JPH11269617A - Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac - Google Patents

Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac

Info

Publication number
JPH11269617A
JPH11269617A JP10089586A JP8958698A JPH11269617A JP H11269617 A JPH11269617 A JP H11269617A JP 10089586 A JP10089586 A JP 10089586A JP 8958698 A JP8958698 A JP 8958698A JP H11269617 A JPH11269617 A JP H11269617A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
temperature
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10089586A
Other languages
Japanese (ja)
Inventor
Ryuji Hirota
龍二 広田
Hiroshi Morikawa
広 森川
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10089586A priority Critical patent/JPH11269617A/en
Publication of JPH11269617A publication Critical patent/JPH11269617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an Fe-Cr series soft magnetic steel high in the maximum magnetic flux densiy at AC and further small in the temp. dependency of Bm. SOLUTION: This steel is the one having a compsn. contg., by weight, <=0.05% C, <=3.0% Si, <=1.0% Mn, <=0.04% P, <=0.01% S, 5.0 to 18.0% Cr, <=0.05% N, <=4.0% Al and <=0.5% Ti (including the case of no addition), and the balance Fe with inevitable impurities and also satisfying 40<=4.3 (weight % Cr)+15.1 (weight % Al)+19.1 (weight % Si)+9.8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はモーターヨーク、電
磁流量計のコアなどに用いられるFe-Cr系軟磁性鋼に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe--Cr soft magnetic steel used for a motor yoke, a core of an electromagnetic flowmeter, and the like.

【0002】[0002]

【従来の技術】従来より、モーターヨーク、電磁流量計
のコアなどには、SEC(Znめっき鋼板)、SUYP(電磁軟鉄)
などのFe系の軟磁性材料が使用されている。
2. Description of the Related Art Conventionally, SEC (Zn plated steel sheet), SUYP (Electromagnetic soft iron) have been used for motor yoke and electromagnetic flowmeter core.
Fe-based soft magnetic materials such as these are used.

【0003】[0003]

【発明が解決しようとする課題】近年、モーターには高
速回転の要求が強くなっている。モーターの高速回転の
ためには駆動周波数を高くする必要があり、高周波数領
域で高いモータートルクを得るためにはヨーク材の磁束
密度が高いことが必須である。
In recent years, there has been an increasing demand for high-speed rotation of motors. In order to rotate the motor at high speed, it is necessary to increase the driving frequency. In order to obtain a high motor torque in a high frequency region, it is essential that the yoke material has a high magnetic flux density.

【0004】一方、電磁流量計とは、速度vで流れる流
体の垂直方向に磁場Bを発生させ、ファラデーの電磁誘
導の法則より発生する出力電圧を測定し、流体の流量を
測定する装置である。流量計のコアは磁場Bを強くする
ことにより出力電圧を増加させ、流量の測定を容易にす
る作用がある。一般的に磁場Bを発生させる電流は、50
Hz,あるいは60Hzの交流である。
On the other hand, an electromagnetic flowmeter is a device that generates a magnetic field B in the vertical direction of a fluid flowing at a speed v, measures an output voltage generated according to Faraday's law of electromagnetic induction, and measures the flow rate of the fluid. . The core of the flow meter has the effect of increasing the output voltage by increasing the magnetic field B and facilitating flow rate measurement. Generally, the current for generating the magnetic field B is 50
Hz or 60Hz alternating current.

【0005】近年、電磁流量計には、流量測定の精度向
上の要求が強くなっている。流量測定の精度向上のため
には、出力電力を測定する際に発生するノイズを防止す
るために、磁場を発生させる電流の周波数を増加させる
必要がある。
In recent years, there has been a strong demand for electromagnetic flowmeters to improve the accuracy of flow measurement. In order to improve the accuracy of the flow rate measurement, it is necessary to increase the frequency of the current for generating the magnetic field in order to prevent noise generated when measuring the output power.

