JPH11270280A - Pipe jacking method and surveying instrument - Google Patents

Pipe jacking method and surveying instrument

Info

Publication number
JPH11270280A
JPH11270280A JP7269398A JP7269398A JPH11270280A JP H11270280 A JPH11270280 A JP H11270280A JP 7269398 A JP7269398 A JP 7269398A JP 7269398 A JP7269398 A JP 7269398A JP H11270280 A JPH11270280 A JP H11270280A
Authority
JP
Japan
Prior art keywords
marker
detector
buried
magnetic field
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7269398A
Other languages
Japanese (ja)
Inventor
Nobuhiko Kimura
信彦 木村
Takeetsu Shibano
健悦 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP7269398A priority Critical patent/JPH11270280A/en
Publication of JPH11270280A publication Critical patent/JPH11270280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To lay buried pies efficiently with high accuracy by precisely surveying the places and postures of a leader and a buried pipe row efficiently. SOLUTION: A leader 10 and buried pipes 20 connected at the rear of the leader 10 are jacked in a ground E and the pipes 20 are buried gradually into the ground E in the pipe jacking method. The pipe jacking method includes a process, in which a plurality of marker bodies 30 are buried beforehand at intervals along the burying predetermined path T of the pipes 20 in the ground E upper than the place of the burying of the buried pipes 20, a process, in which the marker bodies 30 are detected by detectors 40 installed to the leader 10 and the positional information of the leader 10 is obtained on the basis of detecting information, and a process, in which the jacking direction of the leader 10 is controlled on the basis of positional information, at that time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、推進工法および先
導体の測量装置に関し、詳しくは、下水道管などの地下
埋設管の敷設に利用され、地盤を開削することなく埋設
管列を地盤内に推進させて埋設していく推進工法と、こ
のような推進工法において埋設管列の先頭に配置される
先導体の位置や姿勢を測量する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propulsion method and a surveying apparatus for leading conductors, and more particularly to a method for laying underground pipes such as sewer pipes, in which a row of buried pipes is installed in the ground without cutting the ground. The present invention relates to a propulsion method for propelling and burying, and an apparatus for measuring the position and posture of a leading conductor arranged at the head of a buried pipe row in such a propulsion method.

【0002】[0002]

【従来の技術】推進工法は、地盤を開削しなくてもよい
ため、地上の交通を遮断したり、地上の構築物等に影響
を与えたりすることなく、能率的に埋設管の敷設作業が
行える点で優れた方法であり、下水管やガス管、電線管
などの敷設工事に広く適用されている。
2. Description of the Related Art The propulsion method does not require excavation of the ground, so that laying of buried pipes can be efficiently performed without interrupting ground traffic or affecting structures on the ground. It is an excellent method in that it is widely applied to the construction work of sewage pipes, gas pipes, electric conduits, etc.

【0003】但し、地盤を開削しない推進工法では、地
盤内を推進していく先導体および埋設管列の位置や姿勢
を目視で確認したり測量したりすることができない。し
たがって、予め設計された埋設管の敷設経路どおりに先
導体および埋設管列が推進されているか否かを確認した
り、予定の経路からのずれを修正したりするには、地盤
内を推進する先導体や埋設管列の位置および姿勢を測量
するための手段が必要になる。
However, with the propulsion method that does not cut the ground, it is not possible to visually check or measure the position and attitude of the leading conductor and the buried pipe row that are propelled in the ground. Therefore, in order to confirm whether the leading conductor and the buried pipe row are being propelled along the previously designed buried pipe laying path, and to correct the deviation from the planned path, propelling in the ground A means for measuring the position and attitude of the leading conductor and the buried pipe row is required.

【0004】従来の推進工法で、先導体および埋設管列
の測量を行う方法としては、埋設管列の最後端が配置さ
れる出発孔などから照射したレーザ光を、先導体等に備
えた反射器や受光器で捉えて測量を行う、いわゆるレー
ザ測量法がある。また、本件出願人が先に特許出願した
特願平7−40043号(特開平8−233601号公
報参照)には、先導体に装備された磁気コイルなどの磁
気発生器から発する磁気を、地表に配置された検出コイ
ルで検出することで、磁気発生器すなわち先導体の位置
を探知する技術が開示されている。
[0004] In the conventional propulsion method, a method of measuring a leading conductor and a buried pipe row is to measure a laser beam radiated from a departure hole or the like at the rear end of the buried pipe row by using a reflection provided on the leading conductor or the like. There is a so-called laser surveying method in which a survey is performed by capturing with a measuring instrument or a light receiving device. Further, Japanese Patent Application No. 7-40043 (see Japanese Patent Application Laid-Open No. 8-233601), which was filed by the applicant of the present invention, discloses magnetism generated from a magnetic generator such as a magnetic coil mounted on a leading conductor. A technique for detecting the position of a magnetic generator, that is, the position of a leading conductor, by detecting the position of a magnetic field, that is, a detection coil disposed in a magnetic field is disclosed.

【0005】[0005]

【発明が解決しようとする課題】前記したレーザ測量法
は、直進するレーザ光を用いるため、埋設管列が直線的
に推進される直線推進工法には適用し易いが、埋設管列
が曲線経路に沿って推進される曲線推進方向には適用し
難いという問題がある。また、レーザ光が直進する空間
が埋設管列の後端から先導体の位置までにわたって開放
されていなければならないため、先導体および埋設管列
の内部に設置される各種の機器や構造物が邪魔になっ
て、測量が困難になることもある。さらに、レーザ光の
照射距離が長くなると測量の誤差が増大して、先導体の
位置が正確に測量し難くなる。このような欠点を解消す
るために、埋設管列を複数の区間に分割して、各区間毎
にレーザ測量を行い、その結果を集計することも考えら
れるが、測量作業の手間が増えるとともに、測量結果を
集計する際に測量誤差が累積してしまうという問題があ
る。
The above-described laser surveying method uses a laser beam that travels straight, and thus can be easily applied to a linear propulsion method in which a buried pipe row is propelled linearly. There is a problem that it is difficult to apply to a curved propulsion direction that is propelled along. In addition, since the space in which the laser beam travels must be open from the rear end of the buried tube row to the position of the leading conductor, various devices and structures installed inside the leading conductor and the buried tube row are obstructed. In some cases, surveying becomes difficult. Further, when the irradiation distance of the laser beam becomes longer, the error of the survey increases, and it becomes difficult to accurately measure the position of the leading conductor. In order to solve such a drawback, it is conceivable to divide the buried pipe row into a plurality of sections, perform laser surveying for each section, and aggregate the results, but this increases the time and effort of surveying work, There is a problem that survey errors accumulate when totaling the survey results.

【0006】また、先導体に備えた磁気発生器を地表の
検出コイルで探知する前記方法では、地表で検出コイル
を前後左右に走査して地盤内の磁気発生器の位置を探る
作業が必要になる。この探知作業を道路上で行うには、
その間は交通を遮断する必要があり、地表の交通を妨げ
ないという推進工法の利点が損なわれる。推進工法で
は、先導体および埋設管列を推進させる工程と、埋設管
列の後尾に新たな埋設管を接続する作業とを交互に繰り
返すため、その繰り返しのたび毎に、交通を遮断して測
量作業を行う手間がかかる。また、地表で検出コイルを
走査するには、検出コイルのほかに交番電流発生装置や
電源装置、検出コイルの駆動装置などの多くの設備類も
必要となるため、ある程度の広い作業空間が必要であ
り、障害物があったりして作業が行い難い場所では、測
量作業は困難である。
In the above method of detecting the magnetic generator provided on the leading conductor by the detection coil on the ground, it is necessary to scan the detection coil back and forth and left and right on the ground to search for the position of the magnetic generator in the ground. Become. To do this on the road,
In the meantime, traffic must be shut off, losing the advantage of the propulsion method that it does not hinder surface traffic. In the propulsion method, the process of propelling the leading conductor and the buried pipe row and the work of connecting a new buried pipe to the tail of the buried pipe row are alternately repeated. It takes time to perform the work. In addition, in order to scan the detection coil on the ground surface, in addition to the detection coil, a large amount of equipment such as an alternating current generator, a power supply device, and a drive device for the detection coil is required. Surveying work is difficult in places where there are obstacles and work is difficult.

【0007】本発明の課題は、前記した推進工法におい
て、先導体および埋設管列の位置および姿勢を正確かつ
効率的に測量して、埋設管を高精度で能率的に敷設でき
るようにすることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for laying a buried pipe with high accuracy and efficiency by accurately and efficiently measuring the positions and postures of a leading conductor and a row of buried pipes in the above-mentioned propulsion method. It is.

【0008】[0008]

【課題を解決するための手段】本発明の推進工法は、先
導体および先導体の後方に連結された埋設管を地盤内に
推進させて埋設管を地盤内に埋設していく推進工法であ
り、以下の工程を含む。 埋設管の埋設位置より上方の地盤内で、埋設管の埋
設予定経路に沿って間隔をあけて複数の標識体を埋設し
ておく工程。
A propulsion method according to the present invention is a propulsion method in which a leading conductor and a buried pipe connected behind the leading conductor are propelled into the ground and the buried pipe is buried in the ground. And the following steps. A step of burying a plurality of markers at intervals along a planned buried path of the buried pipe in the ground above the buried pipe burying position.

