JPH11268907A - Cavity carbon and its production - Google Patents

Cavity carbon and its production

Info

Publication number
JPH11268907A
JPH11268907A JP10095391A JP9539198A JPH11268907A JP H11268907 A JPH11268907 A JP H11268907A JP 10095391 A JP10095391 A JP 10095391A JP 9539198 A JP9539198 A JP 9539198A JP H11268907 A JPH11268907 A JP H11268907A
Authority
JP
Japan
Prior art keywords
carbon
cavity
resin particles
hollow
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10095391A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Takashi Osaki
孝 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP10095391A priority Critical patent/JPH11268907A/en
Publication of JPH11268907A publication Critical patent/JPH11268907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a cavity carbon capable of increasing the adsorption area when used as an adsorbent, increasing the amount of occluded lithium when used as a negative pole of a lithium cell or battery and providing the high-performance lithium cell or battery and to provide a method for production thereof. SOLUTION: This cavity carbon comprises a molding of carbon powder and adopts a constitution in which a cavity 2 is formed in the interior. Furthermore, the cavity carbon is capable of adopting a constitution in which lithium is occluded in the cavity 2. The method for producing the cavity carbon adopts a constitution for mixing a carbon powder with resin particles, sticking the carbon powder to the surfaces of the resin particles, then heat-treating the resultant material and evaporating and removing the resin particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、内部に空洞が形
成された空洞炭素およびその製造方法に関するものであ
り、特に、吸着剤やリチウム電池の負極に使用できる空
洞炭素に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow carbon having a cavity formed therein and a method for producing the same, and more particularly to a hollow carbon which can be used as an adsorbent or a negative electrode of a lithium battery.

【0002】[0002]

【従来の技術】従来から、炭素は吸着剤の材料として使
用されており、このような炭素は一般に球状の粒に形成
されている。また、このような炭素はリチウムを吸蔵す
る性質を有しており、そのためリチウム電池の負極とし
ても利用されている。
2. Description of the Related Art Conventionally, carbon has been used as a material for an adsorbent, and such carbon is generally formed into spherical particles. Further, such carbon has a property of absorbing lithium, and thus is also used as a negative electrode of a lithium battery.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
吸着剤として使用される炭素は球状に形成されているた
め、その吸着面積は球の表面積に限られ、比表面積を増
加させるには限度がある。また、リチウム電池の負極と
して使用される炭素も、リチウムを吸蔵する容量に限界
があり、リチウム電池の性能の向上が困難であった。
However, since the carbon used as the above adsorbent is formed in a spherical shape, its adsorption area is limited to the surface area of the sphere, and there is a limit in increasing the specific surface area. . Further, carbon used as a negative electrode of a lithium battery also has a limitation in capacity for storing lithium, and it has been difficult to improve the performance of the lithium battery.

【0004】例えば、黒鉛におけるリチウムの吸蔵可能
な理論的容量は372mAh/gであり、通常の形状で
はこれ以上の容量アップは見込めない。また、難黒鉛質
炭素材料の中には、前記黒鉛の理論的容量より高容量を
示すものがあるとの報告もされているが、このような材
料では、電圧に平坦性がないことや真密度が低い等の問
題がある。
For example, the theoretical capacity of graphite in which lithium can be stored is 372 mAh / g, and a further increase in capacity cannot be expected in a normal shape. It has also been reported that some non-graphitic carbon materials have higher capacities than the theoretical capacity of the graphite, but such materials do not have flatness in voltage or are not truly flat. There are problems such as low density.

【0005】この発明は、このような事情に鑑みなされ
たもので、吸着剤として用いる場合、吸着面積を増加で
き、リチウム電池の負極として用いた場合には、リチウ
ムの吸蔵量を増加し高性能のリチウム電池を得ることの
できる空洞炭素およびその製造方法の提供をその目的と
する。
The present invention has been made in view of such circumstances, and when used as an adsorbent, the adsorption area can be increased. When used as a negative electrode of a lithium battery, the amount of lithium occlusion can be increased to improve the performance. It is an object of the present invention to provide a hollow carbon capable of obtaining a lithium battery and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の請求項1に係る空洞炭素は、炭素粉末の
成形体からなり内部に空洞が形成されているという構成
をとる。すなわち、内部に空洞を形成することにより、
空洞の壁面も吸着面となり、吸着面積を大幅に増加する
ことができる。
Means for Solving the Problems In order to achieve the above object, the hollow carbon according to the first aspect of the present invention has a structure in which a hollow body is formed from a molded body of carbon powder. That is, by forming a cavity inside,
The wall surface of the cavity also serves as an adsorption surface, and the adsorption area can be greatly increased.