【0006】しかし、SEC,SUYPなどのFe系の軟磁性材料
の磁束密度は、印加磁場の周波数の増加にともない急激
に減少する。そのため、モーターヨークにFe系の軟磁性
材料を使用した場合には、駆動周波数が高くなるとモー
タートルクが著しく低下してしまう。また、電磁流量計
のコアにFe系の軟磁性材料を使用した場合、磁場を発生
させる電流の周波数を増加させると、磁場Bの急激な減
少にともない出力電圧が減少し、流量の測定そのものが
困難となってしまう。
However, the magnetic flux density of an Fe-based soft magnetic material such as SEC and SUYP rapidly decreases as the frequency of the applied magnetic field increases. Therefore, when an Fe-based soft magnetic material is used for the motor yoke, the motor torque is significantly reduced when the driving frequency is increased. In addition, when an Fe-based soft magnetic material is used for the core of the electromagnetic flowmeter, when the frequency of the current for generating the magnetic field is increased, the output voltage decreases with a sharp decrease in the magnetic field B, and the measurement of the flow rate itself becomes impossible. It will be difficult.

【0007】さらに、SEC,SUYPなどのFe系の軟磁性材料
の高周波数領域での磁束密度は温度依存性が大きく、モ
ーターヨーク、あるいは電磁流量計のコアに使用した場
合には次のような問題も発生する。
Further, the magnetic flux density in the high frequency region of a Fe-based soft magnetic material such as SEC and SUYP has a large temperature dependency, and when used in a motor yoke or a core of an electromagnetic flowmeter, the following occurs. Problems also arise.

【0008】モーターが回転する場合には、軸受などの
摩擦によりモーターの温度が上昇する。回転速度が大き
いほど、すなわち駆動周波数が高いほど摩擦熱が大きく
なり、温度は約100℃近くにまで上昇する場合もある。
モータートルクはヨークの磁束密度に依存するため、温
度による磁束密度の変動がモータートルクのばらつきを
発生させてしまう。
[0008] When the motor rotates, the temperature of the motor increases due to friction of bearings and the like. The higher the rotation speed, that is, the higher the driving frequency, the higher the frictional heat, and the temperature may rise to about 100 ° C.
Since the motor torque depends on the magnetic flux density of the yoke, fluctuations in the magnetic flux density due to temperature cause variations in the motor torque.

【0009】一方、電磁流量計は温度-10℃〜160℃の範
囲で使用されるが、コアの磁束密度が温度により変動す
ると出力電圧も変動し、流量の測定値がばらついてしま
う。
On the other hand, the electromagnetic flow meter is used in a temperature range of -10 ° C. to 160 ° C. However, if the magnetic flux density of the core fluctuates with the temperature, the output voltage also fluctuates, and the measured value of the flow rate varies.

【0010】本発明は、上述の問題を解決するためにな
されたものであり、高い周波数領域での磁束密度がFe系
の軟磁性材料よりも高く、かつ磁束密度の温度依存性が
小さいFe-Cr系軟磁性鋼を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and has a magnetic flux density in a high frequency region higher than that of an Fe-based soft magnetic material, and has a small temperature dependency of the magnetic flux density. Cr-based soft magnetic steel is provided.

【0011】[0011]

【課題を解決するための手段】重量%でC:0.05%
以下、Si:3.0%以下、Mn:1.0%以下、P:
0.04%以下、S:0.01%以下、Cr:5.0%
〜18.0%、N:0.05%以下、Al:4.0%以
下、Ti:0.5%以下(無添加含む)を含有し、残部
をFeおよび不可避的不純物からなり、かつ次式 40≦4.3(重量%Cr)+15.1(重量%Al)+19.1(重量%Si)+9.
8 を満足することを特徴とするFe-Cr系軟磁性鋼により達
成される。
Means for Solving the Problems C: 0.05% by weight%
Hereinafter, Si: 3.0% or less, Mn: 1.0% or less, P:
0.04% or less, S: 0.01% or less, Cr: 5.0%
-18.0%, N: 0.05% or less, Al: 4.0% or less, Ti: 0.5% or less (including no addition), with the balance being Fe and unavoidable impurities. Formula 40 ≦ 4.3 (wt% Cr) +15.1 (wt% Al) +19.1 (wt% Si) +9.
8 is achieved by Fe-Cr soft magnetic steel characterized by satisfying the following conditions:

【0012】[0012]

【発明の実施の形態】本発明らは、課題解決に向けて鋭
意検討した結果、各成分量、電気抵抗率を調整すること
により、高い周波数領域での磁束密度がSEC,SUYPなどの
軟磁性材料よりも高く、かつ磁束密度の温度依存性が小
さい素材が得られることを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have conducted intensive studies to solve the problems, and as a result, by adjusting the amount of each component and the electric resistivity, the magnetic flux density in a high frequency region can be controlled by soft magnetic materials such as SEC and SUYP. It has been found that a material that is higher than the material and has a small temperature dependence of the magnetic flux density can be obtained.

【0013】以下に本発明の要旨を説明する。本発明者
らは、Fe-Cr系軟磁性鋼において、交流での最大磁束密
度Bmは電気抵抗率ρに大きく影響を受けることを見出
した。図1に板厚1.0mmt,周波数500Hz,磁場10エルステット゛
における最大磁束密度Bmと温度25℃における電気抵抗
率の関係を示す。なお、ここで板厚1.0mmt,周波数500H
zとした理由は、本発明の主たる用途であるモーターヨ
ーク、電磁流量計のコア材は、板厚0.5mm〜1.0mmtの素
材を加工する場合が多く、モーターの駆動周波数、ある
いは電磁流量計の励磁コイルに流す電流の周波数は500H
z以上であることが多いことによる。また、磁場10エルステッ
ト゛としたのは、コア材がない場合に励磁コイルにより発
生する磁場は10エルステット゛以上となる場合が多いからであ
る。
The gist of the present invention will be described below. The present inventors have found that, in Fe—Cr soft magnetic steel, the maximum magnetic flux density Bm at alternating current is greatly affected by the electric resistivity ρ. FIG. 1 shows the relationship between the maximum magnetic flux density Bm and the electrical resistivity at a temperature of 25 ° C. at a plate thickness of 1.0 mmt, a frequency of 500 Hz, and a magnetic field of 10 ersted. Here, the plate thickness is 1.0mmt, frequency 500H
The reason for setting z is that the core material of the motor yoke and the electromagnetic flow meter, which are the main applications of the present invention, often processes a material with a plate thickness of 0.5 mm to 1.0 mmt, the driving frequency of the motor, or the electromagnetic flow meter. The frequency of the current flowing through the exciting coil is 500H
Because it is often z or more. Further, the reason why the magnetic field is set to 10 Elsted is that the magnetic field generated by the exciting coil when there is no core material is often 10 Elsted or more.

【0014】図1より最大磁束密度Bmは電気抵抗率ρ
の増加にともない急激に増加することがわかる。この挙
動は、素材の電気抵抗率ρが高いほど素材が交流で磁化
する際に発生する渦電流が減少することに起因する。す
なわち、渦電流は磁化と逆方向の磁場を発生させるた
め、素材の電気抵抗率ρが高いほど渦電流が小さくな
り、磁束密度が大きくなるのである。
FIG. 1 shows that the maximum magnetic flux density Bm is the electric resistivity ρ
It can be seen that it increases sharply with the increase in. This behavior is due to the fact that the higher the electrical resistivity ρ of the material, the smaller the eddy current generated when the material is magnetized by alternating current. That is, since the eddy current generates a magnetic field in a direction opposite to the magnetization, the higher the electrical resistivity ρ of the material, the smaller the eddy current and the larger the magnetic flux density.

