JPH11265781A - Heating element - Google Patents

Heating element

Info

Publication number
JPH11265781A
JPH11265781A JP10082444A JP8244498A JPH11265781A JP H11265781 A JPH11265781 A JP H11265781A JP 10082444 A JP10082444 A JP 10082444A JP 8244498 A JP8244498 A JP 8244498A JP H11265781 A JPH11265781 A JP H11265781A
Authority
JP
Japan
Prior art keywords
fiber
heat
conductive
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10082444A
Other languages
Japanese (ja)
Inventor
Noboru Hirano
登 平野
Atsushi Nanjo
敦 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mitsubishi Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mitsubishi Oil Corp filed Critical Nippon Mitsubishi Oil Corp
Priority to JP10082444A priority Critical patent/JPH11265781A/en
Publication of JPH11265781A publication Critical patent/JPH11265781A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To make heating wires and electrodes located beneath a heat equalizing plate visible from the surface without impairing the primary characteristic of the heat equalizing plate for uniformly dispersing heat and prevent nails from being driven at heating wire portions and electrode portions by applying boring to a heat equalizing material for uniformly dispersing the heat generated from heating members actively generating heat. SOLUTION: Many through holes are bored on a heat equalizing material, and electric conductive portions, i.e., heat conductive fibers, heating wires and electric circuits, can be seen from above a heating element through the holes. One or more auxiliary electrodes may be formed in the middle of conductive fibers in addition to electrodes at both ends to unify temperature distribution. The conductive fibers can be arranged in parallel and/or in series as electric circuits. When two or more conductive fibers are made a block and electrodes are arranged between the blocks arranged in series, the voltage applied to the conductive fibers can be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、保温・暖房用とし
て住宅、建築物、家畜用建物、植物栽培用温室、乗り物
の床、壁、窓、天井などの構造物および毛布、ソファ、
絨毯、マット、シートなどの衣類、家具、家電製品、恒
温槽用などの業務用電気製品あるいは凍結防止、除雪用
としてアスファルト、コンクリート、建築物の屋根、軒
などの基材に固定される発熱体の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to structures such as houses, buildings, livestock buildings, greenhouses for plant cultivation, floors, walls, windows, ceilings, etc. of vehicles, blankets, sofas, etc.
Heating elements fixed to base materials such as asphalt, concrete, building roofs, eaves, etc. for clothing, furniture, household appliances, commercial electrical appliances such as thermostats, or for freezing and snow removal, such as carpets, mats and sheets. It is related to the improvement of.

【0002】[0002]

【従来の技術】従来の発熱体は、均熱のためアルミ箔な
どの金属箔を表面に配する構造になっている。このた
め、発熱線や電極がどの部分にあるかが表面から見え
ず、住宅、建築物、家畜用建物、植物栽培用温室、乗り
物の床、壁、窓、天井などの構造物および毛布、ソフ
ァ、絨毯、マット、シートなどの衣類、家具、家電製
品、恒温槽用などの業務用電気製品あるいは凍結防止、
除雪用としてアスファルト、コンクリート、建築物の屋
根、軒などの基材に固定する際に、固定用の釘やネジな
どを配線部分や電極部分に打ち込んでしまう事故が発生
する原因となっていた。
2. Description of the Related Art A conventional heating element has a structure in which a metal foil such as an aluminum foil is disposed on a surface for uniform heat. For this reason, it is not possible to see where the heating wires and electrodes are located from the surface, and structures such as houses, buildings, livestock buildings, greenhouses for plant cultivation, floors, walls, windows and ceilings of vehicles, blankets, sofas , Carpets, mats, sheets and other clothing, furniture, home appliances, commercial appliances such as thermostats, or freeze protection,
When fixing to asphalt, concrete, a roof of a building, eaves, or the like for snow removal, a nail or a screw for fixing may be driven into a wiring portion or an electrode portion, causing an accident.

【0003】また、均熱板表面に釘打ちやネジ止めなど
が可能な位置を明示しても、実際に施工する施工業者
は、釘打ちやネジ止めが可能な部分と不可能な部分の違
いの理由が表面から見た限りではわからず、しばしば釘
打ちやネジ止めが不可能な部分に釘打ちやネジ止めする
原因となっている。さらには、表面が金属面であると、
施工業者に金属板と勘違いされ、乱雑に扱われたりする
原因にもなっていた。
[0003] In addition, even if the location where nailing or screwing is possible is specified on the surface of the soaking plate, the actual contractor does not know the difference between the area where nailing or screwing is possible and the area where it is not possible. The reason is not clear from the viewpoint of the surface, and often causes nailing or screwing in a portion where nailing or screwing is impossible. Furthermore, if the surface is a metal surface,
It was misunderstood by the contractor as a metal plate, and was a cause of being handled in a mess.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
解決し、均熱板の熱を均等に拡散させる本来の特性を損
なわずかつ、均熱板の下に位置する発熱線や電極などが
表面から見え、発熱線部分や電極部分に釘などを打ち込
むことを防止するとともに、発熱体であることが一見し
てわかる発熱体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and slightly reduces the original characteristic of uniformly distributing the heat of the heat equalizing plate. It is an object of the present invention to provide a heating element that can be seen from the surface and prevent nails or the like from being driven into a heating wire portion or an electrode portion, and can be seen at a glance as a heating element.

【0005】[0005]

【課題を解決するための手段】即ち、本発明は能動的に
発熱する発熱部材と、該発熱部材から発生する熱を均一
に拡散するための均熱材とを具備する発熱体であって、
該均熱材が孔開け加工されていることを特徴とする発熱
体に関する。
That is, the present invention relates to a heating element including a heating member that actively generates heat and a soaking material for uniformly dispersing the heat generated from the heating member.
The present invention relates to a heating element characterized in that the heat equalizing material is perforated.

【0006】[0006]

【発明の実施の形態】本発明の均熱材は多数の貫通孔を
開けて電気の導通部分、例えば熱伝導性繊維、発熱線、
電気回路などが孔を通して発熱体上部から見ることがで
きればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The heat equalizing material of the present invention has a large number of through-holes to form an electricity conducting portion, such as a heat conductive fiber, a heating wire, or the like.
It suffices if an electric circuit or the like can be seen from above the heating element through the hole.

【0007】該均熱材の孔は任意の形状に開けることが
でき、丸形、四角形、三角形、六角形、楕円形、波形、
十字形、菱形、線形、蛇行曲線形あるいはこれらの組み
合わせなど様々な形状を採用することができる。
[0007] The holes of the heat equalizing material can be formed in any shape, such as round, square, triangular, hexagonal, elliptical, corrugated,
Various shapes such as a cross, a rhombus, a line, a meandering curve, or a combination thereof can be adopted.