【0009】 先導体に備えた探知機で標識体を探知
し、探知情報をもとに先導体の位置情報を得る工程。 位置情報をもとに先導体の推進方向を制御する工
程。各構成要件について具体的に説明する。 〔埋設管〕通常の推進工法に用いられているのと同様の
材料および構造を有する管が使用できる。ヒューム管や
鋼管、コンクリート管あるいは合成樹脂管、さらにはこ
れらの異種材料を組み合わせた複合管を用いることもで
きる。埋設管は、直管および曲管の何れでもよい。円管
のほか、矩形管などの異径断面管も用いられる。 〔先導体〕通常の推進工法に用いられる機構構造を備え
た先導体が使用できる。
A step of detecting a marker using a detector provided on the leading conductor and obtaining positional information of the leading conductor based on the detected information. The step of controlling the propulsion direction of the conductor based on the position information. Each component requirement will be specifically described. [Buried pipe] A pipe having the same material and structure as those used in the ordinary propulsion method can be used. Fume pipes, steel pipes, concrete pipes, synthetic resin pipes, and composite pipes combining these different materials can also be used. The buried pipe may be either a straight pipe or a curved pipe. In addition to a circular pipe, a pipe with a different diameter such as a rectangular pipe is also used. [Top conductor] A top conductor having a mechanism structure used in a normal propulsion method can be used.

【0010】先導体による埋設孔の形成手段として、先
導体の先端面に掘削ビットなどからなる掘削機構を備え
ておくことができる。掘削式の先導体には、掘削された
土砂を後方に送る排土機構を備えておくことができる。
掘削面に泥水や掘削液を供給する送泥機構を備えておく
ことができる。先端がコーン状の先導体を地中に押し込
んで地盤を圧密して先導体を推進させる圧密式の先導体
を用いることができる。前記掘削と圧密との両方を行う
先導体も用いられる。
[0010] As means for forming the buried hole by the leading conductor, a digging mechanism comprising a digging bit or the like can be provided at the tip end surface of the leading conductor. The excavated tip conductor can be provided with an earth discharging mechanism for sending the excavated earth and sand backward.
The excavation surface may be provided with a mud feeding mechanism for supplying muddy water or drilling liquid. It is possible to use a consolidation-type front conductor that pushes the front conductor having a cone-shaped tip into the ground to consolidate the ground and propel the front conductor. Lead conductors that perform both excavation and consolidation are also used.

【0011】先導体には、先導体の推進方向を変える変
向ジャッキなどの変向手段を備えておくことができる。
先導体の前部と後部とを所定角度に屈曲させた状態で推
進させることで曲線経路に沿って推進させる曲線推進機
構を備えておくことができる。先導体の後端には、前記
した埋設管を連結できる連結継手などの連結手段を備え
ておく。 〔標識体〕地表の交通や構築物に障害を与えることなく
地盤内に埋設しておくことができ、探知機による探知が
可能なものであれば、標識体の形状構造は特に限定され
ない。
[0011] The leading conductor may be provided with a diverting means such as a diverting jack for changing the propulsion direction of the leading conductor.
It is possible to provide a curved propulsion mechanism for propelling along the curved path by propelling the front conductor with the front and rear portions bent at a predetermined angle. At the rear end of the leading conductor, a connecting means such as a connecting joint capable of connecting the above-mentioned buried pipe is provided. [Signature] The shape and structure of the signage is not particularly limited as long as it can be buried in the ground without hindering traffic and structures on the ground surface and can be detected by a detector.

【0012】電磁気や放射線、超音波など探知機に利用
される探知原理によって、標識体の構造は異なってく
る。標識体は、探知機に対して能動的に信号を発するも
ののほか、探知機から信号を受けることによって探知機
に信号を返すもの、あるいは、探知機に対して信号を発
せず受動的に探知されるだけのものがある。能動的に信
号を発するために、電池や信号発生回路などの信号発生
機構を備えておくことができる。但し、埋設したままで
長期間の利用を考える場合には、標識体の内部にはエネ
ルギー源を必要としない構造が好ましい。
The structure of the marker differs depending on the detection principle used for the detector, such as electromagnetic, radiation, and ultrasonic waves. Signs are those that actively emit signals to the detector, those that return signals to the detector by receiving signals from the detector, or those that are passively detected without emitting signals to the detector. There is only one thing. A signal generating mechanism such as a battery or a signal generating circuit can be provided to actively emit a signal. However, in the case of considering long-term use with the marker buried, a structure that does not require an energy source inside the marker is preferable.

【0013】磁気を利用した探知を行うには、標識体に
磁気反応体を備えておくことができる。磁気反応体は、
探知機で発生させた1次磁界に反応して何らかの応答信
号を発生するものである。磁気反応体として、導電性の
コイルとコンデンサとを組み合わせた磁気コイルが使用
できる。磁気コイルは、交番磁界である1次磁界を受け
ると自らが2次磁界を発生することで反応する。磁気コ
イルが配置された位置における1次磁界の強さに応じて
発生する2次磁界の強さが変わる。コイルの材料や線
径、コイル径あるいは巻数、コンデンサの容量などの設
定によって磁気特性を調整でき、探知機による探知特性
が変更できる。
In order to perform detection using magnetism, the marker may be provided with a magnetic reactant. The magnetic reactant is
It generates some kind of response signal in response to the primary magnetic field generated by the detector. As the magnetic reactant, a magnetic coil combining a conductive coil and a capacitor can be used. When the magnetic coil receives the primary magnetic field, which is an alternating magnetic field, it reacts by generating its own secondary magnetic field. The strength of the secondary magnetic field generated changes according to the strength of the primary magnetic field at the position where the magnetic coil is arranged. The magnetic characteristics can be adjusted by setting the coil material and wire diameter, the coil diameter or the number of turns, the capacitance of the capacitor, and the like, and the detection characteristics of the detector can be changed.

【0014】磁気コイルからなる磁気反応体の外周を合
成樹脂やセラミックなどで覆っておけば、地盤内に標識
体を埋設したままにした場合でも、錆発生や変質による
探知特性の変化が起こり難く、地盤への金属漏洩の問題
も起こり難い。標識体は、地盤内に完全に埋設されてし
まうものであってもよいし、標識体の一部が地表に露出
した状態で配置されるものであってもよい。標識体の一
部が地表に露出していれば、標識体の位置を目視で確認
したり測量したりすることができる。標識体の一部が地
表に露出する場合には、地表の交通や使用の邪魔になら
ない形状構造を備えておくようにする。
If the outer periphery of the magnetic reactant composed of the magnetic coil is covered with a synthetic resin, ceramic, or the like, even if the marker is buried in the ground, the detection characteristics are unlikely to change due to rust or deterioration. The problem of metal leakage to the ground is unlikely to occur. The marker may be completely buried in the ground, or may be arranged with a part of the marker exposed on the ground surface. If a part of the marker is exposed on the ground, the position of the marker can be visually confirmed or measured. If a part of the sign is exposed on the ground surface, it should be provided with a shape and structure that does not obstruct the traffic and use of the ground surface.

【0015】標識体の埋設方法として、地表面から地盤
に縦穴を掘って、その中に標識体を挿入し、縦穴を埋め
戻す方法が採用できる。縦穴を埋め戻さず、開口に蓋を
しておくだけにすれば、使用済の標識体を回収するのが
容易になる。合成樹脂などからなるパイプを地盤に貫入
させて、パイプの内部空間に標識体を挿入することもで
きる。パイプは、標識体の姿勢を正確に維持するととも
に標識体を保護する機能もある。
As a method of burying the marker, a method of digging a vertical hole from the ground surface to the ground, inserting the marker into the hole, and backfilling the vertical hole can be adopted. If the vertical hole is not backfilled and only the opening is covered, it becomes easy to collect the used marker. A pipe made of a synthetic resin or the like may penetrate the ground, and a marker may be inserted into the internal space of the pipe. The pipe has a function of accurately maintaining the posture of the sign and protecting the sign.

【0016】標識体の反応特性を、埋設管の用途や特性
に合わせて違えておけば、複数種類の埋設管が混在する
地盤においても、目的とする埋設管の埋設経路を正確に
探知することができる。標識体は、先導体に設置される
探知機に出来るだけ近くなる場所に配置しておけば探知
感度が良好になる。先導体および埋設管列の推進の邪魔
にならない程度に埋設管の埋設位置より上方の地盤内に
埋設しておく。
If the reaction characteristics of the marker are changed according to the purpose and characteristics of the buried pipe, it is possible to accurately detect the buried path of the target buried pipe even in the ground where a plurality of types of buried pipes are mixed. Can be. If the marker is placed in a place as close as possible to the detector installed on the leading conductor, the detection sensitivity is improved. It is buried in the ground above the buried position of the buried pipe so as not to hinder the propulsion of the leading conductor and the buried pipe row.