【0015】一方、図2に本発明鋼である11Cr-0.6Si鋼
と従来鋼であるSUYPの最大磁束密度Bmの温度依存性の
比較を示す。従来鋼であるSUYPの最大磁束密度Bmは温
度の増加にともない増加し、温度25℃におけるBmと温
度150℃におけるBmとの差は1470Gと大きい。それに対
し、本発明鋼である11Cr-0.6Si鋼の最大磁束密度Bm
は、SUYPと同様に温度の増加にともない増加する挙動を
示すが、温度に対するBmの増加率はSUYPに比べ小さ
く、温度25℃におけるBmと温度150℃におけるBmと
の差は380Gと小さい。
On the other hand, FIG. 2 shows a comparison of the temperature dependence of the maximum magnetic flux density Bm of the steel of the present invention, 11Cr-0.6Si steel, and that of the conventional steel, SUYP. The maximum magnetic flux density Bm of SUYP, which is a conventional steel, increases with an increase in temperature, and the difference between Bm at a temperature of 25 ° C and Bm at a temperature of 150 ° C is as large as 1470G. In contrast, the maximum magnetic flux density Bm of the 11Cr-0.6Si steel of the present invention is
Shows the behavior of increasing with temperature as in SUYP, but the increase rate of Bm with respect to temperature is smaller than that of SUYP, and the difference between Bm at 25 ° C and Bm at 150 ° C is as small as 380G.

【0016】このような温度の増加にともなう最大磁束
密度Bmの増加は、電気抵抗率ρの温度依存性に起因す
る。一般的に知られるように、電気抵抗率ρは温度の増
加にともない増加する。そのため温度の増加にともない
最大磁束密度Bmも増加するのである。しかし、図1か
らわかるように電気抵抗率ρに対する最大磁束密度Bm
の増加率は、電気抵抗率ρが増加するにともない小さく
なる。したがって、温度25℃での電気抵抗率ρが小さい
SUYPでは、電気抵抗率ρの増加に対する最大磁束密度B
mの増加率が大きく、最大磁束密度Bmの温度に対する
変化も大きくなるのである。それに対して、11Cr-0.6Si
鋼では温度25℃での電気抵抗率ρがもともと大きいた
め、電気抵抗率ρの増加に対する最大磁束密度Bmの増
加率が小さく、温度が増加しても最大磁束密度Bmの変
化はSUYPに比べわずかとなる。
Such an increase in the maximum magnetic flux density Bm with an increase in temperature is due to the temperature dependence of the electric resistivity ρ. As is generally known, the electrical resistivity ρ increases with an increase in temperature. Therefore, as the temperature increases, the maximum magnetic flux density Bm also increases. However, as can be seen from FIG. 1, the maximum magnetic flux density Bm with respect to the electrical resistivity ρ
Decreases as the electrical resistivity ρ increases. Therefore, the electrical resistivity ρ at a temperature of 25 ° C. is small.
In SUYP, the maximum magnetic flux density B for an increase in the electrical resistivity ρ
The rate of increase of m is large, and the change of the maximum magnetic flux density Bm with respect to temperature is also large. On the other hand, 11Cr-0.6Si
Since the electrical resistivity ρ at a temperature of 25 ° C. is originally large in steel, the rate of increase of the maximum magnetic flux density Bm with respect to the increase of the electrical resistivity ρ is small. Becomes

【0017】図3に温度150℃での最大磁束密度Bmと
温度25℃での最大磁束密度Bmの差△Bmに及ぼす電気
抵抗率ρの影響を示す。△Bmは電気抵抗率ρの増加に
ともない急激に減少する。電気抵抗率ρが40μΩ・cm以
上で△Bmは500G以下となることがわかる。
FIG. 3 shows the effect of electrical resistivity ρ on the difference ΔBm between the maximum magnetic flux density Bm at a temperature of 150 ° C. and the maximum magnetic flux density Bm at a temperature of 25 ° C. ΔBm rapidly decreases with an increase in the electric resistivity ρ. It can be seen that ΔBm is 500 G or less when the electric resistivity ρ is 40 μΩ · cm or more.