【0008】孔のサイズの制限もないが、通常0.5〜
10mm、好ましくは1〜5mmの大きさであることが
できる。均熱材の孔形状について具体的には図1〜3に
示す形状、サイズのものなどを好ましく用いることがで
きる。但し、同図においてDは孔径を、Pは心距をいず
れもmm単位で示す。また、図1〜3に記載される各孔
形状同士の寸法は等倍で示す。孔開け加工は均熱材の全
体に均一に開けることができるが、電気の導通部分およ
びその周辺にのみ孔開け加工することもできる。
Although there is no restriction on the size of the hole, it is usually 0.5 to
It can be of a size of 10 mm, preferably 1-5 mm. About the hole shape of a heat equalizing material, the thing of the shape and size specifically shown to FIGS. 1-3 can be preferably used. In the drawing, D indicates the hole diameter, and P indicates the center distance in mm. In addition, the dimensions of the hole shapes shown in FIGS. The perforating process can be performed uniformly on the entire heat equalizing material, but the perforating process can also be performed only on a portion where electricity is conducted and its periphery.

【0009】本発明で使用する均熱材はどのような発熱
体でも適用することができるが樹脂に発熱部材を埋め込
んだ発熱体、例えば樹脂あるいは繊維強化プラスチック
で挟んだ導電性繊維に通電することで発熱する発熱体、
さらに好ましくは非導電性繊維および導電性繊維の交点
を接合してなる発熱体用の網目状構造体の両端において
導電性繊維と電極とを接続するように配置した発熱部を
樹脂に包埋した発熱体用の繊維強化樹脂成形体あるいは
該発熱部の上部および/あるいは下部に繊維強化樹脂プ
リプレグシートを積層して成形した発熱体用の繊維強化
樹脂成形体の上部あるいは/および下部に本発明の均熱
材を固定した発熱体に用いることができる。
The soaking material used in the present invention can be applied to any heating element. However, it is necessary to apply a current to a heating element in which a heating member is embedded in a resin, for example, a conductive fiber sandwiched between resin or fiber-reinforced plastic. Heating element that generates heat at
More preferably, a heating portion arranged to connect the conductive fiber and the electrode at both ends of the mesh structure for the heating element formed by joining the intersections of the non-conductive fiber and the conductive fiber is embedded in a resin. The present invention is applied to an upper part and / or a lower part of a fiber-reinforced resin molded body for a heating element or a fiber-reinforced resin molded article for a heating element formed by laminating a fiber-reinforced resin prepreg sheet on the upper and / or lower part of the heating part. It can be used for a heating element to which a soaking material is fixed.

【0010】本発明で使用する非導電性繊維としては導
電率10-5S/m以下、好ましくは10-9S/m以下の
非導電性繊維であればどのような繊維でも用いることが
でき、ガラス繊維、アラミド繊維、セラミック繊維、ア
ルミナ繊維、ナイロン繊維などが該非導電性繊維として
好ましく用いられる。
As the non-conductive fiber used in the present invention, any fiber can be used as long as it has a conductivity of 10 -5 S / m or less, preferably 10 -9 S / m or less. , Glass fiber, aramid fiber, ceramic fiber, alumina fiber, nylon fiber and the like are preferably used as the non-conductive fiber.

【0011】また該非導電性繊維は通常耐熱温度が80
℃以上、好ましくは100℃以上、より好ましくは15
0℃以上の繊維が用いられる。非導電性繊維は好ましく
は連続繊維であり、10〜100,000フィラメン
ト、好ましくは500〜12,000フィラメントから
構成される。
The non-conductive fiber usually has a heat resistant temperature of 80.
° C or higher, preferably 100 ° C or higher, more preferably 15 ° C or higher.
Fibers at 0 ° C. or higher are used. The non-conductive fibers are preferably continuous fibers and consist of 10 to 100,000 filaments, preferably 500 to 12,000 filaments.

【0012】本発明で用いられる導電性繊維としては発
熱体として利用可能な導電性の繊維であればいずれの繊
維でも良く、通常導電率10〜107 S/m、好ましく
は103 〜107 S/m、より好ましくは104 〜10
6 S/mの繊維が用いられる。
The conductive fiber used in the present invention may be any fiber as long as it is a conductive fiber that can be used as a heating element, and usually has a conductivity of 10 to 10 7 S / m, preferably 10 3 to 10 7. S / m, more preferably 10 4 to 10
6 S / m fibers are used.

【0013】該導電性繊維としてカーボンブラックや銅
粉などの金属粒子を分散した樹脂などからなる導電性繊
維、ポリアセチレン、ポリピロール、ポリピリジン自体
あるいはこれに金属をドープした導電性高分子繊維、
鉄、銅、ニッケル、クロムなどの金属やステンレス、N
i−Cr、Ni−Cu−Fe、Ni−Cuなどの合金を
原料とした金属繊維および炭素繊維などが挙げられる
が、特に入手しやすさ、軽量性、可撓性、耐食性、引張
強度の優れる点から炭素繊維が好ましく用いられる。
As the conductive fiber, a conductive fiber made of a resin or the like in which metal particles such as carbon black and copper powder are dispersed, polyacetylene, polypyrrole, polypyridine itself or a conductive polymer fiber doped with a metal,
Metals such as iron, copper, nickel and chromium, stainless steel, N
Examples thereof include metal fibers and carbon fibers made from alloys such as i-Cr, Ni-Cu-Fe, and Ni-Cu. Particularly, they are excellent in availability, light weight, flexibility, corrosion resistance, and tensile strength. From the viewpoint, carbon fiber is preferably used.

【0014】炭素繊維はピッチ系、ポリアクリロニトリ
ル(PAN)系、セルロース系炭素繊維などあらゆる種
類の炭素繊維が導電性繊維として用いられる。該炭素繊
維は配向性があり高い温度で焼成した繊維ほど導電率は
良くなるが、該焼成温度は800〜3300℃、好まし
くは1100℃〜2800℃で処理した炭素繊維および
/あるいは0.5〜10g/フィラメント、好ましくは
1〜5g/フィラメントの張力をかけて焼成した炭素繊
維が好ましく用いることができる。導電性繊維は好まし
くは連続繊維であり、それぞれ10〜100,000フ
ィラメント、好ましくは500〜12,000フィラメ
ントからなる導電性繊維束で構成することができる。
As the carbon fibers, all kinds of carbon fibers such as pitch-based, polyacrylonitrile (PAN) -based, and cellulosic-based carbon fibers are used as the conductive fibers. The carbon fibers are oriented and have higher conductivity as the fibers are fired at a higher temperature. The firing temperature is 800 to 3300 ° C, preferably 1100 ° C to 2800 ° C. Carbon fibers fired with a tension of 10 g / filament, preferably 1 to 5 g / filament, can be preferably used. The conductive fiber is preferably a continuous fiber, and can be constituted by a conductive fiber bundle composed of 10 to 100,000 filaments, preferably 500 to 12,000 filaments.