【0017】標識体の埋設間隔は、それぞれの標識体の
探知に支障がない程度に離れていれば、狭く設定してお
くほど先導体の位置情報が精密に探知できる。但し、間
隔が狭いほど標識体の数が増え、標識体の埋設作業の手
間は増える。先導体の姿勢情報を得るには、先導体に備
えた探知機で探知できる程度の深さに標識体を設置して
おく。
As long as the intervals between the embedments of the markers are so far as not to hinder the detection of the markers, the narrower the interval, the more precise the position information of the leading conductor can be detected. However, the narrower the interval, the more the number of markers and the more labor for burying the markers. In order to obtain the posture information of the leading conductor, the marker is placed at a depth that can be detected by a detector provided on the leading conductor.

【0018】標識体は、通常、埋設管の埋設予定経路の
真上に配置しておけばよいが、埋設予定経路から所定の
距離だけ離れた位置に沿って配置しておくこともでき
る。 〔探知機〕標識体の位置を知ることができ、先導体の内
部に装着できれば、その形状や構造は特に限定されな
い。
Usually, the marker may be arranged directly above the planned burial path of the buried pipe, but may also be arranged along a position separated from the planned burial path by a predetermined distance. [Detector] The shape and structure of the marker are not particularly limited as long as the position of the marker can be known and the marker can be mounted inside the leading conductor.

【0019】探知機は、先導体に対して固定された状態
で支持されていてもよいし、旋回や傾きなどの姿勢が変
えられるように支持されてあったり、移動自在に支持さ
れてあってもよい。先導体に対して探知機が平面方向に
移動自在に支持されていれば、探知機を移動させて標識
体の位置を特定したり、探知機を標識体の真下に配置す
ることで標識体の位置を確実に特定したりすることがで
きる。探知機を平面方向に移動自在に支持するには、通
常の各種計測装置などに採用される平面移動機構を用い
ることができる。また、探知機の移動位置を検知する位
置検知機構を備えておけば、探知機の移動位置から標識
体の位置情報を得ることができる。
The detector may be supported in a fixed state with respect to the leading conductor, may be supported so that its posture such as turning or tilting may be changed, or may be supported movably. Is also good. If the detector is supported movably in the plane direction with respect to the tip conductor, the detector can be moved to specify the position of the marker, or the detector can be placed directly under the marker to remove the marker. The position can be specified reliably. In order to support the detector movably in the plane direction, a plane moving mechanism employed in a general measuring device or the like can be used. In addition, if a position detecting mechanism for detecting the moving position of the detector is provided, the position information of the marker can be obtained from the moving position of the detector.

【0020】探知機を水平面内で旋回自在に支持すると
ともに、方向によって探知特性に違いを設けておけば、
探知機で受信される信号の強さから標識体の方向を知る
ことができる。探知機の探知動作上、標識体に対する探
知機の姿勢を一定に維持する必要がある場合には、先導
体の傾きや軸回り回動に対して探知機の姿勢を水平状態
に維持する水平維持手段を備えておくことができる。前
記した磁気を利用する探知の場合、標識体の磁界軸と探
知機の磁界軸とを同じ方向に向かせることが好ましく、
そのために前記した水平維持手段が有効である。 〔磁気探知機〕標識体として磁気コイル等の磁気反応体
を用いる場合、探知機には、1次磁界を発生させる発信
器と、この1次磁界に反応して磁気反応体が発生する2
次磁界を受信する受信器とを備えておくことができる。
If the detector is supported rotatably in a horizontal plane and the detection characteristics are different depending on the direction,
The direction of the marker can be known from the strength of the signal received by the detector. If it is necessary to maintain the attitude of the detector relative to the marker in the detection operation of the detector, maintain the attitude of the detector in a horizontal state with respect to the inclination of the leading conductor and rotation around the axis. Means can be provided. In the case of detection using the magnetism, it is preferable that the magnetic field axis of the marker and the magnetic field axis of the detector are oriented in the same direction,
For that purpose, the above-mentioned horizontal maintaining means is effective. [Magnetic Detector] When a magnetic reactant such as a magnetic coil is used as a marker, the detector includes a transmitter for generating a primary magnetic field and a magnetic reactant generated in response to the primary magnetic field.
A receiver for receiving the secondary magnetic field.

【0021】発信器は、磁気コイルとこの磁気コイルに
交番電流を流す電源とを備えておくことができる。受信
器は、磁気コイルとこの磁気コイルに発生する電気信号
を検知する信号処理回路を備えておくことができる。一
つの探知機に複数の受信器を備えておき、複数の受信器
の受信信号を比較することで、標識体の探知を効率的に
行うことができる。 〔標識体の探知〕予め正確に測量された位置に埋設され
た標識体の位置を探知機で探知すれば、その位置情報を
もとにして、標識体に対する探知機の位置が判る。先導
体内での探知機の位置は予め判っているから、標識体に
対する探知機の位置から標識体に対する先導体の位置が
判る。
The transmitter may include a magnetic coil and a power supply for supplying an alternating current to the magnetic coil. The receiver can include a magnetic coil and a signal processing circuit for detecting an electric signal generated in the magnetic coil. By providing a plurality of receivers in one detector and comparing the received signals of the plurality of receivers, it is possible to efficiently detect the marker. [Detection of marker] If the position of the marker buried at a position accurately measured in advance is detected by the detector, the position of the detector with respect to the marker can be determined based on the position information. Since the position of the detector within the tip conductor is known in advance, the position of the tip conductor with respect to the marker can be determined from the position of the detector with respect to the marker.

【0022】標識体に対する探知信号をもとにして、探
知機を標識体の真下位置に移動させれば、そのときの先
導体内での探知機の移動位置から、標識体に対する探知
機および先導体の位置のずれを知ることができる。先導
体の複数個所で探知機によって一つの標識体の方向を探
知すれば、探知方向の交差点として標識体の位置を知る
ことができる。この場合、探知機を複数個用いてもよい
し、一つの探知機を場所を変えて標識体の探知に用いて
もよい。
When the detector is moved to a position directly below the marker based on the detection signal for the marker, the detector and the conductor for the marker are moved from the movement position of the detector in the leading conductor at that time. Can be known. If the direction of one marker is detected by a detector at a plurality of locations on the leading conductor, the position of the marker can be known as the intersection of the detection directions. In this case, a plurality of detectors may be used, or one detector may be used at a different location to detect a marker.

【0023】複数の標識体の位置情報をもとにして、先
導体の姿勢を知ることができる。具体的には、複数の標
識体の位置を結ぶ埋設管の埋設経路と、先導体の軸心と
を比較することで、埋設経路に対する先導体のずれや傾
きが判る。 〔推進施工〕基本的には通常の推進工法と同じ工程ある
いは作業手順で施工する。
The posture of the leading conductor can be known based on the position information of the plurality of markers. Specifically, by comparing the buried path of the buried pipe connecting the positions of the plurality of markers with the axis of the leading conductor, the deviation and inclination of the leading conductor with respect to the burying path can be determined. [Propulsion construction] Basically, construction is performed in the same process or work procedure as the normal propulsion method.

【0024】施工経路の両端には発進坑および到達坑と
なる立坑が掘削される。発進坑に先導体および埋設管を
順次搬送していき、発進坑内に設置された元押しジャッ
キを用いて、先導体および埋設管列に推力を加え、発進
坑の側壁から地中に先導体および埋設管列を推進させ
て、埋設管列を埋設していく。先導体が到達坑まで推進
されれば、発進坑から到達坑まで埋設管列が埋設される
ことになる。
At both ends of the construction path, vertical shafts to be a starting shaft and a reaching shaft are excavated. The leading conductor and the buried pipe are sequentially transferred to the starting pit, and thrust is applied to the leading conductor and the row of buried pipes using the main push jack installed in the starting pit, and the leading conductor and the buried pipe are introduced into the ground from the side wall of the starting pit. The buried pipe row is promoted to bury the buried pipe row. If the leading conductor is propelled to the destination pit, the buried pipe row will be buried from the starting pit to the destination pit.

【0025】埋設管列の両端で外部の埋設管との連結作
業や立坑でのマンホールの施工や土砂の埋め戻しなどの
通常の仕上げ工程を実施すれば、推進工法による埋設管
の施工は完了する。 〔推進方向の制御〕上記した推進施工の途中で、探知器
による標識体の探知を行い、先導体および埋設管列の位
置や姿勢を測量し、その結果にもとづいて、前記した変
向ジャッキなどを用いて先導体および埋設管列の推進方
向を制御する。
If a normal finishing process such as a connection work with an external buried pipe at each end of the buried pipe row, construction of a manhole in a shaft, and backfilling of earth and sand is performed, the construction of the buried pipe by the propulsion method is completed. . [Control of propulsion direction] During the above-mentioned propulsion construction, a marker is detected by a detector, and the positions and attitudes of the leading conductor and the buried pipe row are measured. Is used to control the propulsion direction of the leading conductor and the buried pipe row.

