition of hydrophilic organic substances is performed. A method of adjusting the temperature to a temperature equal to or lower than the evaporating temperature and displacing the through-hole expansion rod against the separator remaining in the winding core trace space for a predetermined short time is adopted.

【0011】セパレータを熱成形可能な温度以上で親水
性有機物が分解あるいは蒸発する温度以下の温度になる
ように透孔拡張棒を加熱して巻芯跡空間に残存するセパ
レータに所定の短時間押し当てて変位させると、親水性
の有機物が分解、変性が生じることなく、短時間で巻芯
跡空間に残存するセパレータを熱変形させことができる
ようになる。このため、この種の電池の生産性を向上さ
せることが可能になる。
The through-hole expansion rod is heated to a temperature not lower than the temperature at which the hydrophilic organic substance is decomposed or evaporated at a temperature higher than the temperature at which the separator can be thermoformed, and pressed for a predetermined short time on the separator remaining in the core trace space. When it is applied and displaced, the separator remaining in the core trace space can be thermally deformed in a short time without decomposing or denaturing the hydrophilic organic substance. Therefore, it is possible to improve the productivity of this type of battery.

【0012】そして、ポリビニルアルコールは極めて親
水性に優れた有機物であるので、親水性有機物としてポ
リビニルアルコールを用いると、この親水性が付与され
たセパレータの親水性が向上して、電気抵抗が低く、耐
電解液性に優れ、かつ電解液の保持性に優れ、さらにガ
スの透過性に優れたセパレータとなり、充放電特性が向
上した電池が得られるようになる。
Since polyvinyl alcohol is an organic material having extremely excellent hydrophilicity, when polyvinyl alcohol is used as the hydrophilic organic material, the hydrophilicity of the separator having the hydrophilicity is improved, and the electric resistance is low. A separator having excellent electrolytic solution resistance, excellent electrolytic solution holding properties, and excellent gas permeability can be obtained, and a battery with improved charge / discharge characteristics can be obtained.

【0013】また、ナイロン不織布製のセパレータは1
00℃以上の温度で熱成形が可能となり、また、ポリビ
ニルアルコールは150℃以下の温度では分解、変性が
生じることがないので、透孔拡張棒の加熱温度を100
℃以上で150℃以下に設定することが好ましい。ま
た、150℃以下の温度であっても接触時間が長すぎる
とポリビニルアルコールは分解、変性が生じるようにな
るとともに、ナイロンも変質するようになるため、透孔
拡張棒の接触時間は2秒以下に設定することが好まし
い。
[0013] The nylon nonwoven fabric separator is
Thermoforming can be performed at a temperature of 00 ° C. or higher, and polyvinyl alcohol does not decompose or denature at a temperature of 150 ° C. or lower.
It is preferable to set the temperature to 150 ° C. or higher at a temperature higher than or equal to 150 ° C. Moreover, even if the contact time is too long even at a temperature of 150 ° C. or less, if the contact time is too long, the polyvinyl alcohol is decomposed and denatured, and the nylon is also deteriorated. It is preferable to set

【0014】[0014]

【発明の実施の形態】以下に、本発明をニッケル−カド
ミウム蓄電池に適用した場合の一実施形態を図を参照し
て説明する。なお、図1は渦巻状電極体を形成した後に
巻芯跡空間に残存するセパレータを熱変形させる状態を
示す斜示図であり、図2は図1の渦巻状電極体を金属製
外装缶に収納した状態の横断面を示す図であり、図3は
巻芯跡空間に残存するセパレータを熱変形させた後に溶
接電極棒を挿入した状態を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a nickel-cadmium storage battery will be described below with reference to the drawings. FIG. 1 is a perspective view showing a state in which the separator remaining in the core trace space is thermally deformed after the spiral electrode body is formed, and FIG. 2 is a view in which the spiral electrode body of FIG. FIG. 3 is a cross-sectional view showing the stored state, and FIG. 3 is a cross-sectional view showing a state where a welding electrode rod is inserted after a separator remaining in the core winding space is thermally deformed.