【0015】導電性繊維および非導電性繊維は少なくと
も一方の繊維を熱可塑性樹脂あるいは熱可塑性樹脂繊維
を任意の割合で、好ましくは熱可塑性樹脂繊維を5〜7
0mass%、より好ましくは10〜60mass%の
割合で混成することができる。ここで混成とは上記導
電性繊維あるいは非導電繊維の100〜100,000
フィラメントからなる1本の繊維束が熱可塑性樹脂で被
覆されていること、導電性繊維あるいは非導電性繊維
および熱可塑性繊維が100〜100,000フィラメ
ントの1本の繊維束として混繊されていること、導電
性繊維あるいは非導電性繊維の表面に熱可塑性樹脂繊維
が規則的あるいはランダムに付着して1本の繊維束とな
っていることをいう。
The conductive fiber and the non-conductive fiber may be made of a thermoplastic resin or a thermoplastic resin fiber at an arbitrary ratio, preferably 5 to 7 fibers.
It can be mixed at a ratio of 0 mass%, more preferably 10 to 60 mass%. Here, the hybrid means 100 to 100,000 of the conductive fiber or the non-conductive fiber.
One fiber bundle consisting of filaments is coated with a thermoplastic resin, and conductive fibers or non-conductive fibers and thermoplastic fibers are mixed as one fiber bundle of 100 to 100,000 filaments. This means that the thermoplastic resin fibers are regularly or randomly attached to the surface of the conductive fiber or the non-conductive fiber to form one fiber bundle.

【0016】被覆方法は押出法、熱可塑性樹脂を熱溶融
あるいはエマルジョン化して浸漬法、スプレー法、静電
塗装法など繊維束内外部、特に繊維束外部を樹脂で被覆
する方法であればどのような方法でも良く、また融点、
分子量、化学的組成など物理的・化学的構造の異なる2
種類の樹脂を用いて2層以上に被覆しても良い。この場
合外側の熱可塑性樹脂は内側の熱可塑性樹脂よりも低融
点のものを使用すると繊維の被覆が十分に行えかつ繊維
同士の交点で接合も容易である。
The coating method may be any method that covers the inside and outside of the fiber bundle, particularly the outside of the fiber bundle, with a resin, such as an extrusion method, hot melting or emulsification of a thermoplastic resin, and dipping, spraying, and electrostatic coating. Method, melting point,
2 with different physical and chemical structures such as molecular weight and chemical composition
Two or more layers may be coated using different kinds of resins. In this case, if the outer thermoplastic resin has a lower melting point than that of the inner thermoplastic resin, the fiber can be sufficiently covered and the fiber can be easily joined at the intersection of the fibers.

【0017】また、混繊方法は各々の繊維100〜10
0,000フィラメントを空気流(エアージェット)な
どで均一に混ぜ合わせる方法が好ましく用いられる。上
記導電性繊維および非導電性繊維は撚りをかけてもかけ
なくても良い。撚りをかける時期は混繊繊維であれば混
繊後、その他の場合はいずれの工程で撚りをかけても良
い。撚りをかけた場合は特に導電性繊維、特に炭素繊維
の毛羽の発生を少なくできる。撚りをかける程度はどの
ような程度でもよいが、網目状構造の交点で押しつぶさ
れ偏平になって良好な接合を有する程度が好ましい。
In addition, the fiber mixing method is such that each fiber 100 to 10
A method of uniformly mixing the 0000 filaments with an air stream (air jet) or the like is preferably used. The conductive fiber and the non-conductive fiber may or may not be twisted. Twisting may be performed after blending if it is a mixed fiber, and in other cases, twisting may be performed in any process. When twisting is performed, generation of fluff of conductive fibers, particularly carbon fibers, can be reduced. The degree of twisting may be any degree, but is preferably such that it is crushed and flattened at the intersection of the network structure and has good bonding.

【0018】熱可塑性樹脂および熱可塑性樹脂繊維は熱
可塑性樹脂として通常知られる樹脂であればどのような
樹脂でも用いることができ、好ましくはナイロン樹脂、
液晶性芳香族ポリアミド樹脂、ポリエステル樹脂、液晶
性芳香族ポリエステル樹脂、ポリプロピレン樹脂、ポリ
エーテルスルホン樹脂、ポリフェニレンサルファイド樹
脂、ポリエーテルエーテルケトン樹脂、ポリスルホン樹
脂、ポリ塩化ビニル樹脂、ビニロン樹脂、アラミド樹
脂、フッ素樹脂などの樹脂が用いられる。
As the thermoplastic resin and the thermoplastic resin fiber, any resin can be used as long as it is a resin generally known as a thermoplastic resin.
Liquid crystalline aromatic polyamide resin, polyester resin, liquid crystalline aromatic polyester resin, polypropylene resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, polysulfone resin, polyvinyl chloride resin, vinylon resin, aramid resin, fluorine Resin such as resin is used.

【0019】上記熱可塑性樹脂の融点は導電性繊維およ
び非導電性繊維に含浸されるマトリックス樹脂の熱硬化
温度あるいは熱溶融温度よりも高いことが好ましいが、
高くなくても網目状構造体の形状を保持することは可能
であり、問題ない。
The melting point of the thermoplastic resin is preferably higher than the thermosetting or melting temperature of the matrix resin impregnated in the conductive fibers and the non-conductive fibers.
Even if it is not high, it is possible to maintain the shape of the network structure, and there is no problem.

【0020】耐熱温度は80℃以上、好ましくは100
℃以上、より好ましくは150℃以上ある熱可塑性樹脂
および熱可塑性樹脂繊維が用いられる。また、導電性繊
維と混成する熱可塑性樹脂および熱可塑性樹脂繊維の場
合はカーボンブラックや銀、銅などの金属粒子を分散し
た熱可塑性樹脂および熱可塑性樹脂繊維などからなる導
電性樹脂あるいは導電性樹脂繊維を用いてもよい。
The heat-resistant temperature is 80 ° C. or higher, preferably 100
A thermoplastic resin and a thermoplastic resin fiber having a temperature of 150 ° C. or higher, more preferably 150 ° C. or higher, are used. In the case of a thermoplastic resin mixed with a conductive fiber and a thermoplastic resin fiber, a conductive resin or a conductive resin made of a thermoplastic resin and a thermoplastic resin fiber in which metal particles such as carbon black, silver, and copper are dispersed. Fibers may be used.

【0021】該導電性樹脂あるいは導電性樹脂繊維の導
電率は10-2〜105 S/mあることが好ましい。
The conductivity of the conductive resin or the conductive resin fiber is preferably 10 -2 to 10 5 S / m.