【0026】具体的には、1本の埋設管を追加し埋設管
1本分の距離を推進させるごとに、先導体の位置や姿勢
を測量することができる。元押しジャッキなどにによる
推進作業中にも、標識体の探知による先導体の位置や姿
勢の測量を行うことができる。
Specifically, each time one buried pipe is added and the distance of one buried pipe is propelled, the position and posture of the leading conductor can be measured. Even during the propulsion work by the main push jack or the like, the position and orientation of the leading conductor can be measured by detecting the marker.

【0027】[0027]

【発明の実施の形態】〔全体構造〕図1および図2に示
す実施形態は、先導体10と先導体10の後方に連結さ
れた埋設管20を地盤Eの内部に推進させて、埋設管2
0の敷設を行う。地盤Eには、埋設管20の埋設経路T
に沿って等間隔に複数個の標識体30が埋設されてい
る。標識体30は、推進工法を実施する前に、地表にお
ける精密な測量に基づいて埋設位置が設定されている。
標識体30の埋設深さは、先導体10および埋設管20
の推進予定位置よりも少し上方に設定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Overall Structure] In the embodiment shown in FIGS. 1 and 2, the leading conductor 10 and a buried pipe 20 connected to the rear of the leading conductor 10 are propelled into the ground E, and 2
0 is laid. In the ground E, the buried path T of the buried pipe 20
A plurality of markers 30 are buried at regular intervals along. The embedding position of the marker 30 is set based on precise surveying on the ground surface before the propulsion method is performed.
The burial depth of the marker 30 is determined by
Is set slightly higher than the planned propulsion position.

【0028】標識体30は、全体が太い釘あるいは杭状
をなす合成樹脂の成形体からなり、内部には、磁界に対
して反応して2次磁界を発生するコイル(図示せず)が
封入されている。先導体10の内部には、前後2個所に
探知機40、40を備えている。それぞれの探知機40
は、探知機40を貫通する鉛直方向に中心線を有する磁
界mを発生し、この磁界mが標識体30に作用すること
で標識体30から2次磁界が発生し、この2次磁界を探
知機40に備えた受信器で受信する。受信信号の強さを
もとに、探知機40に対する標識体30の位置情報を取
得する。前記したように、標識体30の位置は予め正確
に設定されているから、探知機40に対する標識体30
の相対的な位置情報から逆に、標識体30に対する探知
機40の位置、すなわち探知機40の絶対的な位置を知
ることができる。
The marker 30 is made of a molded article of synthetic resin having a thick nail or pile shape as a whole. A coil (not shown) for generating a secondary magnetic field in response to a magnetic field is enclosed therein. Have been. Inside the front conductor 10, detectors 40, 40 are provided at two places before and after. Each detector 40
Generates a magnetic field m having a center line in the vertical direction that penetrates the detector 40, and the magnetic field m acts on the marker 30 to generate a secondary magnetic field from the marker 30. It is received by a receiver provided in the device 40. The position information of the marker 30 with respect to the detector 40 is acquired based on the strength of the received signal. As described above, since the position of the marker 30 is accurately set in advance, the marker 30 with respect to the detector 40 is set.
Conversely, the position of the detector 40 with respect to the marker 30, that is, the absolute position of the detector 40 can be known.

【0029】図2に示すように、先導体10は、前面に
カッタが配設された掘削板13がモータ12で回転自在
に取り付けられており、先導体10の前面の地盤Eを掘
削しながら先導体10が推進していく。先導体20は、
掘削板13等を取り付けた前部14と、埋設管20が接
続される後部16とが分割形成されて互いに屈曲可能に
配置されているとともに、前部14と後部16が複数個
所の変向ジャッキ18で連結されている。変向ジャッキ
18の伸縮長さを調整することで、前部14と後部16
のなす角度が変わり、その状態で先導体20を推進させ
れば、先導体10の推進方向が変わる。〔探知機の取付
構造〕図3および図4に、先導体10への探知機40の
取付構造を示す。
As shown in FIG. 2, a drilling plate 13 having a cutter disposed on the front surface is rotatably mounted on the front conductor 10 by a motor 12, and excavates the ground E on the front surface of the front conductor 10. The leading conductor 10 is propelled. The tip conductor 20
A front part 14 to which the excavation plate 13 and the like are attached and a rear part 16 to which the buried pipe 20 is connected are formed separately so as to be bendable with each other, and the front part 14 and the rear part 16 are provided with a plurality of deflection jacks. It is connected at 18. By adjusting the extension length of the deflection jack 18, the front portion 14 and the rear portion 16 are adjusted.
When the leading conductor 20 is propelled in this state, the propelling direction of the leading conductor 10 changes. [Attachment Structure of Detector] FIGS. 3 and 4 show an attachment structure of the detector 40 to the leading conductor 10. FIG.

【0030】図4に詳しく示すように、円盤状の探知機
40が支持盤112に支持されている。支持盤112
は、細長い矩形の内枠110に対して内枠110の長辺
方向に沿って水平移動自在に支持されている。具体的な
移動機構としては、サーボモータで駆動されるボールネ
ジ機構が採用される。
As shown in detail in FIG. 4, a disc-shaped detector 40 is supported on a support board 112. Support board 112
Is supported so as to be horizontally movable along the long side direction of the inner frame 110 with respect to the elongated rectangular inner frame 110. As a specific moving mechanism, a ball screw mechanism driven by a servomotor is employed.

【0031】内枠110は、さらに大きな矩形状をなす
外枠100に対して水平移動自在に支持されている。外
枠100に対する内枠110の水平移動方向は、内枠1
10に対する支持盤112の移動方向と直交している。
その結果、外枠100に対して、支持盤112すなわち
探知機40は平面方向の任意の位置に移動させることが
できる。
The inner frame 110 is horizontally movably supported with respect to the larger rectangular outer frame 100. The horizontal movement direction of the inner frame 110 with respect to the outer frame 100 is the inner frame 1
The direction perpendicular to the direction of movement of the support plate 112 with respect to 10.
As a result, the support board 112, that is, the detector 40 can be moved to an arbitrary position in the plane direction with respect to the outer frame 100.

【0032】外枠100の一側辺は、先導体10の軸方
向と平行な垂直面内での回動および先導体10の軸と直
交する垂直面内での回動の両方が自在な球状の継手構造
を備えた継手部102を介して支持腕104の一端に接
続され、支持腕104の他端は先導体10の内壁に固定
されている。外枠100の反対側の側辺には、側辺の両
端近くのそれぞれに、水平姿勢調整機構120を介して
支持腕122の一端が接続され、支持腕122の他端は
先導体10の内壁に固定されている。
One side of the outer frame 100 has a spherical shape that can freely rotate both in a vertical plane parallel to the axial direction of the leading conductor 10 and in a vertical plane perpendicular to the axis of the leading conductor 10. Is connected to one end of the support arm 104 via a joint portion 102 having the joint structure described above, and the other end of the support arm 104 is fixed to the inner wall of the leading conductor 10. One end of a support arm 122 is connected to the opposite side of the outer frame 100 near each end of the side via a horizontal attitude adjustment mechanism 120, and the other end of the support arm 122 is connected to the inner wall of the leading conductor 10. It is fixed to.

【0033】図3に詳しく示すように、水平姿勢調整機
構120は、支持腕122の先端にボールネジ軸124
が回転可能に取り付けられている。垂直上方に延びるボ
ールネジ軸124の上部は、外枠100に対して先導体
10の軸方向および軸と直交する方向の何れにも揺動自
在な駒部材126に、移動自在にねじ込み取り付けされ
ている。
As shown in detail in FIG. 3, the horizontal posture adjusting mechanism 120 has a ball screw shaft 124
Is rotatably mounted. The upper portion of the ball screw shaft 124 that extends vertically upward is movably screwed and attached to a piece member 126 that can swing in both the axial direction of the leading conductor 10 and the direction perpendicular to the axis with respect to the outer frame 100. .

【0034】水平姿勢調整機構120の動作を説明す
る。先導体10は、地盤Eを推進しているうちに軸心回
りに回動すなわちローリングを起こすことがある。先導
体10が回動すれば、先導体10に対して取り付けられ
た探知機40の姿勢が傾くことになる。探知機40の姿
勢が傾くと、標識体30の位置の探知が正確に行えな
い。そこで、先導体10の回動に合わせて、前後一対の
水平姿勢調整機構120を作動させる。具体的には、外
枠100の駒部材126に対するボールネジ軸124の
螺合位置を上下に調整することで、外枠100の一側辺
を上下に位置調整して外枠100の傾きを直し、外枠1
00すなわち探知機40を水平状態に保つ。
The operation of the horizontal attitude adjusting mechanism 120 will be described. The tip conductor 10 may rotate or roll around the axis while propelling the ground E. If the leading conductor 10 rotates, the attitude of the detector 40 attached to the leading conductor 10 will be inclined. If the posture of the detector 40 is inclined, the position of the marker 30 cannot be accurately detected. Therefore, the pair of front and rear horizontal posture adjustment mechanisms 120 is operated in accordance with the rotation of the leading conductor 10. Specifically, by adjusting the screw position of the ball screw shaft 124 to the piece member 126 of the outer frame 100 up and down, one side of the outer frame 100 is adjusted up and down to correct the inclination of the outer frame 100, Outer frame 1
00, that is, the detector 40 is kept horizontal.