【0007】また、請求項2にかかる発明では、請求項
1に記載の空洞炭素において、その空洞内にリチウムが
吸蔵されているという構成をとる。すなわち、炭素をリ
チウム電池の負極として使用する場合、球状の炭素では
リチウムの吸蔵量に限りがあるが、この空洞炭素の空洞
を利用することにより、その吸蔵量が大幅にアップす
る。
In the invention according to claim 2, the hollow carbon according to claim 1 has a configuration in which lithium is occluded in the cavity. In other words, when carbon is used as a negative electrode of a lithium battery, the amount of lithium absorbed is limited in spherical carbon, but the use of the hollow carbon greatly increases the amount of occlusion.

【0008】請求項3にかかる発明は、炭素粉末と樹脂
粒子を混合して樹脂粒子の表面に炭素粉末を付着させた
のち加熱処理して樹脂粒子を蒸発除去するかまたは樹脂
粒子を溶解可能な溶剤を用いて樹脂粒子を溶解除去する
という構成をとる。このような方法をとることにより、
簡単に空洞炭素を得ることができ、かつ、その形状も樹
脂粒子の形状を変えることにより適宜変更することがで
きる。つぎに、この発明による空洞炭素およびその製造
方法を図を用いて詳しく説明する。
According to a third aspect of the present invention, it is possible to mix the carbon powder and the resin particles, attach the carbon powder to the surface of the resin particles, and then perform a heat treatment to evaporate and remove the resin particles or dissolve the resin particles. The resin particles are dissolved and removed using a solvent. By taking such a method,
The hollow carbon can be easily obtained, and the shape can be appropriately changed by changing the shape of the resin particles. Next, the hollow carbon according to the present invention and a method for producing the same will be described in detail with reference to the drawings.

【0009】[0009]

【発明の実施の形態】図1および図2は、この発明の一
実施形態による空洞炭素1を示している。この空洞炭素
1は吸着剤として使用されるものであり、全体形状が球
状で内部に空洞2が形成されている。そして、表面には
空洞2と連通する多数の微細孔3が形成されている。こ
の微細孔3は気体,液体や微粒子の固体が通過できる程
度の大きさになっている。
1 and 2 show a hollow carbon 1 according to an embodiment of the present invention. The hollow carbon 1 is used as an adsorbent, has a spherical shape as a whole, and has a hollow 2 formed therein. A large number of fine holes 3 communicating with the cavity 2 are formed on the surface. The micropores 3 are large enough to allow gas, liquid or fine solid particles to pass through.

【0010】上記空洞炭素1は、粒径が10〜150μ
mで、肉厚が1〜30μm、真密度が1.1〜2.2g
/cm3 になっており、多数からなる集合体に形成して
吸着剤や濾過剤として使用される。この場合、処理され
る物は特に限定されず、炭素に吸着されるものであれば
何にでも使用することができる。例えば、水や他の液体
を濾過して液中の不純物や有機溶剤等を除去することに
使用してもよいし、フッ素系や塩素系のガスを吸着させ
て脱臭剤として使用することもできる。
The hollow carbon 1 has a particle size of 10 to 150 μm.
m, wall thickness is 1 to 30 μm, true density is 1.1 to 2.2 g
/ Cm 3 , which is formed into an aggregate composed of many and used as an adsorbent or a filtering agent. In this case, the material to be treated is not particularly limited, and any material can be used as long as it is adsorbed by carbon. For example, it may be used for filtering water or other liquids to remove impurities or organic solvents in the liquid, or may be used as a deodorant by adsorbing a fluorine-based or chlorine-based gas. .