【0015】パンチングメタル11aの表面に焼結多孔
体を形成した後、化学含浸法により水酸化ニッケルを主
体とする正極活物質を焼結多孔体内に充填して焼結式ニ
ッケル正極11を作製する。また、パンチングメタル1
2aの表面に焼結多孔体を形成した後、化学含浸法によ
り水酸化カドミウムを主体とする負極活物質を焼結多孔
体内に充填して焼結式カドミウム負極12を作製する。
一方、ナイロン不織布を用意し、このナイロン不織布の
繊維表面に親水性有機物であるポリビニルアルコール
(PVA)を塗着して親水処理を施したセパレータ13
を作製する。
After a sintered porous body is formed on the surface of the punching metal 11a, a positive electrode active material mainly composed of nickel hydroxide is filled into the sintered porous body by a chemical impregnation method to produce a sintered nickel positive electrode 11. . Also, punching metal 1
After a sintered porous body is formed on the surface of 2a, a negative electrode active material mainly composed of cadmium hydroxide is filled into the sintered porous body by a chemical impregnation method to produce a sintered cadmium negative electrode 12.
On the other hand, a separator 13 is prepared by preparing a nylon non-woven fabric and applying a hydrophilic treatment to the fiber surface of the nylon non-woven fabric by applying a hydrophilic organic material, polyvinyl alcohol (PVA).
Is prepared.

【0016】ついで、図4に示すような巻芯棒を用意
し、この巻芯棒のスリットに上述したセパレータ13の
中央部13aを挟んで、巻芯棒を約1回転させた後、ニ
ッケル正極11およびカドミウム負極12がセパレータ
13間に介在するように配置し、巻芯棒を回転させて渦
巻状に卷回して渦巻状電極体10を作製する。この後、
渦巻状に卷回されたて渦巻状電極体10から巻芯棒を引
き抜くと、図1、図2に示すように、巻芯棒が引き抜か
れた後の空間(巻芯跡空間)Sの中心部にこの空間Sを
分割するようにセパレータ13の中央部13aが残存す
る。
Next, a core rod as shown in FIG. 4 is prepared, and the core rod is rotated about one turn with the center portion 13a of the separator 13 interposed between the slits of the core rod. 11 and a cadmium negative electrode 12 are arranged so as to be interposed between the separators 13, and the core rod is rotated to form a spiral electrode body 10 to produce a spiral electrode body 10. After this,
When the core rod is pulled out from the spirally wound electrode body 10 wound in a spiral shape, as shown in FIGS. 1 and 2, the center of the space (core trace space) S after the core rod is pulled out. The central portion 13a of the separator 13 remains so as to divide this space S into a portion.

【0017】ついで、金属棒の先端部をテーパー状に形
成した透孔拡張棒20を用意し、この透孔拡張棒20を
所定の温度(75〜200℃)に加熱した後、渦巻状電
極体10の巻芯跡空間Sに挿入する。このとき、巻芯跡
空間S内のセパレータ中央部13aを図2の矢印方向に
押圧して、この巻芯跡空間S内の周囲のセパレータ13
に所定時間(1〜4秒)接触させる。これにより、巻芯
跡空間S内に残存するセパレータ13aは熱変形するこ
ととなる。
Next, a through-hole expansion rod 20 having a tapered tip of a metal rod is prepared, and after heating this through-hole expansion rod 20 to a predetermined temperature (75 to 200 ° C.), a spiral electrode body is formed. 10 are inserted into the core trace space S. At this time, the center 13a of the separator in the core trace space S is pressed in the direction of the arrow in FIG.
For a predetermined time (1 to 4 seconds). As a result, the separator 13a remaining in the core trace space S is thermally deformed.