【0018】また、本発明者らは、Fe-Cr系合金の電気
抵抗率に及ぼす成分元素の影響を調査した。その結果、
Fe-Cr系合金の電気抵抗率ρは以下の式で表されること
がわかった。 ρ=4.3(重量%Cr)+15.1(重量%Al)+19.1(重量%Si)+9.
8 したがって、電気抵抗率ρ:40μΩ・cm以上を得るため
には、次式 40≦4.3(重量%Cr)+15.1(重量%Al)+19.1(重量%Si)+9.
8 を満足すればよいことがわかる。
The present inventors have also investigated the effects of component elements on the electrical resistivity of Fe—Cr alloys. as a result,
It has been found that the electrical resistivity ρ of the Fe—Cr alloy is expressed by the following equation. ρ = 4.3 (wt% Cr) +15.1 (wt% Al) +19.1 (wt% Si) +9.
8 Therefore, in order to obtain an electric resistivity ρ: 40 μΩ · cm or more, the following equation is used: 40 ≦ 4.3 (wt% Cr) +15.1 (wt% Al) +19.1 (wt% Si) +9.
It turns out that it is sufficient to satisfy 8.

【0019】以下に本発明の成分限定理由を述べる。The reasons for limiting the components of the present invention are described below.

【0020】C:0.05重量%以下 Cは磁気特性に有害なマルテンサイト相を生成し磁気特
性を劣化させる。したがって、C量は0.05重量%以
下に限定した。
C: 0.05% by weight or less C forms a martensite phase harmful to magnetic properties and deteriorates magnetic properties. Therefore, the amount of C was limited to 0.05% by weight or less.

【0021】Si:3.0重量%以下 Siは電気抵抗率ρを増加させ、交流での最大磁束密度
Bmを増加させるのに有効に作用する元素である。しか
し、硬度を著しく増加させる元素であり、過剰な添加
は、打ち抜き加工を困難にするとともに、最大磁束密度
Bmを減少させる。したがって、Si量は3.0重量%
以下に限定した。
Si: 3.0% by weight or less Si is an element that effectively acts to increase the electric resistivity ρ and increase the maximum magnetic flux density Bm in alternating current. However, it is an element that significantly increases hardness, and excessive addition makes punching difficult and reduces the maximum magnetic flux density Bm. Therefore, the amount of Si is 3.0% by weight.
Limited to the following.

【0022】Cr:5.0〜18.0% CrはSiと同様、電気抵抗率ρを増加させ交流での最
大磁束密度Bmを増加させる効果があり、5.0重量%
以上添加する必要がある。しかし、最大磁束密度Bmを
低下させる。したがって、上限を1.0重量%とした。
Cr: 5.0 to 18.0% Cr, like Si, has the effect of increasing the electrical resistivity ρ and increasing the maximum magnetic flux density Bm in alternating current, 5.0% by weight.
It is necessary to add above. However, it decreases the maximum magnetic flux density Bm. Therefore, the upper limit was set to 1.0% by weight.

【0023】Mn:1.0%以下 Mnは製鋼時にスクラップ等から不可避的に混入してく
る元素であるが、磁気特性を劣化させるため上限を1.
0重量%とした。
Mn: 1.0% or less Mn is an element inevitably mixed from scrap or the like at the time of steel making.
0% by weight.

【0024】P:0.04%以下 磁気特性を劣化させる元素であることから、0.04重
量%以下とした。 S:0.01%以下 不純物元素であるSは磁気特性を著しく劣化させる元素
であるため、低く抑える必要がある。したがって、0.
01重量%以下に限定した。
P: 0.04% or less P is an element that deteriorates the magnetic properties, so that the content is set to 0.04% by weight or less. S: 0.01% or less S, which is an impurity element, is an element that significantly degrades magnetic properties, and thus needs to be kept low. Therefore, 0.
It was limited to 01% by weight or less.

【0025】N:0.05%以下 Nは、Cと同様、磁気特性を劣化させる。したがって、
N量は0.05重量%以下に限定した。
N: 0.05% or less N, like C, degrades magnetic properties. Therefore,
The amount of N was limited to 0.05% by weight or less.