【0011】また、この空洞炭素1は次のようにして得
られる。すなわち、まず、粒径が0.1〜50μmの炭
素粉末と、粒径が1〜100μmの樹脂粒子、例えばポ
リエチレンの粉末とを混合し、ジェットミル,ボールミ
ル,ハイブリダイザー等により高衝撃処理を施す。ハイ
ブリダイザーを使用する場合には、周速度を40〜12
0m/秒に設定し、1〜10分間処理する。
The hollow carbon 1 is obtained as follows. That is, first, carbon powder having a particle size of 0.1 to 50 μm and resin particles having a particle size of 1 to 100 μm, for example, polyethylene powder are mixed and subjected to high impact treatment by a jet mill, a ball mill, a hybridizer, or the like. . When using a hybridizer, set the peripheral speed to 40 to 12
Set to 0 m / sec and process for 1 to 10 minutes.

【0012】これによりポリエチレンの表面に炭素粉末
が付着する。この炭素粉末が付着したポリエチレンを、
窒素やアルゴン等の不活性ガス雰囲気下で400℃〜1
000℃の温度で1〜10時間加熱処理する。これによ
って、ポリエチレンが蒸発除去され、中心部に空洞2が
形成された空洞炭素1が得られる。
Thus, the carbon powder adheres to the surface of the polyethylene. The polyethylene with this carbon powder attached
400 ° C to 1 in an atmosphere of inert gas such as nitrogen or argon
Heat treatment at a temperature of 000 ° C. for 1 to 10 hours. Thereby, the polyethylene is evaporated and the hollow carbon 1 in which the hollow 2 is formed in the center is obtained.

【0013】この場合、ホストとなるポリエチレンの形
状を適宜選択することにより、球状,四角柱,テトラ
型,棒型などの空洞炭素を製造することができる。ま
た、ポリエチレンの大きさを変えることにより、粒径の
異なる空洞炭素を製造することもでき、高衝撃処理の条
件や原料の炭素粉末の量または混合比率を変えることに
より、空洞炭素の肉厚を調整することも可能である。さ
らに、炭素粉末の粒径を変えることにより、表面がポー
ラスな空洞炭素にすることもできる。
In this case, by appropriately selecting the shape of the polyethylene serving as the host, hollow carbon having a spherical shape, a square prism, a tetra type, a rod type, etc. can be produced. Also, by changing the size of polyethylene, it is possible to produce hollow carbon with a different particle size, and by changing the conditions of high impact treatment and the amount or mixing ratio of the raw carbon powder, the thickness of the hollow carbon can be reduced. Adjustments are also possible. Further, by changing the particle size of the carbon powder, it is also possible to make the surface of the carbon carbon porous.

【0014】なお、原料である炭素粉末の種類は特に限
定されず、黒鉛結晶の発達したもの、低黒鉛性炭素のい
ずれも好適である。例えば、アセチレンブラック,ケッ
チェンブラックなどのカーボンブラック、天然黒鉛、人
造黒鉛、コークス、難黒鉛性炭素、ピッチ系炭素繊維、
気相成長炭素繊維等が使用できる。また、直径が5nm
〜200nm、長さが50nm〜5μmの極めて微細な
炭素繊維(通常、アーク放電や遷移金属粒子を触媒とす
る炭化水素の気相分解で生成する)を使用することもで
きる。これによると、繊維が絡み合ってできる編目状多
孔質の空洞炭素となり、強度的にも強くなる。
The type of the carbon powder as the raw material is not particularly limited, and any of those having developed graphite crystals and low-graphitic carbon are suitable. For example, carbon black such as acetylene black and Ketjen black, natural graphite, artificial graphite, coke, non-graphitizable carbon, pitch-based carbon fiber,
Vapor-grown carbon fibers can be used. In addition, the diameter is 5 nm
Extremely fine carbon fibers of up to 200 nm and a length of 50 nm to 5 μm (usually produced by arc discharge or gas phase decomposition of hydrocarbons catalyzed by transition metal particles) can also be used. According to this, it becomes a stitch-like porous hollow carbon formed by intertwining the fibers, and the strength is also increased.

