JPH11268164A - Base material with carbon film - Google Patents

Base material with carbon film

Info

Publication number
JPH11268164A
JPH11268164A JP11024121A JP2412199A JPH11268164A JP H11268164 A JPH11268164 A JP H11268164A JP 11024121 A JP11024121 A JP 11024121A JP 2412199 A JP2412199 A JP 2412199A JP H11268164 A JPH11268164 A JP H11268164A
Authority
JP
Japan
Prior art keywords
film
carbon
stress
gas
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11024121A
Other languages
Japanese (ja)
Other versions
JP3195301B2 (en
Inventor
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12129489&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11268164(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP02412199A priority Critical patent/JP3195301B2/en
Publication of JPH11268164A publication Critical patent/JPH11268164A/en
Application granted granted Critical
Publication of JP3195301B2 publication Critical patent/JP3195301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a film containing a carbon film as a main component on a surface to be formed with good adhesive properties by providing a film having a small internal stress on a layer in contact with a base plate, and laminating films having sequentially larger internal stresses as separating from the plate in a laminating direction. SOLUTION: Films having sequentially larger stresses are formed likewise by forming a film to be laminated and having a smallest stress and then a film to be laminated and having next smaller stress on the previous film on a film formed in direct contact with a base plate. For example, a silicon nitride 24 is formed on a layer in contact with the plate, and a carbon film 25 is formed thereon. To this end, a hydrogen silicide gas such as, for example, a silane, nitrogen, ammonia are introduced into a reaction system, and then a hydrocarbon gas and nitrogen are similarly introduced. As the hydrocarbon, a gas of a methane hydrocarbon or the like, a silicon carbide like a tetramethylsilane partly containing silicon or a carbon chloride like a carbon tetrachloride may be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明になる複合被膜は下地
基材、特に酸化物表面を有する基材に対し界面特性、特
に密着性を向上させ炭素または炭素を主成分とする被膜
(以下炭素系被膜という)の特徴である耐摩粍性,高平
滑性,高硬度等の諸特性を最大限に引き出すものであ
る。
BACKGROUND OF THE INVENTION The composite coating according to the present invention is a coating containing carbon or carbon as a main component (hereinafter referred to as a carbon-based coating) by improving interfacial properties, particularly adhesion, to an underlying substrate, particularly a substrate having an oxide surface. This is to maximize the characteristics such as abrasion resistance, high smoothness, and high hardness, which are the characteristics of the film.

【0002】[0002]

【従来の技術】従来より、多種多様な基材に炭素系被膜
を形成することが試みられているが、下地基材の違いに
よって必ずしも満足のいく界面特性特に密着性が得られ
ていないのが現状であり、その為炭素系被膜の長所が十
分発揮できず、新しい技術の開発が急がれている。
2. Description of the Related Art Conventionally, attempts have been made to form carbon-based coatings on a wide variety of base materials. However, satisfactory interfacial properties, especially adhesion, cannot be obtained due to differences in base materials. At present, the advantages of carbon-based coatings cannot be fully demonstrated, and the development of new technologies is urgent.

【0003】[0003]

【発明が解決しようとする課題】従来の単層炭素系被膜
はそれを応用する上で下地基材との界面密着性が悪く、
例えば350 ℃以上の高温で形成された炭素膜を室温に戻
した際に炭素膜が脱離やはく離してしまうあるいは室温
で形成された炭素膜を400 ℃以上の高温で熱処理した場
合、部分的に斑点状のはく離や被膜の脱離が生じてしま
う等のものである。
The conventional single-layer carbon-based coating has poor interfacial adhesion with the base material in application thereof,
For example, when a carbon film formed at a high temperature of 350 ° C or more is returned to room temperature, the carbon film is detached or peeled off, or when a carbon film formed at a room temperature is heat-treated at a high temperature of 400 ° C or more, In this case, spot-like peeling or detachment of the film occurs.