【0026】Al:4.0%以下 Si,Crと同様に電気抵抗率ρを大きく増加させ交流
での最大磁束密度Bmを増加させる効果を有する。しか
し、過剰な添加は最大磁束密度Bmを逆に減少させる。
したがって、Alは上限を4.0重量%にした。
Al: 4.0% or less Like Si and Cr, Al has the effect of greatly increasing the electrical resistivity ρ and increasing the maximum magnetic flux density Bm in alternating current. However, excessive addition decreases the maximum magnetic flux density Bm.
Therefore, the upper limit of Al was set to 4.0% by weight.

【0027】Ti:0.5%以下(無添加を含む) Tiは、Crより安定に炭化物を形成するため、磁気特
性に有害なマルテンサイト相の生成を防止する。しか
し、過剰に添加すると磁束密度が低下するため上限を
0.5重量%とした。
Ti: 0.5% or less (including no addition) Ti forms a carbide more stably than Cr, and thus prevents the formation of a martensite phase harmful to magnetic properties. However, an excessive addition lowers the magnetic flux density, so the upper limit was made 0.5% by weight.

【実施例】【Example】

【0028】以下に実施例を挙げて本発明の効果を具体
的に説明する。
The effects of the present invention will be specifically described below with reference to examples.

【0029】表1に供試鋼の化学成分値(重量%)および
25℃における電気抵抗率ρを示す。これらのうちA1〜
A6鋼は本発明で規定する成分組成および電気抵抗率ρ
を有する鋼であり、B1,2鋼は比較鋼であり、B3鋼
はSUYPである。いずれの供試材も30kg高周波溶解炉で溶
解し、その後、鍛造、熱間圧延、冷間圧延、仕上げ焼
鈍、および酸洗を施し、厚さ1.0mmの鋼板を得た。
Table 1 shows the chemical component values (% by weight) of the test steels and
The electric resistivity ρ at 25 ° C. is shown. Of these, A1
A6 steel has a component composition and an electric resistivity ρ specified in the present invention.
, B1 and B2 steels are comparative steels, and B3 steel is SUYP. Each test material was melted in a 30 kg high-frequency melting furnace, and then subjected to forging, hot rolling, cold rolling, finish annealing, and pickling to obtain a steel sheet having a thickness of 1.0 mm.

【0030】各供試材より外径45mm内径33mmの磁気測定
用リング試験片を切り出し、真空雰囲気下で温度850
℃、処理時間0minの磁気焼鈍を施した。磁気焼鈍後の各
試験片について、まず温度25℃で、周波数500Hz、印加
磁場10エルステット゛の条件にて最大磁束密度Bmを測定し
た。ついで恒温槽によって材温を150℃にまで増加させ
て、温度25℃と同一の条件下で最大磁束密度Bmを測定
した。
From each test material, a ring test piece for magnetic measurement having an outer diameter of 45 mm and an inner diameter of 33 mm was cut out and subjected to a temperature of 850 in a vacuum atmosphere.
Magnetic annealing was performed at 0 ° C. for a processing time of 0 min. First, the maximum magnetic flux density Bm of each test piece after the magnetic annealing was measured at a temperature of 25 ° C., a frequency of 500 Hz, and an applied magnetic field of 10 ersted. Then, the material temperature was increased to 150 ° C. by a thermostat, and the maximum magnetic flux density Bm was measured under the same conditions as the temperature of 25 ° C.