【0015】樹脂粒子としては、加熱により分解や蒸発
するものが好ましく、ポリエチレン以外では、ポリスチ
レン等も使用できる。また、その他の材料としては、有
機溶剤や酸に溶けるものが使用可能である。例えば、ナ
イロン,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリフ
ッ化ビニリデン等である。これらを用いる場合、その樹
脂粒子を炭素粉末と衝撃処理したのち溶剤中で洗浄し、
樹脂粒子のみを溶解させる。そして、濾過をすることに
より空洞炭素が得られる。
As the resin particles, those which decompose or evaporate by heating are preferable. In addition to polyethylene, polystyrene and the like can be used. Other materials that can be dissolved in an organic solvent or an acid can be used. For example, nylon, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride and the like. When these are used, the resin particles are subjected to an impact treatment with carbon powder and then washed in a solvent,
Dissolve only the resin particles. Then, hollow carbon is obtained by filtration.

【0016】このようにして得られる空洞炭素1を吸着
剤や濾過剤として使用すると、表面だけでなく空洞2の
壁面や、処理されるものによっては空洞2の内部にも除
去されるものが吸着するようになる。したがって、内部
が詰まった単なる球状の炭素と比較して、吸着効果は大
幅に改良される。
When the thus obtained hollow carbon 1 is used as an adsorbent or a filter, not only the surface but also the wall surface of the hollow 2 and, depending on the material to be treated, the removed carbon 1 is adsorbed. I will be. Thus, the adsorption effect is greatly improved as compared to mere spherical carbon with a solid interior.

【0017】また、吸着しようとする対象物が比較的大
きな粒子である場合には、図3および図4に示すよう
に、空洞炭素4の表面と空洞5の間に孔6を設けること
が好ましい。これによって、対象粒子が孔6を通って空
洞炭素4の空洞5内に浸入して溜まり吸着効果が増すよ
うになる。この場合、微細な対象物も空洞炭素4の表面
や空洞5の壁面に付着する。
When the object to be adsorbed is a relatively large particle, it is preferable to provide a hole 6 between the surface of the hollow carbon 4 and the hollow 5 as shown in FIGS. . As a result, the target particles penetrate into the cavity 5 of the cavity carbon 4 through the holes 6 and accumulate there, thereby increasing the adsorption effect. In this case, a fine object also adheres to the surface of the hollow carbon 4 and the wall surface of the hollow 5.

【0018】この孔6を設ける方法としては、樹脂粒子
に加熱により蒸発するものを用い、その樹脂粒子の蒸発
速度を速くする方法がある。例えば、樹脂粒子がポリエ
チレンの場合、一分間に100℃上昇させるといった急
激な昇温速度で、常温から400℃〜500℃になるま
で加熱する。これによって、孔6を有する空洞炭素4が
得られる。また、蒸発や溶解によって樹脂粒子を除去し
たのち、再度、ボールミルやハイブリダイザー等を用い
て衝撃処理を行うことによっても孔6を設けることがで
きる。
As a method for providing the holes 6, there is a method in which a resin particle is evaporated by heating, and the evaporation speed of the resin particle is increased. For example, when the resin particles are polyethylene, heating is performed from a normal temperature to 400 ° C. to 500 ° C. at a rapid temperature rising rate such as 100 ° C./min. Thereby, the hollow carbon 4 having the holes 6 is obtained. Alternatively, the holes 6 can also be provided by removing the resin particles by evaporation or dissolution and then performing an impact treatment again using a ball mill, a hybridizer, or the like.