【0018】ここで、透孔拡張棒20の加熱温度を75
〜200℃まで変化させるとともに、透孔拡張棒20と
巻芯跡空間S内のセパレータ中央部13aとの接触時間
を1〜4秒まで変化させた場合に、セパレータ中央部1
3aが十分に変位するかどうかを観測し、透孔拡張棒2
0と巻芯跡空間S内のセパレータ中央部13aとの接触
時間との関係、および透孔拡張棒20の加熱温度と巻芯
跡空間S内のセパレータ中央部13aの変位との関係を
求めると、下記の表1に示すような結果となった。
Here, the heating temperature of the through-hole expansion rod 20 is set to 75.
When the contact time between the through-hole expansion rod 20 and the center 13a of the separator in the core trace space S is changed from 1 to 4 seconds, the separator center 1
3a is displaced sufficiently, and the through-hole expansion rod 2 is observed.
The relationship between 0 and the contact time with the separator central portion 13a in the core trace space S, and the relationship between the heating temperature of the through-hole expansion rod 20 and the displacement of the separator central portion 13a in the core trace space S are obtained. The results were as shown in Table 1 below.

【0019】[0019]

【表1】 [Table 1]

【0020】上記表1において、〇印は変位が良好であ
ったことを示し、△印は変位が一部不良であったことを
示し、×印は変位が不良であったことを示す。上記表1
より明らかなように、生産性を向上させるためには、透
孔拡張棒20と巻芯跡空間S内のセパレータ中央部13
aとの接触時間を短くした方が有利であるため、2秒以
下にするのが好ましい。しかしながら、接触時間を2秒
以下にした場合、透孔拡張棒20の加熱温度を100℃
以上にしないと変位不良が発生するため、100℃はこ
のセパレータ13の熱成形可能な温度ということができ
る。結局は、接触時間は2秒以下にし、加熱温度を10
0℃以上にするのが好ましい。
In Table 1 above, a mark 〇 indicates that the displacement was good, a mark △ indicates that the displacement was partially defective, and a mark × indicates that the displacement was defective. Table 1 above
As is clear, in order to improve the productivity, it is necessary to extend the through-hole expansion rod 20 and the separator central portion 13 in the core trace space S.
Since it is more advantageous to shorten the contact time with a, it is preferable to set the contact time to 2 seconds or less. However, when the contact time is set to 2 seconds or less, the heating temperature of the through-hole expansion rod 20 is set to 100 ° C.
Otherwise, displacement failure occurs, so 100 ° C. can be said to be the temperature at which the separator 13 can be thermoformed. After all, the contact time should be less than 2 seconds and the heating temperature should be 10
The temperature is preferably set to 0 ° C. or higher.

【0021】上述のようにして作製した渦巻状電極体1
0は、図3に示すように、その上端はニッケル正極11
の極板芯体であるパンチングメタル11aの端部が露出
し、また、渦巻状電極体10の下端はカドミウム負極1
2の極板芯体であるパンチングメタル12aの端部が露
出している。そして、上述のようにして作成した渦巻状
電極体10のカドミウム負極12のパンチングメタル1
2aの端部と負極集電体15とを抵抗溶接するととも
に、ニッケル正極11のパンチングメタル11aの端部
と正極集電体(図示せず)とを抵抗溶接する。
The spiral electrode body 1 manufactured as described above
0 is a nickel positive electrode 11 as shown in FIG.
The end of the punching metal 11a, which is the core of the electrode plate, is exposed, and the lower end of the spiral electrode body 10 is a cadmium negative electrode 1.
The end of the punching metal 12a, which is the core of the second electrode plate, is exposed. Then, the punching metal 1 of the cadmium negative electrode 12 of the spiral electrode body 10 prepared as described above is used.
2a and the negative electrode current collector 15 are resistance welded, and the end of the punched metal 11a of the nickel positive electrode 11 and the positive electrode current collector (not shown) are resistance welded.