【0035】さらに、先導体10は、前記ローリングと
直交する方向の傾きすなわち先導体10の軸心が前後で
上下に傾くピッチングを起こすこともある。このときに
は、前後一対の水平姿勢調整機構120のうち、一方だ
けを上下に位置調整するか、前後の水平姿勢調整機構1
20を互いに上下逆方向に位置調整する。これによっ
て、外枠100の前後方向における傾きが調整でき、水
平状態を維持することができる。
Further, the leading conductor 10 may be inclined in a direction perpendicular to the rolling, that is, may be pitched such that the axis of the leading conductor 10 is vertically inclined back and forth. At this time, only one of the pair of front and rear horizontal posture adjustment mechanisms 120 is adjusted vertically, or the front and rear horizontal posture adjustment mechanisms 1 are adjusted.
The positions of 20 are adjusted upside down. Thereby, the inclination of the outer frame 100 in the front-rear direction can be adjusted, and the horizontal state can be maintained.

【0036】図示しないが、探知機40を支持盤112
に対してモータ等を介して旋回自在に取り付けておけ
ば、探知機40を水平面内で旋回させることができる。
探知機40を外枠100に直接に旋回自在に取り付けて
おくことができる。 〔探知機の内部構造〕図5に示すように、探知機40に
は、導線コイルからなる発信コイル42と、発信コイル
42と同心で発信コイル42よりも外径が小さな受信コ
イル45を備える。発信コイル42はスイッチ44を経
て交番電流発生器43に接続されている。受信コイル4
5はスイッチ46を経て信号処理回路47に接続されて
いる。スイッチ44、46は電気的に高速で切り換えら
れるようになっている。信号処理回路47およびスイッ
チ44、46は、図示しない探知機40全体の制御回路
あるいは先導体10の制御回路へと電気的に接続されて
いる。
Although not shown, the detector 40 is mounted on the support plate 112.
If the detector 40 is rotatably mounted via a motor or the like, the detector 40 can be rotated in a horizontal plane.
The detector 40 can be directly and rotatably attached to the outer frame 100. [Internal Structure of Detector] As shown in FIG. 5, the detector 40 includes a transmitting coil 42 composed of a conductor coil, and a receiving coil 45 concentric with the transmitting coil 42 and having a smaller outer diameter than the transmitting coil 42. The transmitting coil 42 is connected to an alternating current generator 43 via a switch 44. Receiving coil 4
5 is connected to a signal processing circuit 47 via a switch 46. Switches 44 and 46 are electrically switched at a high speed. The signal processing circuit 47 and the switches 44 and 46 are electrically connected to a control circuit of the entire detector 40 (not shown) or a control circuit of the leading conductor 10.

【0037】探知機40とともに使用される標識体30
は、内部に磁気反応体となるコイル32およびコンデン
サ34からなる磁気コイル回路を備えている。標識体3
0のコイル32と、探知機40の発信コイル42および
受信コイル45は、互いの中心軸が平行になるように配
置されている。地盤Eに対しては、コイル32、42、
45の中心軸が地盤Eの鉛直方向を向くように配置され
る。
Marker 30 used with detector 40
Includes a magnetic coil circuit including a coil 32 serving as a magnetic reactant and a capacitor 34 therein. Marker 3
The zero coil 32 and the transmitting coil 42 and the receiving coil 45 of the detector 40 are arranged such that their central axes are parallel to each other. For the ground E, the coils 32, 42,
45 are arranged so that the central axis thereof faces the vertical direction of the ground E.

【0038】このような構造を有する探知機40の動作
を説明する。発信コイル42のスイッチ44が入ると、
発信コイル42に交番電流が流れて1次磁界が発生す
る。この1次磁界の磁界内に置かれた標識体30のコイ
ル32には、電磁的な共振現象により1次磁界の強さに
対応する2次磁界が発生する。発信コイル42のスイッ
チ44が切られ、受信コイル45のスイッチ46が入れ
られると、標識体30のコイル32で発生した2次磁界
の作用で受信コイル45に受信信号が流れ、信号処理回
路47で検知される。スイッチ44、46の切り換えを
高速で行うと、発信コイル42で発生する1次磁界によ
って受信コイル45が影響を受けることなく、標識体3
0のコイル32による2次磁界だけを受信コイル45で
正確に受信することができる。 〔標識体の探知:受信コイルが単独の場合〕図6に示す
ように、探知機40と標識体30とが平面方向で離れて
存在している場合を想定する。探知機40の発信コイル
42で発生する1次磁界が、標識体30のコイル32に
2次磁界を発生させ、2次磁界を受信コイル45で受信
すると、受信信号S1 が得られる。
The operation of the detector 40 having such a structure will be described. When the switch 44 of the transmitting coil 42 is turned on,
An alternating current flows through the transmitting coil 42 to generate a primary magnetic field. A secondary magnetic field corresponding to the strength of the primary magnetic field is generated in the coil 32 of the marker 30 placed in the magnetic field of the primary magnetic field due to an electromagnetic resonance phenomenon. When the switch 44 of the transmitting coil 42 is turned off and the switch 46 of the receiving coil 45 is turned on, a received signal flows through the receiving coil 45 by the action of the secondary magnetic field generated by the coil 32 of the marker 30, and the signal processing circuit 47 Is detected. When the switches 44 and 46 are switched at a high speed, the receiving coil 45 is not affected by the primary magnetic field generated by the transmitting coil 42 and the marker 3
Only the secondary magnetic field generated by the zero coil 32 can be accurately received by the receiving coil 45. [Detection of marker: case of single receiving coil] It is assumed that the detector 40 and the marker 30 are separated from each other in the plane direction as shown in FIG. The primary magnetic field generated by the transmitting coil 42 of detector 40, the coil 32 of the label 30 to generate a second magnetic field, when receiving the second-order magnetic field receiving coil 45, the received signal S 1 is obtained.

【0039】探知機40と標識体30を結ぶ直線に対し
て交差する方向に探知機40を移動させると、探知機4
0から標識体30までの距離が変動するため、受信信号
1が変化する。受信信号S1 は、移動経路上で標識体
30に探知機40が最も接近したときに極大値を示す。
図示しないが、標識体30の真下に探知機40が配置さ
れたときに受信信号S1 が最大の強さを示す。受信信号
1 の強さの極大値を示した点から移動方向と直交する
方向に標識体30が存在することが分かる。 〔標識体の探知:受信コイルが2個の場合〕図7に示す
ように、探知機40に1個の発信コイル42と、互いの
特性を合致させた2個の受信コイル45a、45bとを
備えておく。受信コイル45a、45bは、発信コイル
42の平面形状に対して左右対象位置に配置されてい
る。
When the detector 40 is moved in a direction intersecting a straight line connecting the detector 40 and the marker 30, the detector 4
Since the distance from 0 to the marker 30 varies, the received signal S 1 varies. The reception signal S 1 indicates a local maximum when the detector 40 comes closest to the marker 30 on the moving route.
Although not shown, the received signals S 1 when the detector 40 is disposed beneath the label 30 indicates the maximum strength. Label 30 in the direction perpendicular to the moving direction from the point indicated the strength of the maxima of the received signal S 1 is can be seen that there. [Detection of Marking Object: Case of Two Receiving Coils] As shown in FIG. 7, a detector 40 is provided with one transmitting coil 42 and two receiving coils 45a and 45b whose characteristics are matched with each other. Be prepared. The receiving coils 45a and 45b are arranged at left and right target positions with respect to the planar shape of the transmitting coil 42.

【0040】<標識体の方向探知>図7(A) に示すよう
に、探知機40を直線方向に移動させると、受信コイル
45aおよび45bの受信信号Sa、Sbが変化する。
両方の受信信号Sa、Sbの差Sabも変化する。両方の
受信信号Sa、Sbが丁度同じになった位置(信号差S
abが0になる位置)では、受信コイル45aから標識体
30までの距離と、受信コイル45bから標識体30ま
での距離とが同じになっている。この状態は、左右の受
信コイル45a、45bの中心を結ぶ線分の垂直二等分
線C上に標識体30が存在することを意味する。
<Detection of Direction of Marker> As shown in FIG. 7A, when the detector 40 is moved in a linear direction, the received signals Sa and Sb of the receiving coils 45a and 45b change.
The difference Sab between the two received signals Sa and Sb also changes. The position where both received signals Sa and Sb are exactly the same (signal difference S
At the position where ab becomes 0), the distance from the receiving coil 45a to the marker 30 is the same as the distance from the receiving coil 45b to the marker 30. This state means that the marker 30 exists on the vertical bisector C of the line connecting the centers of the left and right receiving coils 45a and 45b.