【0019】さらに、上記空洞炭素1にリチウムを吸蔵
させ、これをリチウム電池の負極材料として使用するこ
ともできる。この場合、空洞炭素1そのものおよび空洞
2内にもリチウムが含有されるようになり、その量は従
来技術のものと比較して大幅に増加する。また、空洞炭
素1の表面は黒鉛等の炭素層で覆われているため、リチ
ウムの析出がなく安全性の高い材料となる等、リチウム
電池の負極材料として好適である。この場合、微細孔3
は特に必要なく、むしろこのような微細孔3が形成され
ないようにして空洞炭素を製造する方が好ましい。
Further, lithium can be stored in the hollow carbon 1 and used as a negative electrode material of a lithium battery. In this case, lithium is contained also in the cavity carbon 1 itself and the cavity 2, and the amount thereof is greatly increased as compared with the prior art. In addition, since the surface of the hollow carbon 1 is covered with a carbon layer such as graphite, it is suitable as a negative electrode material of a lithium battery, for example, it is a material having high safety without precipitation of lithium. In this case, the fine holes 3
Is not particularly necessary, but rather it is preferable to produce the hollow carbon so that such micropores 3 are not formed.

【0020】次に、実施例により本発明をさらに具体的
に説明する。
Next, the present invention will be described more specifically with reference to examples.

【0021】[0021]

【実施例】実施例1 まず、下記の条件で炭素繊維の作製をした。直径2μ
m、長さ100μmの気相成長炭素繊維を3000℃の
アルゴンガス雰囲気中で30分間、黒鉛化処理をして黒
鉛化気相成長炭素繊維を得た。この炭素繊維の比表面積
は0.5m2 /gであり、X線回析による(002)面
の面間隔距離d002 は0.3360nmで、C軸方向の
黒鉛結晶子の大きさLcは100nmであった。
EXAMPLE 1 First, carbon fibers were produced under the following conditions. 2μ diameter
The vapor-grown carbon fiber having a length of 100 μm and a length of 100 μm was graphitized in an argon gas atmosphere at 3000 ° C. for 30 minutes to obtain a graphitized vapor-grown carbon fiber. The specific surface area of this carbon fiber is 0.5 m 2 / g, lattice spacing distance d 002 of the X-ray diffraction (002) plane is 0.3360 nm, size Lc in the C-axis direction of the graphite crystallite 100nm Met.

【0022】この炭素繊維100gに、平均粒径が40
μmのポリエチレン粒子(住友精化(株)製のフロービ
ーズ)を100g加え、ハイブリダイザー((株)奈良
機械製作所製のNHS−1)を用いて、周速度100m
/sで2分間高衝撃処理を行った。そして、衝撃処理後
の炭素繊維と樹脂粒子との混合物を分級機(日本ドナル
ドソン(株)製のドナセレック300型)で分級した。
分級点は10μmとし、粗粉側を取り出した。
An average particle size of 40 g per 100 g of the carbon fiber
100 g of polyethylene particles (flow beads manufactured by Sumitomo Seika Co., Ltd.) having a peripheral speed of 100 m was added using a hybridizer (NHS-1 manufactured by Nara Machinery Co., Ltd.).
/ S for 2 minutes. Then, the mixture of the carbon fibers and the resin particles after the impact treatment was classified using a classifier (Donacerec 300, manufactured by Nippon Donaldson KK).
The classification point was 10 μm, and the coarse powder side was taken out.

【0023】分級して得られた前記粗粉側粉末を原料と
して、600℃の窒素雰囲気中で1時間加熱処理をして
ポリエチレン粒子を分解蒸発させて除去し空洞炭素を得
た。この空洞炭素は、形状が球状で、粒径が50μm、
肉厚が10μm、真密度が2.1g/cm3 であった。
なお、真密度は、JISR7601−1986に記載の
液置換法により測定した。
Using the above-mentioned coarse powder side powder obtained as a raw material as a raw material, heat treatment was performed in a nitrogen atmosphere at 600 ° C. for 1 hour to decompose and evaporate polyethylene particles to remove them, thereby obtaining hollow carbon. This hollow carbon has a spherical shape, a particle size of 50 μm,
The wall thickness was 10 μm and the true density was 2.1 g / cm 3 .
The true density was measured by a liquid replacement method described in JISR7601-1986.