【0004】前者は一般に熱応力といわれるもので、基
板との熱膨張(収縮)率の差により応力が内在してしま
うもので、後者は膜中のC-H 結合(水素含有量)の減少
により、水素による応力を緩和する効果が低下すること
によるものである。本発明は以上のような問題点を解決
し、炭素系被膜を主成分とする被膜を被形成面上に密着
性良く設けることを目的としたものである。
[0004] The former is generally called thermal stress, in which stress is inherent due to a difference in thermal expansion (shrinkage) rate with the substrate, and the latter is caused by a decrease in CH bonds (hydrogen content) in the film. This is because the effect of relaxing the stress by hydrogen is reduced. An object of the present invention is to solve the above problems and to provide a film having a carbon-based film as a main component on a surface on which a carbon film is to be formed with good adhesion.

【0005】[0005]

【課題を解決するための手段】本発明は基板上に2以上
の被膜を積層させた複合被膜において、基板に接した層
には積層する被膜の中で最も内部応力の小さい被膜が設
けられ、積層方向に基板から離れていくにしたがって順
次内部応力の大きな被膜を積層させることで上記の目的
を達成したものである。
According to the present invention, there is provided a composite coating in which two or more coatings are laminated on a substrate, wherein a layer in contact with the substrate is provided with a coating having the smallest internal stress among the coatings laminated. The above object has been achieved by sequentially laminating films having large internal stresses as they move away from the substrate in the laminating direction.

【0006】すなわち基板に直接接して形成する被膜に
は、積層する被膜のうちで最も応力の小さいものを形成
させ、その被膜の上につぎに応力の小さいものを形成さ
せるというように順次応力の大きいものを形成させるの
である。
That is, a coating formed in direct contact with the substrate is formed by forming a coating having the smallest stress among the coatings to be laminated, and then forming a coating having the next lowest stress on the coating. They make a big thing.

【0007】本発明は例えば炭素系被膜について考える
とき、単層で議論するのではなく、被形成面上に密着性
良くまた被形成面に対して整合性良く設け、結果として
炭素または炭素を主成分とする被膜の長所を最大源に発
揮できる複合積層被膜を形成するものであり、熱応力と
膜中水素含有量の相対的関係を出発原料気体の選択及び
成膜条件によって制御し、最終的には膜の残留応力をコ
ントロールすることで、前記目的を達成するものであ
る。以下実施例に従って説明する。
In the present invention, for example, when considering a carbon-based coating, it is not discussed in a single layer, but is provided with good adhesion on the surface to be formed and good consistency with the surface to be formed. The purpose of this method is to form a composite laminated film that can make the most of the advantages of the film as a component.The relative relationship between the thermal stress and the hydrogen content in the film is controlled by the selection of the starting material gas and the film forming conditions. The above-mentioned object is achieved by controlling the residual stress of the film. Hereinafter, description will be made in accordance with embodiments.

【0008】[0008]

【実施例】本実施例においては、基板に接した層に窒化
珪素を形成させ、その上に炭素系被膜を形成させた。図
1は平行平板型プラズマ装置で、ガス系(1)におい
て、まず下地基材との界面を構成する窒化珪素を形成す
る為に、反応性気体である珪化水素気体例えばシラン,
ジシランを(2)より窒素,アンモニアを(4)より流
量計(8)バルブ(9)を介して、ノズル(10)より
反応系(11)の中に導入する。
EXAMPLE In this example, silicon nitride was formed on a layer in contact with a substrate, and a carbon-based film was formed thereon. FIG. 1 shows a parallel plate type plasma apparatus. In a gas system (1), first, in order to form silicon nitride forming an interface with an underlying substrate, a hydrogen silicide gas such as silane, which is a reactive gas, is used.
Disilane is introduced from (2) into nitrogen and ammonia is introduced from (4) through a flow meter (8) via a valve (9) into a reaction system (11) from a nozzle (10).

【0009】一方炭素系被膜を形成する際は反応性気体
である炭化水素気体を(3)より、窒素を(4)より流
量計(8)バルブ(9)を介して、同様に導入する。炭
化水素気体としては例えばメタン,エタン、エチレン、
メタン系炭化水素 (CnH2n+2)等の気体または珪素を一部
に含んだ場合はテトラメチルシラン((CH3)4Si)、テトラ
エラルシラン((C2H5)4Si) のような炭化珪素であって
も、また四塩化炭素(CCl4)のような塩化炭素であって
もよい。
On the other hand, when forming a carbon-based coating, a hydrocarbon gas as a reactive gas is introduced from (3) and nitrogen is introduced from (4) through a flow meter (8) and a valve (9) in the same manner. Examples of the hydrocarbon gas include methane, ethane, ethylene,
Gases such as methane-based hydrocarbons (C n H 2n + 2 ) or when partially containing silicon, tetramethylsilane ((CH 3 ) 4 Si), tetra-eral silane ((C 2 H 5 ) 4 Si) And carbon chloride such as carbon tetrachloride (CCl 4 ).