【0022】導電性繊維および非導電性繊維は任意の目
開きの網目状に形成し、次いで加熱処理することにより
導電性繊維および非導電性繊維各々の交点で熱可塑性樹
脂あるいは熱可塑性樹脂繊維が融着することによって接
合する。
The conductive fiber and the non-conductive fiber are formed into a mesh with arbitrary openings, and then subjected to a heat treatment to form a thermoplastic resin or a thermoplastic resin fiber at each intersection of the conductive fiber and the non-conductive fiber. Joined by fusing.

【0023】加熱温度は導電性繊維および非導電性繊維
が融着できる温度以上であれば良く、好ましくは熱可塑
性樹脂あるいは熱可塑性樹脂繊維の溶融温度以上、通常
100〜400℃の範囲で行う。
The heating temperature may be at least a temperature at which the conductive fibers and the non-conductive fibers can be fused, and is preferably at least the melting temperature of the thermoplastic resin or the thermoplastic resin fibers, usually in the range of 100 to 400 ° C.

【0024】加熱融着方法としては、加熱したプレスや
熱ロールによる圧着、張力下あるいは無張力下での高温
槽や熱風の吹き付けによる熱溶融などどのような方法を
用いても良い。
As the heat fusion method, any method such as pressure bonding with a heated press or a hot roll, hot melting under tension or no tension, or hot melting by blowing hot air may be used.

【0025】該融着工程で熱可塑性樹脂および熱可塑性
樹脂繊維は少なくとも交点で熱溶融して融着しているこ
とが必要であるが、交点の融着が完全であれば交点部分
の熱可塑性樹脂および熱可塑性樹脂繊維内部あるいは一
部が未溶融であっても問題ない。また該融着工程で交点
部分以外で熱可塑性樹脂あるいは熱可塑性樹脂繊維の全
体が熱溶融してもあるいは一部分が未溶融のままであっ
ても問題ない。
In the fusing step, it is necessary that the thermoplastic resin and the thermoplastic resin fiber are heat-melted and fused at least at the intersections. If the fusion at the intersections is complete, the thermoplasticity of the intersections is sufficient. There is no problem even if the inside or a part of the resin and the thermoplastic resin fiber is not melted. In addition, there is no problem even if the entire thermoplastic resin or thermoplastic resin fiber is thermally melted or a part of the thermoplastic resin is not melted except for the intersection in the fusion step.

【0026】上記網目状構造は平織り、綾織り、朱子織
り、絡み織り、模しゃ織りなどの織物、井桁状組布、3
軸組布、多軸組布などの織機を用いないで造った組布と
いわれるメッシュ状の不織布など任意の構造とすること
ができるが、製造工程の簡単なことなどから組布が好ま
しく用いられる。
The net-like structure is a plain weave, a twill weave, a satin weave, an entangled weave, a weave, or the like, a girder-like braid,
Any structure such as a mesh-like nonwoven fabric called a braid made without using a loom such as a framed fabric or a multi-axis braided fabric can be used, but a braided fabric is preferably used because of a simple manufacturing process. .

【0027】このときの各繊維の配置方向は、網目状構
造を形成すればどのような配置でも良いが、例えば
[a]導電性繊維を経糸方向など一方向に配置し、非導
電性繊維を導電繊維と実質的に直交する方向に配置して
織物状あるいは組布状に形成する方法、[b]導電性繊
維を経糸方向など一方向に配置し、非導電性繊維を導電
繊維と同じ方向および異なった一方向以上の複数の方向
に配置し織物状あるいは組布状に形成するような方法な
どを用いることができる。
The arrangement direction of each fiber at this time may be any arrangement as long as a network structure is formed. For example, [a] conductive fibers are arranged in one direction such as the warp direction, and non-conductive fibers are arranged in one direction. A method in which the conductive fibers are arranged in a direction substantially perpendicular to the conductive fibers to form a woven or braided shape, [b] the conductive fibers are arranged in one direction such as a warp direction, and the non-conductive fibers are in the same direction as the conductive fibers. In addition, a method of arranging in a plurality of directions, one or more different directions, and forming a woven or braided shape can be used.

【0028】なお、組布状に形成するときは導電性繊維
の上下に非導電性繊維を配置する方法、導電性繊維の上
部のみあるいは下部のみに非導電性繊維を配置する方法
何れの方法も用いることができるが、導電性繊維を保護
するため組布状あるいは目開きの大きな織物状の非導電
性繊維を導電性繊維の上下方向から挟んで融着する方法
が好ましく採用される。
When forming into a braided form, any of the method of arranging non-conductive fibers above and below the conductive fibers and the method of arranging non-conductive fibers only at the upper part or only at the lower part of the conductive fibers are used. Although it can be used, in order to protect the conductive fibers, a method in which non-conductive fibers in the form of a woven fabric or a fabric having large openings are sandwiched and fused from above and below the conductive fibers is preferably employed.

【0029】上記のように配置した導電性繊維は繊維の
交点が熱溶融して融着したとき偏平な断面形状となる
が、偏平な繊維の方が表面積が大きくなり発熱効率は向
上する。
The conductive fibers arranged as described above have a flat cross-sectional shape when the intersections of the fibers are melted by heat melting, but the flat fibers have a larger surface area and the heat generation efficiency is improved.

【0030】上記導電性繊維は必ずしも網目状構造体内
に均等に配置させる必要はなく、上記[a]、[b]の
配置の場合であれば導電性繊維束を2本以上、好ましく
は5〜15本を1組とした2以上の複数のブロックに分
け、各ブロック間の間を開けて配置することもできる。
The conductive fibers need not necessarily be evenly arranged in the network structure. In the case of the arrangements [a] and [b], two or more conductive fiber bundles, preferably five to five, are used. It is also possible to divide the 15 blocks into two or more blocks as one set, and arrange them with a space between each block.

【0031】各ブロック内の導電性繊維は各導電性繊維
同士が接触しない距離で、好ましくは1〜100mm、
より好ましくは3〜50mmの間隔で平行に配置され、
さらに各ブロック間は10〜300mm、好ましくは3
0〜150mmの間隔を開けて平行に配置することがで
きる。
The conductive fibers in each block are at a distance at which the conductive fibers do not contact each other, preferably 1 to 100 mm,
More preferably, they are arranged in parallel at intervals of 3 to 50 mm,
Further, the distance between each block is 10 to 300 mm, preferably 3 mm.
They can be arranged in parallel at an interval of 0 to 150 mm.