【0024】次に、上記のようにして得られた空洞炭素
を用いて次の方法で充放電試験による評価を行った。ま
ず、バインダーであるポリフッ化ビニリデン0.1gを
N−メチルピロリドン1mlに溶解した。これに前記空
洞炭素を0.9g加え乳鉢中で十分混合した。そして、
この混合物を幅10nm、長さ50nmのニッケルメッ
シュに塗布(塗布面積は1cm2 )し、110℃で24
時間乾燥した。
Next, the hollow carbon obtained as described above was evaluated by a charge / discharge test by the following method. First, 0.1 g of polyvinylidene fluoride as a binder was dissolved in 1 ml of N-methylpyrrolidone. 0.9 g of the hollow carbon was added thereto, and the mixture was sufficiently mixed in a mortar. And
This mixture was applied to a nickel mesh having a width of 10 nm and a length of 50 nm (application area: 1 cm 2 ).
Dried for hours.

【0025】ついで、これを作用極とし、金属リチウム
を対極および参照極とした3電極式のガラスビーカーセ
ルを作製した。電解液には、LiClO4を1モル/l
の濃度になるようにエチレンカーボネートとジエチルカ
ーボネートからなる混合溶媒(体積比1:1)に溶解し
たものを用いた。つぎに、電流密度を30mA/g−c
arbonとし、作用極と参照極間の電位差が0〜2.
5Vの範囲で充放電試験を行った。そして、1サイクル
目の放電容量(リチウムを空洞炭素電極から放出可能な
電気化学的容量)を求めた。その結果は600mAh/
g−carbonであった。
Next, a three-electrode glass beaker cell using this as a working electrode and metallic lithium as a counter electrode and a reference electrode was prepared. LiClO4 was 1 mol / l in the electrolyte.
Used in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) so as to have a concentration of 1: 1. Next, the current density was set to 30 mA / g-c.
The potential difference between the working electrode and the reference electrode is 0 to 2.
A charge / discharge test was performed in a range of 5V. Then, the discharge capacity in the first cycle (electrochemical capacity capable of releasing lithium from the hollow carbon electrode) was determined. The result was 600 mAh /
g-carbon.

【0026】実施例2 平均粒径が15μmの人造黒鉛粉末(ロンザ製、KS−
15)をボールミルにより粒径0.3μmになるまで粉
砕したもの100gと、平均粒径40μmのポリフッ化
ビニリデンビーズ150gを、前記ハイブリダイザーを
用い、周速度60m/秒で3分間処理した。この処理
後、得られた混合物に1リットルのN−メチル−2−ピ
ロリドンを加え、1時間撹拌させてポリフッ化ビニリデ
ンビーズをN−メチル−2−ピロリドン中に溶解させ
た。
Example 2 An artificial graphite powder having an average particle size of 15 μm (manufactured by Lonza, KS-
15) was pulverized by a ball mill to a particle diameter of 0.3 μm, and 100 g of polyvinylidene fluoride beads having an average particle diameter of 40 μm were treated with the hybridizer at a peripheral speed of 60 m / sec for 3 minutes. After this treatment, 1 liter of N-methyl-2-pyrrolidone was added to the obtained mixture, and the mixture was stirred for 1 hour to dissolve the polyvinylidene fluoride beads in N-methyl-2-pyrrolidone.

【0027】次に、濾過をしてN−メチル−2−ピロリ
ドン溶液を除去した。この操作を3回繰り返し、完全に
ポリフッ化ビニリデンビーズを除去して空洞炭素を得
た。得られた空洞炭素は球状であり、その平均粒径は6
0μmで、肉厚は20μm、真密度は2.2g/cm3
であった。また、その放電容量は、前記実施例1の空洞
炭素と略等しかった。
Next, the solution was filtered to remove the N-methyl-2-pyrrolidone solution. This operation was repeated three times to completely remove the polyvinylidene fluoride beads to obtain hollow carbon. The obtained hollow carbon is spherical, and its average particle size is 6
0 μm, wall thickness 20 μm, true density 2.2 g / cm 3
Met. Further, the discharge capacity was substantially equal to that of the hollow carbon of Example 1.

【0028】[0028]

【発明の効果】以上のように、この発明に係る空洞炭素
は内部に空洞が構成されているため、空洞の壁面も吸着
面となる。その結果、吸着面積を大幅に増加することが
でき、吸着効果が大幅に向上するようになる。また、空
洞内に、リチウムを吸蔵させることによりリチウムの吸
蔵量が大幅に増え、リチウム電池の負極に利用すること
が好適なものとなる。
As described above, since the hollow carbon according to the present invention has a cavity therein, the wall surface of the cavity also serves as an adsorption surface. As a result, the suction area can be greatly increased, and the suction effect can be greatly improved. Further, by storing lithium in the cavity, the amount of stored lithium is greatly increased, which makes it suitable for use as a negative electrode of a lithium battery.