【0022】ついで、SCサイズの鉄にニッケルメッキ
を施した有底円筒形の金属製外装缶30を用意し、図3
に示すように、この渦巻状電極体10を金属製外装缶3
0内に挿入し、巻芯跡空間S内に一方の溶接電極40を
挿入して負極集電体15に当接させるとともに金属製外
装缶30の底部に他方の溶接電極41を当接して、負極
集電体15と金属製外装缶30の底部をスポット溶接す
る。なお、有底円筒形の金属製外装缶30の底部外表面
は負極外部端子となる。
Next, a cylindrical bottomed metal outer can 30 prepared by nickel-plated SC-size iron was prepared.
As shown in FIG. 3, this spiral electrode body 10 is
0, and one of the welding electrodes 40 is inserted into the core trace space S to be in contact with the negative electrode current collector 15 and the other welding electrode 41 is in contact with the bottom of the metal outer can 30. The negative electrode current collector 15 and the bottom of the metal outer can 30 are spot-welded. The bottom outer surface of the bottomed cylindrical metal outer can 30 serves as a negative electrode external terminal.

【0023】この後、図示しない封口体を用意し、正極
集電体より延出する正極集電リードを正極外部端子とな
る封口体の底面にスポット溶接した後、金属製外装缶3
0内にそれぞれ電解液(30重量%の水酸化カリウム
(KOH)水溶液)を注入する。ついで、外装缶30の
上部を屈曲させて屈曲部を形成し、この屈曲部上に正極
集電リードが底面にスポット溶接された封口体を絶縁ガ
スケットを介して載置し、金属製外装缶30の開口端縁
31を内方にカシメつけることによって金属製外装缶3
0の開口部を封口して、公称容量1.7AhのSCサイ
ズのニッケル−カドミウム蓄電池を組み立てる。
Thereafter, a sealing body (not shown) is prepared, and a positive electrode current collector lead extending from the positive electrode current collector is spot-welded to the bottom surface of the sealing body serving as a positive electrode external terminal.
Electrolyte solution (30% by weight potassium hydroxide (KOH) aqueous solution) is injected into each of the chambers. Then, the upper portion of the outer can 30 is bent to form a bent portion, and a sealing body having a positive electrode current collecting lead spot-welded to the bottom surface is placed on the bent portion via an insulating gasket. Of the metal outer can 3 by caulking the opening edge 31 of
The nickel-cadmium storage battery having a nominal capacity of 1.7 Ah and an SC size is assembled by closing the opening of the opening No. 0.

【0024】ここで、透孔拡張棒20の加熱温度を10
0〜200℃まで変化させ、透孔拡張棒20と巻芯跡空
間S内のセパレータ中央部13aとの接触時間を2秒と
した場合に、巻芯跡空間Sの上端から電解液(30重量
%の水酸化カリウム(KOH)水溶液)を注液し、電解
液の全てが巻芯跡空間Sの上端から下に位置するまでの
時間を計測して、透孔拡張棒20の加熱温度と電解液の
注液時間との関係を求めると、下記の表2に示すような
結果となった。
Here, the heating temperature of the through-hole expansion rod 20 is set to 10
When the contact time between the through-hole expansion rod 20 and the center 13a of the separator in the core trace space S is set to 2 seconds, the electrolytic solution (30 wt. % Potassium hydroxide (KOH) aqueous solution), and the time until all of the electrolytic solution is located from the upper end to the lower part of the core trace space S is measured. When the relationship with the liquid injection time was determined, the results were as shown in Table 2 below.

【0025】[0025]

【表2】 [Table 2]

【0026】上記表2において、〇印は注液時間が15
秒以内であったことを示し、×印は注液時間が15秒以
上であったことを示す。上記表2より明らかなように、
透孔拡張棒20の加熱温度が150℃を越えると電解液
の注液時間が長くなるため、透孔拡張棒20の加熱温度
は150℃以下にするのが好ましい。
In Table 2 above, the symbol 〇 indicates that the injection time was 15 minutes.
Within 10 seconds, and the crosses indicate that the injection time was 15 seconds or more. As is clear from Table 2 above,
If the heating temperature of the through-hole expansion rod 20 exceeds 150 ° C., the injection time of the electrolytic solution becomes long. Therefore, the heating temperature of the through-hole expansion rod 20 is preferably set to 150 ° C. or lower.