【0010】前記被膜のエッチング用気体である三弗化
炭素を(5)より、酸素を(6)より、また下地基材に
よっては、プラズマクリーニングが必要である為前処理
用気体として、不活性気体例えばアルゴン(7)を導入
することも可能である。
Inert gas is used as a pre-treatment gas because carbon trifluoride, which is an etching gas for the film, is derived from (5), oxygen is derived from (6), and depending on the base material, plasma cleaning is required. It is also possible to introduce a gas, for example argon (7).

【0011】反応系(11)では減圧下にて、窒化珪素
被膜,炭素系被膜の成膜およびそれらのエッチング処理
を行う。反応系(11)では第1の電極(13),第2
の電極(14)すなわち高周波給電側に設置する一対の
電極(13),(14)間には、高周波電源(16),
マッチングトランス(17),直流バイアス電源(1
8)より、電気エネルギーが加えられプラズマ(15)
が発生する。その結果、所望の窒化珪素被膜および炭素
系被膜が形成される。
In the reaction system (11), the formation of a silicon nitride film and a carbon-based film and the etching thereof are performed under reduced pressure. In the reaction system (11), the first electrode (13) and the second electrode (13)
, A pair of electrodes (13) and (14) installed on the high-frequency power supply side, a high-frequency power supply (16),
Matching transformer (17), DC bias power supply (1
From 8), electric energy is applied and plasma (15)
Occurs. As a result, desired silicon nitride films and carbon-based films are formed.

【0012】反応後の不要物は排気系の圧力調整バルブ
(19),ターボ分子ポンプ(20),ロータリーポン
プ(21)を経て排気される。以上により図2に示す下
地基材(22)上に複合積層被膜(23)が窒化珪素
(24), 炭素系被膜(25)による積層構造で形成さ
れ従来の問題を解決すべく、被膜形成方法が確立される
ものである。
Unnecessary substances after the reaction are exhausted through a pressure adjusting valve (19), a turbo molecular pump (20), and a rotary pump (21) of an exhaust system. As described above, the composite laminated film (23) is formed on the base material (22) shown in FIG. 2 in a laminated structure of the silicon nitride (24) and the carbon-based film (25). Is established.

【0013】本実施例において、成膜条件は、窒化珪素
被膜では、反応温度150 ℃〜350 ℃, 反応圧力0.01〜0.
5torr,高周波電力密度0.1 〜0.3W/cm2セルフバイアス電
圧-150〜-250Vであり、原料気体であるSiH4,N2 はSiH4
/N2 比を0.05〜0.5 の範囲で可変し、化学量論的組成比
を制御し膜中水素含有量も同様に膜応力との兼ね合いに
おいてコントロールすることができた。また炭素系被膜
においても基本的には同様な手法によって行った。
In this embodiment, the film formation conditions are as follows: a silicon nitride film has a reaction temperature of 150 ° C. to 350 ° C. and a reaction pressure of 0.01 to 0.
5 torr, an RF power density 0.1 ~0.3W / cm 2 self-bias voltage -150~-250V, SiH 4, N 2 is SiH 4 as a raw material gas
By varying the / N 2 ratio in the range of 0.05 to 0.5, the stoichiometric composition ratio was controlled, and the hydrogen content in the film could be similarly controlled in view of the film stress. Basically, the same method was used for the carbon-based coating.

【0014】即ち反応温度150 ℃〜350 ℃, 反応圧力0.
01〜0.5torr,高周波電力密度0.1 〜0.3W/cm2セルフバイ
アス電圧-150〜-250Vである。
That is, the reaction temperature is 150 ° C. to 350 ° C., and the reaction pressure is 0.
01 to 0.5 torr, high frequency power density 0.1 to 0.3 W / cm 2 self-bias voltage -150 to -250V.