【0031】表2に試験結果を示す。本発明鋼であるA
1〜A6鋼はいずれも、温度25℃および温度150℃にお
ける最大磁束密度Bmが大きく、温度150℃での最大磁
束密度Bmと温度25℃での最大磁束密度Bmの差△Bm
も小さい。一方、比較鋼であるB1鋼は電気抵抗率ρが
小さいため、発明鋼に比べ最大磁束密度Bmが小さく、
△Bmも大きい。B2鋼は△Bmは小さいが、Cr量が多
いため、発明鋼に比べ最大磁束密度Bmが小さい。ま
た、B3鋼(SUYP)は、発明鋼に比べ最大磁束密度Bmが
著しく小さく、△Bmも1470Gと大きい。
Table 2 shows the test results. A which is the steel of the present invention
All 1-A6 steels have a large maximum magnetic flux density Bm at a temperature of 25 ° C. and a temperature of 150 ° C., and the difference ΔBm between the maximum magnetic flux density Bm at a temperature of 150 ° C. and the maximum magnetic flux density Bm at a temperature of 25 ° C.
Is also small. On the other hand, B1 steel, which is a comparative steel, has a small electric resistivity ρ, so that the maximum magnetic flux density Bm is smaller than the inventive steel,
ΔBm is also large. B2 steel has a small ΔBm, but has a large amount of Cr, so that the maximum magnetic flux density Bm is smaller than that of the invention steel. Further, B3 steel (SUYP) has a remarkably low maximum magnetic flux density Bm and ΔBm as large as 1470 G as compared with the invention steel.

【0032】[0032]

【発明の効果】以上、説明したように、本発明により交
流での最大磁束密度Bmが高く、最大磁束密度Bmの温
度依存性が小さいFe-Cr系軟磁性鋼を得ることができ
る。
As described above, according to the present invention, it is possible to obtain Fe-Cr soft magnetic steel having a high maximum magnetic flux density Bm in alternating current and a small temperature dependency of the maximum magnetic flux density Bm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板厚1.0t、周波数500Hz、印加磁場10エルステット゛、
温度25℃における最大磁束密度Bmと電気抵抗率ρの関
係を示す図である。
[Figure 1] Plate thickness 1.0t, frequency 500Hz, applied magnetic field 10 ersted,
It is a figure which shows the relationship between the maximum magnetic flux density Bm at 25 degreeC, and electrical resistivity (rho).

【図2】板厚1.0t、周波数500Hz、印加磁場10エルステット゛に
おける最大磁束密度Bmの温度依存性について、本発明
鋼である11Cr-0.6Si鋼と従来鋼であるSUYPの比較を示す
図である。
FIG. 2 is a diagram showing a comparison between 11Cr-0.6Si steel of the present invention and SUYP of a conventional steel with respect to the temperature dependence of the maximum magnetic flux density Bm at a plate thickness of 1.0 t, a frequency of 500 Hz, and an applied magnetic field of 10 Oersted. .

【図3】温度150℃における最大磁束密度Bmと温度25
℃における最大磁束密度Bmの差ΔBmに及ぼす電気抵
抗率ρの影響をあらわす図である。
FIG. 3 shows a maximum magnetic flux density Bm at a temperature of 150 ° C. and a temperature of 25.
FIG. 3 is a diagram showing the effect of electrical resistivity ρ on the difference ΔBm of the maximum magnetic flux density Bm at ° C.

【表1】 [Table 1]

【表2】 [Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.05%以下、Si:
3.0%以下、Mn:1.0%以下、P:0.04%以
下、S:0.01%以下、Cr:5.0%〜18.0
%、N:0.05%以下、Al:4.0%以下、Ti:
0.5%以下(無添加含む)を含有し、残部をFeおよ
び不可避的不純物からなり、かつ次式 40≦4.3(重量%Cr)+15.1(重量%Al)+19.1(重量%Si)+9.
8 を満足することを特徴とする交流での磁気特性及び温度
特性に優れたFe-Cr系軟磁性鋼。
1. C: 0.05% or less by weight%, Si:
3.0% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.01% or less, Cr: 5.0% to 18.0
%, N: 0.05% or less, Al: 4.0% or less, Ti:
0.5% or less (including no addition), the balance consisting of Fe and unavoidable impurities, and the following formula: 40 ≦ 4.3 (wt% Cr) + 15.1 (wt% Al) + 19.1 (wt% Si) ) +9.
8 Fe-Cr soft magnetic steel excellent in alternating current magnetic characteristics and temperature characteristics characterized by satisfying (8).
JP10089586A 1998-03-19 1998-03-19 Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac Pending JPH11269617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10089586A JPH11269617A (en) 1998-03-19 1998-03-19 Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10089586A JPH11269617A (en) 1998-03-19 1998-03-19 Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac

Publications (1)

Publication Number Publication Date
JPH11269617A true JPH11269617A (en) 1999-10-05

Family

ID=13974899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10089586A Pending JPH11269617A (en) 1998-03-19 1998-03-19 Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac

Country Status (1)

Country Link
JP (1) JPH11269617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283276A1 (en) * 2001-08-07 2003-02-12 Shin-Etsu Chemical Co., Ltd. Iron alloy strip for voice coil motor magnetic circuits
JP2016020835A (en) * 2014-07-14 2016-02-04 愛知時計電機株式会社 Electromagnetic flowmeter and core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283276A1 (en) * 2001-08-07 2003-02-12 Shin-Etsu Chemical Co., Ltd. Iron alloy strip for voice coil motor magnetic circuits
US6942741B2 (en) 2001-08-07 2005-09-13 Shin-Etsu Chemical Co., Ltd. Iron alloy strip for voice coil motor magnetic circuits
KR100845072B1 (en) * 2001-08-07 2008-07-09 신에쓰 가가꾸 고교 가부시끼가이샤 Iron Base Alloy Plate Material for Voice Coil Motor Magnetic Circuit Yoke and Yoke for Voice Coil Motor Magnetic Circuit
KR100845071B1 (en) * 2001-08-07 2008-07-09 신에쓰 가가꾸 고교 가부시끼가이샤 Iron Base Alloy Plate Material for Voice Coil Motor Magnetic Circuit Yoke and Yoke for Voice Coil Motor Magnetic Circuit
CN100403627C (en) * 2001-08-07 2008-07-16 信越化学工业株式会社 Iron-alloy band material for voice-coil motor magnetic circuit
JP2016020835A (en) * 2014-07-14 2016-02-04 愛知時計電機株式会社 Electromagnetic flowmeter and core

Similar Documents

Publication Publication Date Title
JP4023183B2 (en) Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
EP1211331B1 (en) A Fe-Cr soft magnetic material and a method of manufacturing thereof
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
JPWO2019240127A1 (en) Stainless steel wire and its manufacturing method, and spring parts
JP6859862B2 (en) Soft magnetic alloy
JP2854522B2 (en) Stepping motor and method of manufacturing yoke used therein
CN113897558B (en) High-saturation-magnetic-induction high-permeability iron-based soft magnetic material and preparation method thereof
JP7173286B2 (en) Non-oriented electrical steel sheet
JPH11269617A (en) Iron-chromium series soft magnetic steel excellent in magnetic property and temperature characteristic at ac
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JP6515323B2 (en) Non-oriented electrical steel sheet
JP5207514B2 (en) Hysteresis motor
JPH1157812A (en) Production of soft magnetism stainless steel plate for motor yoke
JPH0593245A (en) High-strength nonmagnetic stainless steel
JPH08120420A (en) Corrosion resistant soft-magnetic steel
JPH11279717A (en) Free cutting corrosion resistant soft magnetic material
WO2012077631A1 (en) Composite magnetic material raw material and composite magnetic material
KR102683224B1 (en) Non-oriented electrical steel sheet
US11482355B2 (en) Soft magnetic alloy
JPH064905B2 (en) Non-magnetic stainless steel with excellent spring characteristics
JP3670034B2 (en) Stepping motor using soft magnetic stainless steel and manufacturing method of stator yoke used therefor
JP2001275333A (en) Stepping motor
JP2023108650A (en) Non-oriented electrical steel sheet
JP5339009B1 (en) Composite magnetic material and composite magnetic member
JP5300962B2 (en) Electrical resistor material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061116