【0032】該導電性繊維同士および該非導電性繊維同
士の目開きは目的に応じて任意の範囲で行うことができ
るが、好ましくは上記交点を融着したときに繊維束同士
が該交点以外で融着しない範囲であればよく、目開きの
下限が1mm以上、好ましくは2mm以上、より好まし
くは5mm以上、最も好ましくは10mm以上であり、
上記範囲の上限は500mm以下、好ましくは100m
m以下、最も好ましくは50mm以下のものが適用され
る。
The openings between the conductive fibers and the non-conductive fibers can be made in an arbitrary range depending on the purpose. Preferably, when the above intersections are fused, the fiber bundles are joined at other than the intersections. Any range may be used as long as it does not fuse, and the lower limit of the aperture is 1 mm or more, preferably 2 mm or more, more preferably 5 mm or more, and most preferably 10 mm or more.
The upper limit of the above range is 500 mm or less, preferably 100 m
m or less, most preferably 50 mm or less is applied.

【0033】ここで目開きとは実質的に平行に配置され
た相隣り合う導電性繊維、非導電性繊維を含めた繊維同
士の間隔をいう。
Here, the aperture means a distance between fibers including adjacent conductive fibers and non-conductive fibers which are arranged substantially in parallel.

【0034】上記下限以下であれば繊維同士が交点以外
で融着し網目状構造体の可撓性が失われ、加工性低下や
ロール巻きなどにして運搬しにくくなったり、導電性繊
維の露出面積が小さかったり、脱気が不十分で気泡の層
ができたりするため導電性繊維と電極とが接続しにくく
なってしまい、上記上限以上であれば網目状構造体の強
度や発熱体の発熱効率、補強効果が低下するため好まし
くない。
If the lower limit is not exceeded, the fibers are fused together at points other than the intersections, and the flexibility of the network structure is lost. The conductive fiber and the electrode are difficult to connect to each other because the area is small or the layer of air bubbles is formed due to insufficient degassing. It is not preferable because the efficiency and the reinforcing effect are reduced.

【0035】融着後は雰囲気温度に冷却し端部を設計寸
法にトリミングして巻き取り機にて巻き取ることも好ま
しく採用される。
After the fusion, it is also preferable to cool to an ambient temperature, trim the end to a designed size, and wind it with a winder.

【0036】また該網目状構造体を適当な幅・長さに切
断、成形しても良い。このとき該網目状構造体の交点は
融着しているため、任意の形状に加工することは容易で
ある。該網目状構造体は任意の位置に配置し、繊維強化
樹脂成形体に成形することができる。該繊維強化樹脂成
形体は該網目状構造体に銅線などの電極を接続してお
り、マトリックス樹脂を含浸するかあるいは繊維強化プ
リプレグを積層することができる(図4)。
Further, the network structure may be cut and formed into an appropriate width and length. At this time, since the intersections of the network structure are fused, it is easy to work into an arbitrary shape. The network structure can be arranged at an arbitrary position and molded into a fiber-reinforced resin molded product. The fiber-reinforced resin molded body has an electrode such as a copper wire connected to the network structure, and can be impregnated with a matrix resin or laminated with a fiber-reinforced prepreg (FIG. 4).

【0037】該繊維強化プリプレグの強化繊維はガラス
繊維などの非導電性繊維で構成されていることが好まし
く、これにより補強効果だけでなく絶縁効果を増すこと
ができる。該強化繊維には非導電性の任意の繊維が利用
できるがガラス繊維、アラミド繊維、セラミック繊維、
アルミナ繊維、ナイロン繊維などが好ましく用いられ
る。該強化繊維は一方向材、織物、不織布などどのよう
な繊維形態でもよい。
The reinforcing fibers of the fiber-reinforced prepreg are preferably composed of non-conductive fibers such as glass fibers, so that not only the reinforcing effect but also the insulating effect can be increased. As the reinforcing fiber, any non-conductive fiber can be used, but glass fiber, aramid fiber, ceramic fiber,
Alumina fiber, nylon fiber and the like are preferably used. The reinforcing fiber may be in any fiber form such as a unidirectional material, a woven fabric, and a nonwoven fabric.

【0038】該繊維強化プリプレグ層の厚さは0.05
〜0.5mmであることが均熱材に熱を伝えやすく好ま
しい。該繊維強化プリプレグの樹脂は用途に応じて任意
の樹脂を用いることができるが、好ましくは熱可塑性樹
脂および熱硬化性樹脂が用いられ、さらに好ましくはポ
リエーテルエーテルケトン樹脂、ポリフェニレンサルフ
ァイド樹脂、ポリアミドイミド樹脂、ポリエステル樹
脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、
不飽和ポリエステル樹脂などを用いることができる。
The thickness of the fiber reinforced prepreg layer is 0.05
It is preferably 0.5 mm to 0.5 mm because heat can be easily transmitted to the soaking material. As the resin of the fiber reinforced prepreg, any resin can be used depending on the application, but a thermoplastic resin and a thermosetting resin are preferably used, and a polyether ether ketone resin, a polyphenylene sulfide resin, and a polyamide imide are more preferable. Resin, polyester resin, polyimide resin, phenol resin, epoxy resin,
An unsaturated polyester resin or the like can be used.

【0039】該樹脂は耐熱性があることが好ましく、8
0℃以上、好ましくは100℃、より好ましくは150
℃以上の耐熱性のある樹脂を用いることができる。
The resin preferably has heat resistance.
0 ° C. or higher, preferably 100 ° C., more preferably 150 ° C.
A resin having heat resistance of not less than ° C. can be used.

【0040】さらに、該繊維強化樹脂成形体は均熱材を
上面あるいは/および下面に固定し、さらに下面に断熱
材を固定して発熱体にすることができる(図6)。
Further, in the fiber-reinforced resin molded product, a heat equalizer can be fixed to the upper surface and / or lower surface, and a heat insulating material can be further fixed to the lower surface to form a heating element (FIG. 6).

【0041】該発熱体を床に固定するために網目状構造
体を張り合わせた反対側から針、釘、ボルト、ネジなど
を打ち込む印を付けるが本発明の発熱体は形状保持性、
寸法安定性に優れるため該印の範囲を精度良く付けるこ
とができかつ導電性繊維を目視確認できるので導電性繊
維を釘などによって切断してしまうことがなくかつ漏電
防止性に優れた発熱体を製造することができる。
In order to fix the heating element on the floor, a mark for driving a needle, a nail, a bolt, a screw, or the like is made from the opposite side where the mesh-like structure is attached.
Since the dimensional stability is excellent, the range of the mark can be accurately attached and the conductive fiber can be visually confirmed, so that the conductive fiber is not cut by a nail or the like and the heating element is excellent in the electric leakage prevention property. Can be manufactured.