【0015】図3は本発明による複合積層被膜において
下地基材と接する層を形成する窒化珪素被膜の膜厚を可
変した時の膜応力と、さらに炭素系被膜を積層した時の
全応力を示したものであるが、窒化珪素単層においては
50Åから5000Åまで可変しても1×109dyn/cm2から2.7
×109dyn/cm2の圧縮応力の範囲であり、膜厚依存性をそ
れほど示さないが炭素系被膜を5000Å積層することで下
層の窒化珪素被膜の膜厚依存性が発生し、膜厚がうすい
領域では全応力は大きく、緩和効果が発揮されないが数
千Å前後の膜厚領域では同じ圧縮応力でありながら、全
応力が減少する傾向を示すものである。
FIG. 3 shows the film stress when the thickness of the silicon nitride film forming the layer in contact with the base substrate in the composite laminated film according to the present invention is varied, and the total stress when the carbon-based film is further laminated. However, in the silicon nitride single layer,
1 × 10 9 dyn / cm 2 to 2.7 even if variable from 50Å to 5000Å
It is a range of compressive stress of × 10 9 dyn / cm 2 and does not show much dependency on film thickness.However, lamination of a carbon-based film 5,000 mm results in film thickness dependency of the underlying silicon nitride film, In a thin region, the total stress is large, and the relaxation effect is not exhibited. However, in a film region around several thousand mm, the total stress tends to decrease while having the same compressive stress.

【0016】これは窒化珪素の存在により格子不整合の
改善、及び熱応力の改善等により応力歪が緩和されるか
らである。
This is because the presence of silicon nitride alleviates lattice mismatch, and alleviates stress strain by improving thermal stress.

【0017】図4は本発明による複合積層膜において、
上部炭素系被膜単層の膜厚を可変したときの応力を示し
たものであるが、この被膜の膜応力は膜厚とともに全応
力、すなわち膜厚方向に積分した応力が高く成る傾向が
大きく長所を最大限に引き出す為には、何らかの手段が
必要であることがわかる。
FIG. 4 shows a composite laminated film according to the present invention.
This graph shows the stress when the thickness of the single layer of the upper carbon-based film is varied. The film stress of this film tends to increase with the film thickness as a whole stress, that is, the stress integrated in the film thickness direction. It turns out that some means is necessary to bring out the maximum.

【0018】単層でこの被膜を応用した時、所望の膜厚
が薄ければ、問題はないが、厚くなると、応力の開放の
為、クラック,ピーリング等へと波及する物性をそなえ
ているものである。
When this film is applied as a single layer, there is no problem if the desired film thickness is small, but if the film thickness is large, the film has properties that spread to cracks and peeling due to release of stress. It is.

【0019】[0019]

【発明の効果】本発明によれば従来むずかしいとされて
いた炭素系被膜の応用に際し、界面特性特に密着性の初
期および経時変化に対し、複合積層被膜という概念で構
成することで多大な改善効果を生じるものである。すな
わち被形成面上での界面C-O 結合の阻止効果並びに膜中
水素含有量の制御による熱応力のコントロールつまり膜
のトータル残留応力の低減により初めて工業的に実用可
能となったものである。
According to the present invention, in the application of a carbon-based coating which has been regarded as difficult in the past, a great improvement effect can be obtained by forming the composite multilayer coating on the interface characteristics, especially the initial stage and the change with time of the adhesion. Is caused. That is, it has become industrially practical for the first time by controlling the thermal stress by controlling the interfacial CO 2 bonding on the surface to be formed and controlling the hydrogen content in the film, that is, by reducing the total residual stress of the film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施に使用した平行平板プラズマ装
置の概要図。
FIG. 1 is a schematic view of a parallel plate plasma apparatus used for carrying out the present invention.

【図2】 本発明により作製された複合積層被膜の断面
図。
FIG. 2 is a cross-sectional view of a composite laminate film produced according to the present invention.

【図3】 被膜の膜厚と膜応力の関係を示す図。FIG. 3 is a graph showing a relationship between a film thickness and a film stress.