【0029】さらに、この空洞炭素は、炭素粉末と樹脂
粒子を混合して樹脂粒子の表面に炭素粉末を付着させた
のち加熱処理して樹脂粒子を蒸発除去することにより、
簡単な方法で空洞炭素を得ることができ、かつ、その形
状,大きさ,孔の大小等も材料を変えることにより適宜
任意のものに変更することができる。
Further, the hollow carbon is obtained by mixing carbon powder and resin particles, adhering the carbon powder to the surface of the resin particles, and then performing heat treatment to evaporate and remove the resin particles.
The hollow carbon can be obtained by a simple method, and the shape, size, size of pores, etc. can be appropriately changed by changing the material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態による空洞炭素を示す正
面図。
FIG. 1 is a front view showing hollow carbon according to an embodiment of the present invention.

【図2】図1の断面図。FIG. 2 is a sectional view of FIG.

【図3】この発明の他の実施形態による空洞炭素を示す
正面図。
FIG. 3 is a front view showing a hollow carbon according to another embodiment of the present invention.

【図4】図3の断面図。FIG. 4 is a sectional view of FIG. 3;

【符号の説明】[Explanation of symbols]

1,4・・・・・空洞炭素 2,5・・・・・空洞 1,4 ... cavity carbon 2,5 ... cavity

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素粉末の成形体からなり内部に空洞が形
成されていることを特徴とする空洞炭素。
1. A hollow carbon comprising a molded body of carbon powder and having a cavity formed therein.
【請求項2】空洞内にリチウムが吸蔵されている請求項
1に記載の空洞炭素。
2. The hollow carbon according to claim 1, wherein lithium is stored in the hollow.
【請求項3】炭素粉末と樹脂粒子を混合して樹脂粒子の
表面に炭素粉末を付着させたのち加熱処理して樹脂粒子
を蒸発除去するかまたは樹脂粒子を溶解可能な溶剤を用
いて樹脂粒子を溶解除去することを特徴とする空洞炭素
の製造方法。
3. A method in which carbon powder and resin particles are mixed to adhere the carbon powder to the surface of the resin particles and then heat-treated to evaporate and remove the resin particles, or using a solvent capable of dissolving the resin particles. A method for producing hollow carbon, wherein the carbon is dissolved and removed.
JP10095391A 1998-03-23 1998-03-23 Cavity carbon and its production Pending JPH11268907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095391A JPH11268907A (en) 1998-03-23 1998-03-23 Cavity carbon and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095391A JPH11268907A (en) 1998-03-23 1998-03-23 Cavity carbon and its production

Publications (1)

Publication Number Publication Date
JPH11268907A true JPH11268907A (en) 1999-10-05

Family

ID=14136358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095391A Pending JPH11268907A (en) 1998-03-23 1998-03-23 Cavity carbon and its production

Country Status (1)