【0027】透孔拡張棒20の加熱温度が高くなると注
液時間が長くなる理由は次のように考えることができ
る。即ち、透孔拡張棒20と巻芯跡空間S内のセパレー
タ中央部13aとの接触時間を2秒とし、加熱温度を1
75℃あるいは200℃としても、セパレータ13を構
成するナイロン繊維は2秒間という短時間の接触ではダ
メージを受けないが、ナイロン繊維の表面に存在するポ
リビニルアルコール(PVA)は分解、蒸発あるいは変
質して親水性が損なわれ、電解液の浸透性が低下して注
液時間が長くなるためと考えることができる。
The reason why the injection time becomes longer when the heating temperature of the through-hole expansion rod 20 becomes higher can be considered as follows. That is, the contact time between the through-hole expansion rod 20 and the center 13a of the separator in the core trace space S is set to 2 seconds, and the heating temperature is set to 1 second.
Even at 75 ° C. or 200 ° C., the nylon fibers constituting the separator 13 are not damaged by a short contact time of 2 seconds, but polyvinyl alcohol (PVA) present on the surface of the nylon fibers is decomposed, evaporated or deteriorated. It can be considered that the hydrophilicity is impaired, the permeability of the electrolyte decreases, and the injection time becomes longer.

【0028】以上のことから、次のようなことが成立す
る。即ち、生産性を考慮すると、透孔拡張棒20と巻芯
跡空間S内のセパレータ中央部13aとの接触時間は2
秒以内とすることが好ましい。そして、接触時間を2秒
以内とした場合、ナイロン不織布製のセパレータ13は
100℃以上の温度で熱成形が可能となり、また、ポリ
ビニルアルコール(PVA)は150℃以下の温度では
分解、蒸発あるいは変質が生じることがない。したがっ
て、透孔拡張棒20の接触時間は2秒以内とし、かつ透
孔拡張棒20の加熱温度は100℃以上で150℃以下
に設定することが好ましい。
From the above, the following holds. That is, in consideration of productivity, the contact time between the through-hole expansion rod 20 and the center 13a of the separator in the core trace space S is 2 hours.
Preferably, it is within seconds. When the contact time is within 2 seconds, the nylon 13 nonwoven fabric separator 13 can be thermoformed at a temperature of 100 ° C. or higher, and polyvinyl alcohol (PVA) decomposes, evaporates or deteriorates at a temperature of 150 ° C. or lower. Does not occur. Therefore, it is preferable that the contact time of the through-hole expansion rod 20 be within 2 seconds, and the heating temperature of the through-hole expansion rod 20 be set to 100 ° C. or more and 150 ° C. or less.

【0029】なお、上述した実施形態においては、巻芯
棒のスリットにセパレータ13の中央部13aを挟ん
で、巻芯棒を約1回転させた後、ニッケル正極11およ
びカドミウム負極12がセパレータ13間に介在するよ
うに配置して巻芯棒を回転させて渦巻状電極体10を形
成するようにしたが、巻芯棒のスリットに2枚のセパレ
ータの端部を挟んで、巻芯棒を約1回転させた後、ニッ
ケル正極およびカドミウム負極の一方が2枚のセパレー
タの間に介在するように配置して巻芯棒を回転させて渦
巻状電極体を形成するようにしても同様な効果を生じ
る。
In the above-described embodiment, after the center rod 13a of the separator 13 is interposed between the slits of the core rod and the core rod is rotated about one turn, the nickel positive electrode 11 and the cadmium negative electrode 12 The spiral electrode body 10 is formed by rotating the core rod so as to interpose the core rod. However, the end of the two separators is sandwiched between the slits of the core rod, and the core rod is about The same effect can be obtained by rotating the core rod and forming the spiral electrode body by rotating the core rod so that one of the nickel positive electrode and the cadmium negative electrode is interposed between the two separators after one rotation. Occurs.