【0042】該発熱体は具体的には以下のように製造す
る。適当な長さの網目状構造体を1枚あるいは複数枚の
場合は任意の間隔あるいは等間隔で平行に配置させるこ
とができる。
The heating element is specifically manufactured as follows. When one or a plurality of network structures having an appropriate length are used, they can be arranged in parallel at arbitrary intervals or at equal intervals.

【0043】上記のように配置した発熱体用の網目状構
造体の導電性繊維の両端部は銅、アルミなどの金属製箔
片を用いて導電性繊維と接続するように固定するかある
いはカーボンペースト、銀ペーストなどの導電性樹脂、
はんだ、金属製ホルダー、黒鉛製ホルダーなどを用いて
固定して電極を作製することができる。
The both ends of the conductive fibers of the mesh structure for the heating element arranged as described above are fixed to be connected to the conductive fibers by using metal foil pieces such as copper or aluminum, or carbon fibers are used. Conductive resin such as paste and silver paste,
The electrode can be fixed by using a solder, metal holder, graphite holder, or the like.

【0044】電極の大きさは幅5〜100mm、好まし
くは幅10〜50mmの電極が採用される。このときの
金属性箔片、導電性樹脂およびはんだの融点はマトリッ
クス樹脂の樹脂硬化温度あるいは熱溶融温度より高いこ
とかつ耐熱性があることが望ましい。
Electrodes having a width of 5 to 100 mm, preferably 10 to 50 mm, are employed. At this time, it is desirable that the melting points of the metal foil pieces, the conductive resin and the solder are higher than the resin curing temperature or the heat melting temperature of the matrix resin and have heat resistance.

【0045】電極は温度分布が均一になるように両端だ
けでなく、導電性繊維の中間に1つ以上の補助電極を作
製してもよい。また、各導電性繊維は電気回路として並
列配置および/あるいは直列配置することができるが、
例えば2以上の導電性繊維を1ブロックとして、各ブロ
ック間が直列配置になるように電極を配置すれば各導電
性繊維にかけられる電圧を低くすることができ、導電性
繊維の過熱を防止することができ好ましい(図4)。
One or more auxiliary electrodes may be formed not only at both ends but also between conductive fibers so that the temperature distribution becomes uniform. Also, each conductive fiber can be arranged in parallel and / or in series as an electric circuit,
For example, if two or more conductive fibers are used as one block and electrodes are arranged so that the blocks are arranged in series, the voltage applied to each conductive fiber can be reduced, and the conductive fibers can be prevented from overheating. (FIG. 4).

【0046】上記電極を付与した網目状構造体の電極側
に該リード線貫通孔を開けた繊維強化プリプレグを、電
極側と反対側には貫通孔のない繊維強化プリプレグを積
層し、さらにその両面をポリエステルフィルムで包み加
圧・加熱して繊維強化樹脂成形体を製造する。
A fiber reinforced prepreg having the lead wire through hole is laminated on the electrode side of the mesh-like structure provided with the electrodes, and a fiber reinforced prepreg having no through hole is laminated on the side opposite to the electrode side. Is wrapped in a polyester film and pressurized and heated to produce a fiber-reinforced resin molded article.

【0047】該繊維強化プリプレグの貫通孔は直径5〜
50mmの範囲であり、孔を開けた後はシリコン製蓋を
埋め込むと成形後容易に蓋を取り除くことができる。
The fiber reinforced prepreg has a through hole having a diameter of 5 to 5.
After the hole is formed, the lid can be easily removed after molding by embedding a silicon lid.

【0048】上記成形法は繊維強化プリプレグを用いる
方法ではなく網目状構造体を型に入れて強化繊維を積層
後、樹脂を含浸させる方法も別な成形法として用いるこ
とができる。
The above-mentioned molding method is not a method using a fiber-reinforced prepreg, but a method in which a network structure is put into a mold, reinforcing fibers are laminated, and then a resin is impregnated can be used as another molding method.

【0049】成形体の成形後はリード線貫通孔のシリコ
ン製蓋を取り除き耐熱用リード線の一方を上記電極に接
続することができる。リード線の他方は複数の過熱防止
装置(サーモスタット、温度フューズ、熱電対など)を
接続し上記成形体下部の所定の位置に配置、固定するこ
とができる。上記繊維強化樹脂成形体においてリード線
および過熱防止・暖房制御装置を配した面は断熱材で覆
い、該断熱材を熱硬化樹脂などで固定することができ
る。
After the molding, the silicon cover of the lead wire through hole is removed, and one of the heat-resistant lead wires can be connected to the above-mentioned electrode. The other end of the lead wire can be connected to a plurality of overheat prevention devices (thermostat, temperature fuse, thermocouple, etc.) and arranged and fixed at a predetermined position below the molded body. The surface of the fiber-reinforced resin molded body on which the lead wires and the overheating prevention / heating control device are arranged can be covered with a heat insulating material, and the heat insulating material can be fixed with a thermosetting resin or the like.

【0050】断熱材はどのようなものでも良いが、通常
ポリエステルフェルトなどが好ましく用いられる。ま
た、該断熱材はリード線、過熱防止装置部分を打ち抜い
てから固定することもできる。
As the heat insulating material, any material can be used, but usually polyester felt or the like is preferably used. Further, the heat insulating material can be fixed after punching the lead wire and the overheat prevention device.

【0051】本発明では上記成形体において図6のよう
に断熱材やリード線などを配した面とは反対側、即ち表
側の面の繊維強化プリプレグの上部あるいは図示しない
がリード線などを配した面、即ち裏側の面の繊維強化プ
リプレグ下部に多数の孔を開けた金属板あるいは金属箔
を均熱材として配置し、発熱部である導電性繊維が釘打
ちのときに上部から見えるようにすることができる。こ
のようにして網目状構造体に断熱材および孔開け加工し
た均熱材を配した発熱体を製造することができる。
In the present invention, in the above-mentioned molded body, the upper surface of the fiber-reinforced prepreg on the side opposite to the surface on which the heat insulating material and the lead wires are arranged as shown in FIG. A metal plate or a metal foil with a number of holes is placed as a soaking material under the fiber reinforced prepreg on the surface, that is, on the back surface, so that the conductive fibers, which are the heating portion, can be seen from above when nailing. be able to. In this way, it is possible to manufacture a heating element in which a heat insulating material and a soaking material with perforated holes are arranged in a network structure.

【0052】該金属板あるいは金属箔は任意の金属が用
いられるが、熱伝導性に優れる銅、アルミ製のものを好
ましく使用することができる。リード線の端部は圧着端
子を取付ける。このようにして網目状構造体に断熱材お
よび均熱材を配した発熱体を製造することができる。
As the metal plate or metal foil, any metal can be used, but those made of copper or aluminum having excellent heat conductivity can be preferably used. Attach crimp terminals to the ends of the lead wires. In this way, it is possible to manufacture a heating element in which a heat insulating material and a soaking material are arranged in a network structure.