【0041】このように、2個の受信コイル45a、4
5bを備えた探知機40では、探知器40を直線方向に
移動させることで、探知機40に対する標識体30の方
向を簡単に知ることができる。つぎに、図7(B) に示す
ように、前記と同じ探知機40を、同じ位置のままで水
平回転させると、グラフ(I)に示す受信信号Sa、S
bおよび信号差Sabが得られる。グラフ(I)において
水平軸は回転角度を表す。
As described above, the two receiving coils 45a, 4a
In the detector 40 provided with 5b, the direction of the marker 30 with respect to the detector 40 can be easily known by moving the detector 40 in a linear direction. Next, as shown in FIG. 7 (B), when the same detector 40 is horizontally rotated at the same position, the received signals Sa and S shown in the graph (I) are obtained.
b and the signal difference Sab are obtained. In the graph (I), the horizontal axis represents the rotation angle.

【0042】一方の受信コイル45aの受信信号Sa
と、他方の受信コイル45bの受信信号Sbとの差が最
も大きくなった状態、言い換えると信号差Sabが最大値
を示す位置では、受信コイル45a、45bの中心同士
を結ぶ線の延長線C上に標識体30が存在することを意
味する。また、このとき、大きいほうの受信信号Saを
示す受信コイル45aの延長方向に標識体30が存在す
る。
The reception signal Sa of one reception coil 45a
In a state where the difference between the received signal Sb of the other receiving coil 45b and the received signal Sb is the largest, in other words, at a position where the signal difference Sab has the maximum value, on the extension line C of the line connecting the centers of the receiving coils 45a and 45b. Means that the marker 30 exists. At this time, the marker 30 is present in the extension direction of the receiving coil 45a indicating the larger received signal Sa.

【0043】なお、前記した一対の受信コイル45a、
45bの受信信号Sa、Sbが同じになった状態(A)
と、一対の受信コイル45a、45bの受信信号Sa、
Sbの差Sabが最大になった状態(B)とは、探知機4
0を丁度90°回転させた状態である。したがって、探
知機40を直線方向に移動させて一対の受信コイル45
a、45bの受信信号Sa、Sbを一致させた位置
〔(A)状態〕で、探知機40を90°回転させれば
〔(B)状態〕、大きな受信信号SaまたはSbを示す
側の受信コイル45aまたは45bの延長方向に標識体
30が存在することが判る。
The above-mentioned pair of receiving coils 45a,
State (A) in which received signals Sa and Sb of 45b are the same.
And the reception signals Sa of the pair of reception coils 45a and 45b,
The state (B) in which the difference Sab of Sb is maximum means that the detector 4
0 is just rotated 90 °. Therefore, the detector 40 is moved in the linear direction, and the pair of receiving coils 45 are moved.
If the detector 40 is rotated by 90 ° at the position ((A) state) where the received signals Sa and Sb of the a and 45b are matched ((B) state), the reception on the side showing the large received signal Sa or Sb will occur. It can be seen that the marker 30 exists in the extension direction of the coil 45a or 45b.

【0044】<標識体の位置決定>前段の作業で、探知
機40に対する標識体30の方向が判明すれば、つぎに
は、探知機40を標識体30に近づく方向に移動させ
る。そのときの受信信号Sa、Sbの変化をグラフ(I
I)に示す。探知機40が標識体30から離れていると
きには、信号差Sabは一定になる。探知機40が標識体
30の下にくると、信号差Sabが小さくなり、探知機4
0が標識体30の真下に配置されると、一対の受信コイ
ル45a、45bの中間に標識体30が存在するので、
受信信号SaとSbは同じになり、信号差Sabは無くな
る。逆に言うと、信号差Sabが0になる位置に探知機4
0を移動させることで、標識体30の直下位置が決定で
きることになる。
<Determination of Position of Marker> When the direction of the marker 30 with respect to the detector 40 is determined in the previous operation, the detector 40 is then moved in a direction approaching the marker 30. The changes in the received signals Sa and Sb at that time are shown in the graph (I
Shown in I). When the detector 40 is separated from the marker 30, the signal difference Sab becomes constant. When the detector 40 comes under the marker 30, the signal difference Sab becomes smaller and the detector 4
If 0 is disposed directly below the marker 30, the marker 30 is located between the pair of receiving coils 45a and 45b,
The received signals Sa and Sb become the same, and the signal difference Sab disappears. Conversely, the detector 4 is located at a position where the signal difference Sab becomes zero.
By moving 0, the position immediately below the marker 30 can be determined.

【0045】一対の受信コイル45a、45bにおける
信号差Sabを容易に得るために、受信コイル45a、4
5bのコイル端子の極性を逆接続しておけば、出力とし
て信号差Sabを直接に得ることができる。 〔標識体の探知:受信コイルが3個の場合〕図8に示す
ように、一つの探知機40に3個の受信コイル45a、
45bおよび45cを配置しておく。
In order to easily obtain the signal difference Sab between the pair of receiving coils 45a and 45b, the receiving coils 45a and 45b
If the polarity of the coil terminal 5b is reversed, the signal difference Sab can be directly obtained as an output. [Detection of marker: Case of Three Receiving Coils] As shown in FIG. 8, one detector 40 has three receiving coils 45a,
45b and 45c are arranged.

【0046】前記した受信コイルが2個の場合と同様に
して、探知機40を直線移動させたり回転させたりし
て、グラフ(I)に示すように、3個の受信コイル45
a、45bおよび45cのうちの何れか2個の受信コイ
ル45a、45bの受信信号Sa、Sbを一致させる。
この状態では、探知機40の中心から2個の受信コイル
45a、45bの中央を結ぶ線の延長線C上に標識体3
0が存在する。
In the same manner as in the case where the number of the receiving coils is two, the detector 40 is linearly moved or rotated, and as shown in the graph (I), the three receiving coils 45 are formed.
The received signals Sa and Sb of any two of the receiving coils 45a and 45b among the signals a, 45b, and 45c are matched.
In this state, the marker 3 is placed on an extension C of a line connecting the centers of the two receiving coils 45a and 45b from the center of the detector 40.
0 exists.

【0047】このとき、残りの1個の受信コイル45c
の受信信号Scから、標識体30の方向も判る。すなわ
ち、受信信号Scが他の受信信号Sa、Sbよりも小さ
ければ、前記延長線C上で受信コイル45cとは反対側
になる方向に標識体30が存在する。受信信号Sa、S
bよりも受信信号Scのほうが大きければ、受信コイル
45cの方向に標識体30が存在する。
At this time, the remaining one receiving coil 45c
, The direction of the marker 30 is also known. That is, if the reception signal Sc is smaller than the other reception signals Sa and Sb, the marker 30 exists in a direction on the extension line C on the opposite side to the reception coil 45c. Received signals Sa, S
If the received signal Sc is larger than b, the marker 30 exists in the direction of the receiving coil 45c.

【0048】標識体30の方向が判れば、前記同様に探
知機40を標識体30の方向に移動させていく。グラフ
(II)に示すように、受信信号SaとSbは常に一致し
ており、受信信号Sa、Sbと受信信号Scとの受信信
号差Sabc は、探知機40が標識体30の位置に近づく
までは一定である。探知機40が標識体30の位置にく
ると、信号差Sabc が小さくなり、探知機40が標識体
30の真下になれば、3個の受信コイルSa〜Scの中
心に標識体30が配置されるので、全ての受信信号Sa
〜Scが一致し、信号差Sabc は0になる。
When the direction of the marker 30 is known, the detector 40 is moved in the direction of the marker 30 as described above. As shown in the graph (II), the received signals Sa and Sb always coincide, and the received signal difference Sabc between the received signals Sa and Sb and the received signal Sc is determined until the detector 40 approaches the position of the marker 30. Is constant. When the detector 40 comes to the position of the marker 30, the signal difference Sabc becomes smaller, and when the detector 40 becomes right below the marker 30, the marker 30 is arranged at the center of the three receiving coils Sa to Sc. Therefore, all the received signals Sa
Sc match, and the signal difference Sabc becomes zero.

【0049】したがって、3個の受信コイル45a〜4
5cを備えた探知機40では、探知機40の直線移動ま
たは回転による標識体30の方向の特定から標識体30
の位置の特定までの作業が容易に行える。 〔平面上での標識体の位置決定〕図9に示すように、O
XZY点で囲まれる矩形平面において、標識体30の位
置を特定する方法を説明する。この場合、探知機40
は、図6に示す1個の受信コイル45を備えた構造のも
ので良い。
Accordingly, the three receiving coils 45a to 45a-4
In the detector 40 provided with the marker 5c, the identification of the direction of the marker 30 by the linear movement or rotation of the detector
The operation up to the specification of the position can be easily performed. [Positioning of marker on plane] As shown in FIG.
A method for specifying the position of the marker 30 on a rectangular plane surrounded by XZY points will be described. In this case, the detector 40
May have a structure having one receiving coil 45 shown in FIG.