Country Link
JP (1) JPH11268907A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164108A1 (en) * 2000-06-13 2001-12-19 Toda Kogyo Corporation Hollow carbon particles and process for producing the same
WO2004108275A1 (en) * 2003-06-02 2004-12-16 Nec Corporation Catalyst support, gas storage body and method for producing these
JP2005324975A (en) * 2004-05-12 2005-11-24 Kitagawa Ind Co Ltd Granular carbon fiber material, and its manufacturing method
JP2007091490A (en) * 2005-09-27 2007-04-12 Nissin Kogyo Co Ltd Porous material and method of manufacturing the same
JP2007220622A (en) * 2006-02-20 2007-08-30 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery, and its manufacturing method
WO2010084547A1 (en) * 2009-01-22 2010-07-29 独立行政法人産業技術総合研究所 Hollow carbon microparticle and method for producing same
JP2012101950A (en) * 2010-11-05 2012-05-31 Noritake Co Ltd Method for producing porous carbon particle, and porous carbon material including the particle
JP2012214301A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Hollow carbon particle and method for producing the same
US9321649B2 (en) 2007-12-03 2016-04-26 National Institute Of Advanced Industrial Science And Technology Carbon microparticle having lignin as raw material and preparation method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164108A1 (en) * 2000-06-13 2001-12-19 Toda Kogyo Corporation Hollow carbon particles and process for producing the same
WO2004108275A1 (en) * 2003-06-02 2004-12-16 Nec Corporation Catalyst support, gas storage body and method for producing these
JP2005324975A (en) * 2004-05-12 2005-11-24 Kitagawa Ind Co Ltd Granular carbon fiber material, and its manufacturing method
JP2007091490A (en) * 2005-09-27 2007-04-12 Nissin Kogyo Co Ltd Porous material and method of manufacturing the same
JP2007220622A (en) * 2006-02-20 2007-08-30 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery, and its manufacturing method
US9321649B2 (en) 2007-12-03 2016-04-26 National Institute Of Advanced Industrial Science And Technology Carbon microparticle having lignin as raw material and preparation method therefor
WO2010084547A1 (en) * 2009-01-22 2010-07-29 独立行政法人産業技術総合研究所 Hollow carbon microparticle and method for producing same
JP2010168251A (en) * 2009-01-22 2010-08-05 National Institute Of Advanced Industrial Science & Technology Hollow carbon fine particle and process for producing the same
US8986838B2 (en) 2009-01-22 2015-03-24 National Institute Of Advanced Industrial Science And Technology Hollow carbon microparticle and method for producing same
JP2012101950A (en) * 2010-11-05 2012-05-31 Noritake Co Ltd Method for producing porous carbon particle, and porous carbon material including the particle
JP2012214301A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Hollow carbon particle and method for producing the same

Similar Documents

Publication Publication Date Title
US11646418B2 (en) Free-standing MOF-derived hybrid porous carbon nanofiber mats
KR101494715B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
Aravindan et al. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators
Liu et al. Controlled construction of hierarchical Co 1− x S structures as high performance anode materials for lithium ion batteries
US20040227264A1 (en) Methods for fabricating improved graphite granules
KR20130114007A (en) Negative active material, lithium battery including the material, and method for manufacturing the material
CN108352253A (en) Activated carbon powder for hybrid super capacitor-battery system
JP2019508868A (en) Electrode having nanocrystal assembly active cluster incorporated in conductive network structure, battery having the same, and method for producing the same
US20130045423A1 (en) Porous conductive active composite electrode for litihium ion batteries
US20120276438A1 (en) Transition metal phosphate, production process thereof, positive electrode, and sodium secondary battery
Wang et al. Continuous zirconium-based MOF-808 membranes for polysulfide shuttle suppression in lithium-sulfur batteries
US20110117415A1 (en) Nonaqueous electrolyte secondary battery
Lei et al. Nanoconic TiO 2 hollow spheres: novel buffers architectured for high-capacity anode materials
Luna-Lama et al. Biomass-derived carbon/γ-MnO2 nanorods/S composites prepared by facile procedures with improved performance for Li/S batteries
CN101453006A (en) Lithium ionic cell electrode material with micro hole construction and manufacturing method thereof
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
CN112331838B (en) High-capacity silicon monoxide composite negative electrode material of lithium ion battery and preparation method thereof
WO2013026190A1 (en) Porous conductive active composite electrode for lithium ion batteries
Shen et al. Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries
US20120129033A1 (en) Powdery material and positive electrode mixture
Gou et al. Rational synthesis of Ni 3 (HCOO) 6/CNT ellipsoids with enhanced lithium storage performance: inspired by the time evolution of the growth process of a nickel formate framework
CN117133908B (en) Red phosphorus carbon battery anode material and preparation method and application thereof
JPH11268907A (en) Cavity carbon and its production
CN117334811A (en) Negative electrode material, preparation method thereof and sodium ion battery
KR101392388B1 (en) Carbon nanofibers composite and method for preparing the same and anode active materials for lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104