【0053】上記繊維強化樹脂成形体および発熱体は網
目状構造体を切断後製造する方法を開示したが、連続的
な網目状構造体を用いて繊維強化樹脂成形体あるいは発
熱体を製造した後に任意の長さ、幅に切断しても良い。
The method of manufacturing the above-mentioned fiber-reinforced resin molded article and the heating element after cutting the network structure has been disclosed. However, after manufacturing the fiber-reinforced resin molded article or the heating element using the continuous network structure, It may be cut to any length and width.

【0054】上記発熱体は導電性繊維部分および電極部
分を除けば、導電性繊維を切断することなく床表面材ご
と釘打ち固定することができ、かつ環境温度に左右され
ず安定して設定温度に制御することができる。
Except for the conductive fiber portion and the electrode portion, the heating element can be nailed and fixed together with the floor surface material without cutting the conductive fiber, and can be stably set at the set temperature regardless of the environmental temperature. Can be controlled.

【0055】また、発熱体の集中応力時の体荷重は20
0MPa以上、好ましくは300MPa以上、より好ま
しくは400MPa以上を有している。耐漏電性につい
ても該発熱体を25℃の水中に24時間浸漬しても均熱
材と電極間の絶縁抵抗は1MΩ以上、より好ましくは1
0MΩ以上を有しているため実用上全く問題がない。
The body load at the time of concentrated stress of the heating element is 20.
It has 0 MPa or more, preferably 300 MPa or more, more preferably 400 MPa or more. Regarding the leakage resistance, even if the heating element is immersed in water at 25 ° C. for 24 hours, the insulation resistance between the soaking material and the electrode is 1 MΩ or more, more preferably 1 MΩ.
Since it has 0 MΩ or more, there is no practical problem at all.

【0056】[0056]

【実施例】以下に具体的な実施例を挙げるが本発明はこ
れらの実施例に限定されないことはいうまでもない。 [実施例1]撚った炭素繊維(東レ(株)製T300、
導電率5×104 S/m)の3000フィラメントを1
本の導電性繊維の経糸として該経糸9本を1ブロックと
した。該ブロックを6ブロック作り、各ブロック内の炭
素繊維束間を1.5cm開け、さらに各ブロック間を1
2cm開けた配置で平行に並べ、該炭素繊維束を幅3m
mに開繊し、上下からガラス繊維と熱可塑性樹脂からな
るガラス繊維組布(格子状、目開き1cm、日東紡績
(株)製KC0505B、40g/m2 )を積層して加
熱し組布と導電性繊維の交点を融着し、発熱体用の網目
状構造体を製造した。該網目状構造体を長さ1m、幅1
mに切断し、切り出した網目状構造体は炭素繊維が4ブ
ロックに分かれていた。該網目状構造体の炭素繊維の両
端部を幅15mmの導電性粘着剤付き銅箔片(寺岡製作
所(株)製MFT−No.8321)で該導電性繊維と
銅箔片が接合するように固定し、かつ該網目状構造体内
の炭素繊維が各ブロック毎に電気回路的に直列つなぎに
なるように電極を接続した(図4)。
EXAMPLES Specific examples will be given below, but it goes without saying that the present invention is not limited to these examples. [Example 1] Twisted carbon fiber (T300 manufactured by Toray Industries, Inc.)
3000 filaments having a conductivity of 5 × 10 4 S / m)
Nine of the warp yarns were used as one block as warp yarns of the conductive fibers. The block is made up of 6 blocks, 1.5 cm is opened between carbon fiber bundles in each block, and 1
Arrange in parallel with an arrangement of 2 cm open, and lay the carbon fiber bundle 3 m in width.
m, and a glass fiber braid made of glass fiber and a thermoplastic resin (lattice, mesh size: 1 cm, Nitto Boseki Co., Ltd. KC0505B, 40 g / m 2 ) is laminated and heated from above and below. The intersections of the conductive fibers were fused to produce a network structure for the heating element. The reticulated structure is 1 m long and 1 width wide.
m, and the cut-out network structure had carbon fibers divided into four blocks. At both ends of the carbon fibers of the network structure, a copper foil piece with a conductive adhesive having a width of 15 mm (MFT-No. 8321 manufactured by Teraoka Seisakusho Co., Ltd.) is used to join the conductive fiber and the copper foil piece. The electrodes were fixed and connected such that the carbon fibers in the network structure were connected in series in an electric circuit for each block (FIG. 4).

【0057】該4ブロックの炭素繊維を有する網目状構
造体の上下からエポキシ樹脂を含浸させたガラス繊維ク
ロスプリプレグを積層し、さらにポリエステルフィルム
を該積層物の上下から挟んでオートクレーブ中で150
℃、10kgf/cm2 で1時間加圧加熱して繊維強化
樹脂成形体を製造した。但し、該成形体の直列配置した
両端の電極部分はリード線を固定できるようにあらかじ
め貫通孔を開けておいた。
A glass fiber cloth prepreg impregnated with epoxy resin is laminated from above and below the network structure having four blocks of carbon fibers, and a polyester film is sandwiched from above and below the laminated product in an autoclave.
The fiber was reinforced at a pressure of 10 kgf / cm 2 for 1 hour to produce a fiber-reinforced resin molded article. However, through-holes were previously formed in the electrode portions at both ends of the molded body arranged in series so that lead wires could be fixed.

【0058】リード線一端を該電極に接続固定し、他端
は過熱防止装置(ウチヤ・サーモスタット(株)製UP
72)を接続して該成形体下部に固定しその上からポリ
エステルフェルト(東洋紡(株)製エクシランHP−2
1)を断熱材として貼り合わせた。但し、リード線およ
び過熱防止装置は断熱材で覆わなかった。
One end of a lead wire is connected and fixed to the electrode, and the other end is an overheat prevention device (UPIYA Thermostat Co., Ltd., UP)
72) and fixed to the lower part of the molded body, and from above the polyester felt (Exsilane HP-2 manufactured by Toyobo Co., Ltd.)
1) was bonded as a heat insulating material. However, the lead wire and the overheat prevention device were not covered with the heat insulating material.

【0059】該繊維強化樹脂成形体の断熱材を貼り合わ
せた面とは反対側の面に図1のNo6に示す孔加工アル
ミ箔(鶴見金網(株)製、孔径3mm、ピッチ5mm、
厚さ0.2mm)を均熱材として貼り合わせて125W
のシート状発熱体を作製した。
On the surface of the fiber-reinforced resin molded body opposite to the surface on which the heat insulating material was bonded, the hole-formed aluminum foil (No. 6 in FIG. 1; manufactured by Tsurumi Wire Mesh Co., Ltd., hole diameter 3 mm, pitch 5 mm,
125W with a thickness of 0.2mm)
Was produced.