【0050】探知機40を何れか一方の対角線OZに沿
って移動させながら、受信信号S1が最大になる位置P
を求める。次ぎに、P点から対角線OZに対して直交す
る方向に探知機40を移動させる。このとき、受信信号
1 が増加する方向に移動させる。受信信号S1 が最大
値を示す位置が、標識体30の真下位置である。上記の
ような探知機40の移動制御や探知作業あるいは受信信
号の処理などは、コンピュータにプログラミングしてお
くことで自動的に処理することができる。 〔2個の探知機を用いる方法〕前記図7に示した一つの
発信コイル42と一対の受信コイル45a、45bとを
備えた探知機40を2個用いて、一つの標識体30の位
置を探知する。
While moving the detector 40 along one of the diagonal lines OZ, the position P at which the received signal S 1 becomes maximum is obtained.
Ask for. Next, the detector 40 is moved from the point P in a direction orthogonal to the diagonal line OZ. At this time, the received signal S 1 is moved in the direction of increasing. The position where the received signal S 1 shows the maximum value is the position directly below the marker 30. The above-described movement control of the detector 40, detection work, processing of received signals, and the like can be automatically performed by programming the computer. [Method of Using Two Detectors] The position of one marker 30 is determined by using two detectors 40 each having one transmitting coil 42 and a pair of receiving coils 45a and 45b shown in FIG. To detect.

【0051】図10に示すように、2個の探知機40
A、40Bが、先導体10の前後に配置されている。そ
れぞれの探知機40A、40Bは水平回転可能に取り付
けられているが、水平方向への直線移動は出来なくても
構わない。各探知機40A、40Bを回転させて、一対
の受信コイル45a、45bの受信信号Sa、Sbが一
致する方向を探知し、そのときの回転角度を求める。
As shown in FIG. 10, two detectors 40
A and 40B are arranged before and after the leading conductor 10. Each of the detectors 40A and 40B is mounted so as to be horizontally rotatable, but may not be able to move linearly in the horizontal direction. By rotating each of the detectors 40A and 40B, a direction in which the reception signals Sa and Sb of the pair of reception coils 45a and 45b match is detected, and the rotation angle at that time is obtained.

【0052】前後の探知機40A、40Bの位置A、B
を結ぶ直線に対して、各探知機40A、40Bにおける
一対の受信コイル45a、45bの中心線がなす角度θ
1 、θ2 が求められる。探知機40の位置A、Bと標識
体30の位置Qとで構成される三角形において、直線A
Bの距離Lは予め求められる。直線ABの距離Lと、角
QAB=θ1 、角QBA=θ2 のデータから三角形AB
Qが特定され、標識体Qの位置が特定されることにな
る。
Positions A and B of front and rear detectors 40A and 40B
With respect to a straight line connecting the center lines of the pair of receiving coils 45a and 45b in the detectors 40A and 40B.
1 and θ 2 are obtained. In the triangle formed by the positions A and B of the detector 40 and the position Q of the marker 30, a straight line A
The distance L of B is obtained in advance. From the distance L of the straight line AB and the data of the angles QAB = θ 1 and QBA = θ 2 , the triangle AB
Q is specified, and the position of the marker Q is specified.

【0053】したがって、上記方法では、2個の探知機
40A、40Bを、その位置は固定したまま回転させる
だけで標識体30の位置が特定でき、標識体30の位置
の特定が迅速かつ容易に行える。 〔先導体の姿勢探知〕図11に示す実施形態は、埋設経
路Tに対する先導体10の姿勢の傾き、あるいは、埋設
経路Tの方向と先導体10の推進方向とのずれを探知す
る。
Therefore, in the above method, the position of the marker 30 can be specified simply by rotating the two detectors 40A and 40B while keeping their positions fixed, and the position of the marker 30 can be specified quickly and easily. I can do it. [Detection of Post Conductor Posture] The embodiment shown in FIG. 11 detects the inclination of the posture of the front conductor 10 with respect to the buried path T, or the deviation between the direction of the buried path T and the propulsion direction of the front conductor 10.

【0054】埋設経路Tに配置された2個所の標識体3
0、30の位置を、前記した何れかの探知方法で探知す
る。先導体10の前後2個所に配置された探知機40、
40で前後の標識体30、30をそれぞれ探知してもよ
いし、2個所の探知機40、40を協動させて前方の標
識体30の位置を探知したあと、再び2個所の探知機4
0、40を使って後方の標識体30の位置を探知するこ
ともできる。
Two markers 3 arranged on the buried path T
The positions of 0 and 30 are detected by any of the detection methods described above. Detectors 40 arranged at two places before and after the tip conductor 10,
The front and rear markers 30 and 30 may be detected at 40, respectively, or the two detectors 40 and 40 may cooperate to detect the position of the front marker 30 and then return to the two detectors 4 again.
Using 0 and 40, the position of the rear marker 30 can also be detected.

【0055】前後の標識体30、30を結ぶ直線に対す
る、先導体10の軸心方向のずれが、先導体10の姿勢
の傾きを表す。標識体30、30を結ぶ直線の延長方向
が先導体10が推進されるべき方向であり、先導体10
の軸心方向が実際に推進される方向であり、両者のずれ
が求められる。先導体10の推進方向が埋設経路Tに出
来るだけ近づくように、先導体10に備えた変向ジャッ
キ等を作動させて推進方向を修正すれば、埋設経路Tに
対する先導体10の推進方向のずれを解消することがで
きる。 〔標識体の埋設方法〕図12に示す実施形態は、標識体
30の埋設作業を示す。
The displacement of the leading conductor 10 in the axial direction with respect to the straight line connecting the front and rear markers 30 indicates the inclination of the posture of the leading conductor 10. The direction in which the straight line extending between the markers 30 is extended is the direction in which the leading conductor 10 should be propelled.
Is the direction in which the vehicle is actually propelled, and a deviation between the two is required. If the propulsion direction is corrected by operating a deflection jack or the like provided on the front conductor 10 so that the propulsion direction of the front conductor 10 approaches the buried path T as much as possible, the displacement of the propulsion direction of the front conductor 10 with respect to the buried path T can be improved. Can be eliminated. [Embedding Method of Marker] The embodiment shown in FIG.

【0056】図12(A) に示すように、地盤Eに鉛直方
向の穴Hを掘る。穴Hの底に、杭状の標識体30を打ち
込む。図12(B) に示すように、穴Hに土を埋め戻せ
ば、地盤Eの一定深さの位置に標識体30を埋設するこ
とができる。図13に示す実施形態は、上記実施形態と
異なる方法である。図13(A) に示すように、地盤E
に、合成樹脂製のパイプ34を打ち込む。標識体30を
ワイヤ36で吊り下げてパイプ34の中に挿入し、パイ
プ34の底に降ろす。
As shown in FIG. 12A, a vertical hole H is dug in the ground E. A pile-shaped marker 30 is driven into the bottom of the hole H. As shown in FIG. 12B, if the soil is buried in the hole H, the marker 30 can be buried at a position at a certain depth in the ground E. The embodiment shown in FIG. 13 is a method different from the above embodiment. As shown in FIG.
Then, a synthetic resin pipe 34 is driven. The marker 30 is suspended by a wire 36 and inserted into the pipe 34, and lowered to the bottom of the pipe 34.

【0057】図13(B) に示すように、パイプ34の上
端に蓋38を取り付ける。標識体30を吊り下げたワイ
ヤ36を蓋38に止めておく。これによって、後日、蓋
38を外して標識体30を回収することが可能になる。
なお、前記した図13(A) の状態で、パイプ34の内部
に土を埋め戻すこともできる。地盤Eに打ち込む前のパ
イプ34内に標識体30を固定しておき、パイプ34の
打ち込みと同時に標識体30の埋設を行うこともでき
る。
As shown in FIG. 13B, a lid 38 is attached to the upper end of the pipe 34. The wire 36 hanging the marker 30 is fixed to the lid 38. This makes it possible to remove the lid 38 and collect the marker 30 at a later date.
In the state shown in FIG. 13A, the soil can be buried inside the pipe 34. The marker 30 may be fixed in the pipe 34 before being driven into the ground E, and the marker 30 may be buried at the same time as the driving of the pipe 34.

【0058】[0058]

【発明の効果】本発明にかかる推進工法および測量装置
によれば、予め埋設予定経路に沿って地盤内に埋設され
た標識体を、先導体に備えた探知機で探知することで、
埋設予定経路に対する先導体の位置や姿勢のずれを知
り、その結果にもとづいて先導体の推進方向を制御する
ので、埋設管の施工精度が格段に向上する。特に、地表
の交通や構築物の障害になることもなく、推進作業の邪
魔にもならずに、能率的な作業が行える。
According to the propulsion method and surveying device according to the present invention, a marker provided in the conductor in advance is used to detect a marker buried in the ground along a planned buried route,
Since the deviation of the position and attitude of the leading conductor from the buried route is known and the propulsion direction of the leading conductor is controlled based on the result, the construction accuracy of the buried pipe is remarkably improved. In particular, efficient work can be performed without obstructing ground surface traffic and structures, and without hindering propulsion work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を表し、推進工法の施工状態
を示す斜視断面図
FIG. 1 is a perspective sectional view showing an embodiment of the present invention and showing a construction state of a propulsion method.