【図4】 被膜の膜厚と膜応力の関係を示す図。FIG. 4 is a diagram showing a relationship between a film thickness and a film stress of a film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化物表面を有する下地基材と、 前記下地基材上に形成された非酸化物である第一の被膜
と、 前記第一の被膜上に形成された炭素系被膜とを有するこ
とを特徴とする炭素系被膜を有する基材。
1. A base material having an oxide surface, a first non-oxide film formed on the base material, and a carbon-based film formed on the first film. A substrate having a carbon-based coating characterized by having a carbon-based coating.
【請求項2】 請求項1において、前記第一の被膜の内
部応力は、前記炭素系被膜の内部応力よりも小さいこと
を特徴とする炭素系被膜を有する基材。
2. The substrate according to claim 1, wherein the internal stress of the first coating is smaller than the internal stress of the carbon coating.
【請求項3】 請求項1または請求項2において、前記
第一の被膜は窒化珪素被膜であることを特徴とする炭素
系被膜を有する基材。
3. The substrate according to claim 1, wherein the first coating is a silicon nitride coating.
JP02412199A 1999-02-01 1999-02-01 Substrate having carbon-based coating Expired - Lifetime JP3195301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02412199A JP3195301B2 (en) 1999-02-01 1999-02-01 Substrate having carbon-based coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02412199A JP3195301B2 (en) 1999-02-01 1999-02-01 Substrate having carbon-based coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1036896A Division JPH07102640B2 (en) 1989-02-16 1989-02-16 Composite laminated coating

Publications (2)

Publication Number Publication Date
JPH11268164A true JPH11268164A (en) 1999-10-05
JP3195301B2 JP3195301B2 (en) 2001-08-06

Family

ID=12129489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02412199A Expired - Lifetime JP3195301B2 (en) 1999-02-01 1999-02-01 Substrate having carbon-based coating

Country Status (1)

Country Link
JP (1) JP3195301B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
US8009387B2 (en) 2007-01-18 2011-08-30 Sae Magnetics (Hk) Ltd. Forming an aluminum alloy oxynitride underlayer and a diamond-like carbon overcoat to protect a magnetic recording head and/or media
JP2013033585A (en) * 2011-08-02 2013-02-14 Hgst Netherlands B V Air bearing surface overcoat provided with soft interlayer and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014104B2 (en) * 2007-03-21 2011-09-06 Sae Magnetics (Hk) Ltd. Magnetic head/disk with transition metal oxynitride adhesion/corrosion barrier and diamond-like carbon overcoat bilayer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
US8009387B2 (en) 2007-01-18 2011-08-30 Sae Magnetics (Hk) Ltd. Forming an aluminum alloy oxynitride underlayer and a diamond-like carbon overcoat to protect a magnetic recording head and/or media
US8018682B2 (en) 2007-01-18 2011-09-13 Sae Magnetics (Hk) Ltd. Magnetic disk comprising an aluminum alloy oxynitride underlayer and a diamond-like carbon overcoat
JP2013033585A (en) * 2011-08-02 2013-02-14 Hgst Netherlands B V Air bearing surface overcoat provided with soft interlayer and manufacturing method thereof

Also Published As

Publication number Publication date
JP3195301B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
JP2610469B2 (en) Method for forming carbon or carbon-based coating
WO2001080309A3 (en) A method to enhance the adhesion of silicon nitride to low-k fluorinated amorphous carbon using a silicon carbide adhesion promoter layer
JPH11100671A (en) Hard carbon base coating film
JP3195301B2 (en) Substrate having carbon-based coating
JP3195302B2 (en) Method for producing base material having carbon-based coating
JPH07102640B2 (en) Composite laminated coating
JPH02182880A (en) Coating film made of carbon or having carbon as main component via buffer layer and production thereof
JP2852380B2 (en) Method for forming carbon or carbon-based coating
JP2744970B2 (en) Magnetic recording media
JP2775278B2 (en) Preparation method of carbon-based coating
JP3192109B2 (en) Electrical components
JP2990220B2 (en) Carbon or carbon-based coating
JP3236600B2 (en) Method of forming carbon or carbon-based coating
JP3236594B2 (en) Member with carbon film formed
JP3236602B2 (en) Method of forming carbon or carbon-based coating
JP3236599B2 (en) Complex
JP3236848B2 (en) Electrical component
JP3236598B2 (en) Method of forming carbon or carbon-based coating
JP3236595B2 (en) Coating method
JP2791655B2 (en) Manufacturing method of magnetic recording medium
JP2775263B2 (en) Member covered with carbon film
JP3321139B2 (en) Element
JP3236855B2 (en) Complex
JP3057072B2 (en) Method for producing diamond-like carbon film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8