【0030】また、上述した実施形態においては、正極
および負極のいずれも焼結式電極を用いた例について説
明したが、ペースト式などの非焼結式電極を用いてもほ
ぼ同様の結果が得られた。また、本発明はニッケル・カ
ドミウム蓄電池以外にも、渦巻状電極体を備えた電池で
あればどのような電池であっても適用可能である。
In the above-described embodiment, an example in which both the positive electrode and the negative electrode use a sintered electrode has been described. However, almost the same result can be obtained by using a non-sintered electrode such as a paste type. Was done. Further, the present invention is applicable to any battery provided with a spiral electrode body other than the nickel-cadmium storage battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 渦巻状電極体を形成した後に巻芯跡空間に残
存するセパレータを熱変形させる状態を示す斜示図であ
る。
FIG. 1 is a perspective view showing a state in which a separator remaining in a core trace space after a spiral electrode body is formed is thermally deformed.

【図2】 図1の渦巻状電極体を金属製外装缶に収納し
た状態の横断面を示す図である。
FIG. 2 is a view showing a cross section of a state in which the spiral electrode body of FIG. 1 is housed in a metal outer can.

【図3】 巻芯跡空間に残存するセパレータを熱変形さ
せた後に溶接電極棒を挿入した状態を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a state where a welding electrode rod is inserted after a separator remaining in a winding core trace space is thermally deformed.

【図4】 巻芯棒にセパレータを巻き付ける状態を示す
図であり、図4(a)はその斜示図であり、図4(b)
は巻芯棒を抜き取った状態を示す断面図である。
FIG. 4 is a view showing a state in which a separator is wound around a core rod, FIG. 4 (a) is a perspective view thereof, and FIG. 4 (b).
FIG. 4 is a cross-sectional view showing a state where a core rod is removed.

【符号の説明】[Explanation of symbols]

10…渦巻状電極体、11…正極板、12…負極板、1
3…セパレータ、15…負極集電体、20…透孔拡張
棒、30…金属製外装缶、31…開口端縁、40,41
…一対の溶接電極
Reference numeral 10: spiral electrode body, 11: positive electrode plate, 12: negative electrode plate, 1
DESCRIPTION OF SYMBOLS 3 ... Separator, 15 ... Negative electrode collector, 20 ... Penetration expansion rod, 30 ... Metal outer can, 31 ... Opening edge, 40, 41
… A pair of welding electrodes

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 帯状の正・負極板間にセパレータを介在
させ、このセパレータの端部あるいは中央部を巻き始め
部として巻芯により渦巻状に卷回する卷回工程と、巻芯
跡空間に残存するセパレータを巻芯跡空間の内周壁に変
位させる変位工程とを有する渦巻状電極体を備えた電池
の製造方法であって、 前記セパレータとして繊維表面に親水性有機物を備えた
ナイロン不織布製のセパレータを用い、 前記セパレータ端部あるいは中央部を巻芯跡空間の内周
壁に変位させる透孔拡張棒を用いるとともに、 前記透孔拡張棒の加熱温度を前記セパレータの熱成形可
能な温度以上でかつ前記親水性有機物の分解あるいは蒸
発する温度以下の温度に調整して同透孔拡張棒を前記巻
芯跡空間に残存するセパレータに所定の短時間押し当て
て変位させるようにしたことを特徴とする渦巻状電極体
を備えた電池の製造方法。
1. A winding step in which a separator is interposed between a belt-like positive and negative electrode plate, and the end or the center of the separator is wound starting from the winding core in a spiral shape with a winding core. A displacing step of displacing the remaining separator to the inner peripheral wall of the core trace space, comprising: a spirally wound electrode body; a nylon nonwoven fabric having a hydrophilic organic material on a fiber surface as the separator. Using a separator, using a through-hole expansion rod that displaces the separator end or center part to the inner peripheral wall of the core trace space, and heating the through-hole expansion rod at a temperature equal to or higher than the temperature at which the separator can be thermoformed. By adjusting the temperature to a temperature equal to or lower than the temperature at which the hydrophilic organic substance is decomposed or evaporated, the through-hole expansion rod is pressed against the separator remaining in the core trace space for a predetermined short time to displace the rod. A method for manufacturing a battery provided with a spiral electrode body.
【請求項2】 前記親水性有機物はポリビニルアルコー
ルであることを特徴とする請求項1に記載の渦巻状電極
体を備えた電池の製造方法。
2. The method according to claim 1, wherein the hydrophilic organic material is polyvinyl alcohol.
【請求項3】 前記セパレータの熱成形可能な温度を1
00℃とし、前記親水性有機物の分解あるいは蒸発する
温度を150℃とし、かつ前記所定の短時間を2秒以下
としたことを特徴とする請求項1または請求項2に記載
の渦巻状電極体を備えた電池の製造方法。
3. The temperature at which the separator can be thermoformed is 1
3. The spiral electrode body according to claim 1, wherein the temperature is 00 ° C., the temperature at which the hydrophilic organic substance is decomposed or evaporated is 150 ° C., and the predetermined short time is 2 seconds or less. 4. A method for manufacturing a battery comprising:
JP10076024A 1998-03-24 1998-03-24 Manufacture of battery with rolled electrode body Pending JPH11273713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10076024A JPH11273713A (en) 1998-03-24 1998-03-24 Manufacture of battery with rolled electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10076024A JPH11273713A (en) 1998-03-24 1998-03-24 Manufacture of battery with rolled electrode body