【図2】施工状態の垂直断面図FIG. 2 is a vertical sectional view of a construction state.

【図3】探知機の取付構造を表す先導体の軸と直交する
方向の断面図
FIG. 3 is a cross-sectional view in a direction orthogonal to an axis of a tip conductor representing a mounting structure of the detector.

【図4】探知機の平面図FIG. 4 is a plan view of the detector.

【図5】探知機の内部構造を表す概略構造図FIG. 5 is a schematic structural diagram showing an internal structure of the detector.

【図6】探知機の探知動作を示す説明図FIG. 6 is an explanatory diagram showing a detection operation of the detector.

【図7】探知動作の別の実施形態を表す説明図FIG. 7 is an explanatory diagram showing another embodiment of the detection operation.

【図8】探知動作の別の実施形態を表す説明図FIG. 8 is an explanatory diagram showing another embodiment of the detection operation.

【図9】探知動作の別の実施形態を表す説明図FIG. 9 is an explanatory diagram showing another embodiment of the detection operation.

【図10】探知動作の別の実施形態を表す説明図FIG. 10 is an explanatory diagram showing another embodiment of the detection operation.

【図11】探知動作の別の実施形態を表す説明図FIG. 11 is an explanatory diagram showing another embodiment of the detection operation.

【図12】標識体の埋設工程を表す断面図FIG. 12 is a cross-sectional view illustrating a process of embedding a marker.

【図13】標識体の埋設工程の別の実施形態を表す断面
FIG. 13 is a cross-sectional view illustrating another embodiment of the embedding step of the marker.

【符号の説明】[Explanation of symbols]

10 先導体 20 埋設管 30 標識体 40、40A、40B 探知機 42 発信コイル 45、45a〜45c 受信コイル E 地盤 DESCRIPTION OF SYMBOLS 10 Lead conductor 20 Buried pipe 30 Marker 40, 40A, 40B Detector 42 Transmitting coil 45, 45a-45c Receiving coil E Ground

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】先導体および先導体の後方に連結された埋
設管を地盤内に推進させて埋設管を地盤内に埋設してい
く推進工法であって、 前記埋設管の埋設位置より上方の地盤内で、埋設管の埋
設予定経路に沿って間隔をあけて複数の標識体を埋設し
ておく工程と、 前記先導体に備えた探知機で前記標識体を探知し、探知
情報をもとに先導体の位置情報を得る工程と、 前記位置情報をもとに先導体の推進方向を制御する工程
とを含む推進工法。
1. A propulsion method in which a buried pipe is buried in the ground by propelling a buried pipe connected to the back of the leading conductor and the back conductor into the ground, the buried pipe being located above a buried position of the buried pipe. Burying a plurality of markers in the ground at intervals along a route to be buried in the buried pipe; detecting the markers with a detector provided on the leading conductor, based on the detection information. And a step of controlling the propulsion direction of the leading conductor based on the positional information.
【請求項2】前記標識体を埋設する工程が、前記標識体
として、1次磁界が作用したときに2次磁界を発生する
磁気反応体を有する標識体を用い、 前記位置情報を得る工程が、前記探知機から1次磁界を
発生させ、この1次磁界に反応して前記磁気反応体が発
生する2次磁界を探知機で受信して前記標識体を探知す
る請求項1に記載の推進工法。
2. The method according to claim 1, wherein the step of embedding the marker uses a marker having a magnetic reactant that generates a secondary magnetic field when a primary magnetic field acts thereon as the marker, and the step of obtaining the position information includes: 2. The propulsion according to claim 1, wherein a primary magnetic field is generated from the detector, and a secondary magnetic field generated by the magnetic reactant in response to the primary magnetic field is received by the detector to detect the marker. Construction method.
【請求項3】前記位置情報を得る工程が、探知機を移動
または姿勢変更したときに、受信される2次磁界の強度
分布から前記標識体を探知する請求項1または2に記載
の推進工法。
3. The propulsion method according to claim 1, wherein the step of obtaining the position information detects the marker from an intensity distribution of a received secondary magnetic field when the detector is moved or its posture is changed. .
【請求項4】前記位置情報を得る工程が、探知機で受信
された2次磁界の強度分布をもとに標識体の真下となる
位置に探知機を移動させて標識体を探知する請求項1〜
3の何れかに記載の推進工法。
4. The method according to claim 1, wherein the step of obtaining the position information includes detecting the marker by moving the detector to a position directly below the marker based on the intensity distribution of the secondary magnetic field received by the detector. 1 to
3. The propulsion method according to any one of 3.
【請求項5】前記位置情報を得る工程が、複数の標識体
の探知情報から先導体の姿勢情報を得る請求項1〜4の
何れかに記載の推進工法。
5. The propulsion method according to claim 1, wherein the step of obtaining the position information obtains posture information of the leading conductor from detection information of a plurality of markers.
【請求項6】前記位置情報を得る工程が、先導体の複数
位置から探知機で一つの標識体の方向を探知する請求項
1〜5の何れかに記載の推進工法。
6. The propulsion method according to claim 1, wherein the step of obtaining the position information detects a direction of one marker by a detector from a plurality of positions of the leading conductor.
【請求項7】請求項1〜6の何れかに記載の推進工法に
おいて、前記位置情報を得る工程で用い、前記先導体内
に装備される測量装置であって、 前記標識体を探知する探知機と、 前記探知機を平面方向に移動させる平面移動手段と、 前記平面移動手段の傾きを調整して水平状態に維持する
水平維持手段と、を備える測量装置。
7. The surveying method according to claim 1, wherein the surveying device is used in the step of obtaining the position information and is installed in the tip conductor, and detects the marker. A surveying apparatus comprising: a plane moving unit that moves the detector in a plane direction; and a level maintaining unit that adjusts a tilt of the plane moving unit to maintain a horizontal state.
【請求項8】前記探知機が、交番磁界である1次磁界を
発生させる発信器と、この1次磁界に反応して前記磁気
反応体が発生する2次磁界を受信する受信器とを備える
請求項7に記載の測量装置。
8. The detector comprises a transmitter for generating a primary magnetic field, which is an alternating magnetic field, and a receiver for receiving a secondary magnetic field generated by the magnetic reactant in response to the primary magnetic field. The surveying device according to claim 7.
【請求項9】前記探知機が、前記受信器を複数備える請
求項8に記載の測量装置。
9. The surveying device according to claim 8, wherein said detector comprises a plurality of said receivers.
JP7269398A 1998-03-20 1998-03-20 Pipe jacking method and surveying instrument Pending JPH11270280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7269398A JPH11270280A (en) 1998-03-20 1998-03-20 Pipe jacking method and surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7269398A JPH11270280A (en) 1998-03-20 1998-03-20 Pipe jacking method and surveying instrument

Publications (1)

Publication Number Publication Date
JPH11270280A true JPH11270280A (en) 1999-10-05

Family

ID=13496713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7269398A Pending JPH11270280A (en) 1998-03-20 1998-03-20 Pipe jacking method and surveying instrument

Country Status (1)

Country Link
JP (1) JPH11270280A (en)

Similar Documents

Publication Publication Date Title
EP1929125B1 (en) System for tracking and maintaining an on-grade horizontal borehole
US6640907B2 (en) Mapping tool for tracking and/or guiding an underground boring tool
US6161630A (en) Apparatus and method for controlling an underground boring tool
US6737867B2 (en) Locating arrangement and method using boring tool and cable locating signals
JPH11508004A (en) Positioning of independent underground boring machines
EP0428180B1 (en) Control system for guiding boring tools and a sensing system for locating the same
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JPH11270280A (en) Pipe jacking method and surveying instrument
JP3069034B2 (en) Surveying device and surveying method in propulsion method
JPS6117977B2 (en)
JP2003121151A (en) Method and apparatus for prospecting position in excavation body
JP2010078585A (en) Method for finding the location of buried magnetic object
JP2757058B2 (en) Underground excavator relative position detector
JP2002339407A (en) Civil engineering work system
JP2006010628A (en) Detector for detecting object
JPH11159285A (en) Propulsion device with radar and excavation route survey method
JP2002090141A (en) Method and device for measuring leader position
JPH0235116B2 (en)
JPS6259732A (en) Control system for pipe burying machine
JPH09287944A (en) Ground-height-data collecting device and underground excavating system for burying small-diameter pipe
JPS61278710A (en) Leading tube position searching device of small-diameter tube propulsion machine
JPH03125792A (en) Position detection of front end of excavation in underground excavation process
JPH03257316A (en) Positional displacement detecting apparatus
JP2002054389A (en) Non-cut and cover pipe jacking method, boring pipe front end posture position measuring method and its device
JPH09287949A (en) Device and method for automatic survey in jacking method