Publications (1)

Publication Number Publication Date
JPH11273713A true JPH11273713A (en) 1999-10-08

Family

ID=13593269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10076024A Pending JPH11273713A (en) 1998-03-24 1998-03-24 Manufacture of battery with rolled electrode body

Country Status (1)

Country Link
JP (1) JPH11273713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133968A (en) * 2020-10-09 2020-12-25 深圳市量能科技有限公司 Secondary cylindrical nickel battery and manufacturing method thereof
CN114583237A (en) * 2022-03-16 2022-06-03 厦门海辰新能源科技有限公司 Winding device and method for winding core
WO2023163556A1 (en) * 2022-02-25 2023-08-31 엘지전자 주식회사 Reforming device having at least one hole and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133968A (en) * 2020-10-09 2020-12-25 深圳市量能科技有限公司 Secondary cylindrical nickel battery and manufacturing method thereof
WO2023163556A1 (en) * 2022-02-25 2023-08-31 엘지전자 주식회사 Reforming device having at least one hole and control method thereof
CN114583237A (en) * 2022-03-16 2022-06-03 厦门海辰新能源科技有限公司 Winding device and method for winding core

Similar Documents

Publication Publication Date Title
JP5917407B2 (en) Prismatic secondary battery
JP3432171B2 (en) Non-aqueous electrolyte secondary battery
EP1327271B1 (en) Impregnated separator for electrochemical cell and method of making same
EP2437341A2 (en) Lithium ion storage device
JPS63175345A (en) Organic electrolyte battery
JP3588264B2 (en) Rechargeable battery
JP2008243811A (en) Battery
JPH11273713A (en) Manufacture of battery with rolled electrode body
JP2009224070A (en) Lithium secondary battery
JP5383154B2 (en) Cylindrical secondary battery
JP5116228B2 (en) Alkaline storage battery and method of manufacturing the same
JP2003187779A (en) Battery
JP4159383B2 (en) Cylindrical secondary battery
JP2019200859A (en) Sealed battery
JPH10261397A (en) Manufacture of storage battery
JP2001176506A (en) Non-sintered electrode having three-dimensional base for electrochemical secondary battery having alkaline electrolyte
JP3913384B2 (en) Alkaline storage battery
JPH09171818A (en) Nickel-metal hydride storage battery and its preparation
JP3706535B2 (en) Cylindrical secondary battery
JP2000268850A (en) Alkaline storage battery and its manufacture
JP2002246009A (en) Alkaline storage battery
JP4977932B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2000331656A (en) Electric energy accumulation device
JPS61211959A (en) Cylindrical lithium cell
EP4270613A1 (en) Hermetically sealed battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614