【0060】該発熱体を床表面材で覆い、釘打ちして固
定し、サーミスタをセンサとして使った温度制御システ
ムを接続し、床材システム(段谷産業(株)製ホットベ
ースFGB−008使用)に組み込んだ。
The heating element was covered with a floor surface material, fixed by nailing, connected to a temperature control system using a thermistor as a sensor, and a floor material system (using a hot base FGB-008 manufactured by Danya Sangyo Co., Ltd.) ).

【0061】上記の床材について発熱試験を行ったとこ
ろ環境温度が0、5、10、15、20、25℃のいず
れの温度でも床材の表面温度を30℃に制御できた。
An exothermic test was performed on the above floor material. As a result, the surface temperature of the floor material could be controlled to 30 ° C. at any of the environmental temperatures of 0, 5, 10, 15, 20, and 25 ° C.

【0062】また、床温30℃での温度分布について赤
外線画像温度解析装置(NEC三栄(株)製サーモトレ
ーサTH3100MR)を使用して測定したところ図5
(a)に示す温度分布が得られた。同図中、左側には床
材の表面温度分布を示す赤外線画像が示され、右側には
床材の温度分布を示すヒストグラムが示される。該ヒス
トグラムの結果から明らかなように本実施例の発熱体は
正規分布に近い好適な均熱性を示し、これは発熱体上部
に加工を施していない均熱アルミ箔を使用した場合と同
じまたはそれ以上の均熱性であることがわかった。
The temperature distribution at a bed temperature of 30 ° C. was measured using an infrared image temperature analyzer (a thermotracer TH3100MR manufactured by NEC Sanei Co., Ltd.).
The temperature distribution shown in (a) was obtained. In the figure, an infrared image showing the surface temperature distribution of the flooring material is shown on the left side, and a histogram showing the temperature distribution of the flooring material is shown on the right side. As is evident from the results of the histogram, the heating element of the present example shows a suitable thermal uniformity close to a normal distribution, which is the same as or similar to the case of using a uniform aluminum foil without processing on the upper part of the heating element. It turned out that it is the above-mentioned soaking property.

【0063】発熱体の集中応力時の耐荷重を測定したと
ころ400MPaを有していた。該発熱体を25℃の水
中に24時間浸漬したところ電極とアルミ均熱材との間
の絶縁抵抗は10MΩ以上を有していた。
When the withstand load of the heating element at the time of concentrated stress was measured, it was 400 MPa. When the heating element was immersed in water at 25 ° C. for 24 hours, the insulation resistance between the electrode and the aluminum soaking material was 10 MΩ or more.

【0064】[比較例1]実施例1と同様の工程で繊維
強化樹脂成形体を製造した。リード線一端を該成形体の
電極に接続固定し、他端は過熱防止装置(ウチヤ・サー
モスタット(株)製UP72)を接続して該成形体下部
に固定しその上からポリエステルフェルト(東洋紡
(株)製エクシランHP−21)を断熱材として貼り合
わせた。但し、リード線および過熱防止装置は断熱材で
覆わなかった。
[Comparative Example 1] A fiber-reinforced resin molded article was manufactured in the same process as in Example 1. One end of the lead wire is connected and fixed to the electrode of the molded body, and the other end is connected to an overheat prevention device (UP72 manufactured by Uchiya Thermostat Co., Ltd.) and fixed to the lower part of the molded body, and a polyester felt (Toyobo Co., Ltd.) ) Manufactured by Eksilane HP-21) was bonded as a heat insulating material. However, the lead wire and the overheat prevention device were not covered with the heat insulating material.

【0065】該繊維強化樹脂成形体の断熱材を貼り合わ
せた面とは反対側の面にアルミ箔(東海アルミ箔(株)
製、厚さ0.1mm)を均熱材として貼り合わせて12
5Wのシート状発熱体を作製した。
An aluminum foil (Tokai Aluminum Foil Co., Ltd.) is provided on the surface of the fiber-reinforced resin molded body opposite to the surface on which the heat insulating material is bonded.
And thickness of 0.1 mm) as a soaking material
A 5 W sheet heating element was produced.

【0066】該発熱体を床表面材で覆い、釘打ちして固
定しようとしたが炭素繊維が見えず釘打ちが困難であっ
た。さらにサーミスタをセンサとして使った温度制御シ
ステムを接続し、床材システム(段谷産業(株)製ホッ
トベースFGB−008使用)に組み込んだ。
The heating element was covered with a floor surface material and nailed to fix it, but it was difficult to nail because no carbon fiber was visible. Furthermore, a temperature control system using a thermistor as a sensor was connected, and incorporated into a floor material system (using Hot Base FGB-008 manufactured by Danya Sangyo Co., Ltd.).

【0067】床温30℃での温度分布について赤外線画
像温度解析装置(NEC三栄(株)製サーモトレーサT
H3100MR)を使用して測定したところ図5(b)
に示す温度分布が得られたが、実施例1よりも均熱性が
やや劣っていた。
Temperature distribution at a bed temperature of 30 ° C. Infrared image temperature analyzer (Thermosa T, manufactured by NEC Sanei Co., Ltd.)
FIG. 5 (b) when measured using H3100MR).
Was obtained, but the heat uniformity was slightly inferior to that of Example 1.

【0068】[0068]

【発明の効果】本発明は、均熱板に孔開け加工がなされ
たものを用いることによって、均熱板の熱を均等に拡散
させる本来の機能を維持しかつ、均熱板の下に位置する
発熱線や電極などが表面から見える発熱体を提供するこ
とができた。
According to the present invention, by using a heat equalizing plate having a hole formed therein, the original function of uniformly dispersing the heat of the heat equalizing plate is maintained, and the heat equalizing plate is positioned below the heat equalizing plate. A heating element in which a heating wire, an electrode, and the like can be seen from the surface can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る均熱材の開孔パターン例を示す
図。
FIG. 1 is a view showing an example of an opening pattern of a heat equalizing material according to the present invention.

【図2】 本発明に係る均熱材の開孔パターン例を示す
図。
FIG. 2 is a view showing an example of an opening pattern of a heat equalizing material according to the present invention.

【図3】 本発明に係る均熱材の開孔パターン例を示す
図。
FIG. 3 is a view showing an example of an opening pattern of the heat equalizing material according to the present invention.

【図4】 本発明の発熱体の回路図。FIG. 4 is a circuit diagram of a heating element according to the present invention.

【図5】 (a)は実施例1の床材の温度分布を示す赤
外線画像、(b)は比較例1の床材の温度分布を示す赤
外線画像。
5A is an infrared image showing the temperature distribution of the floor material of Example 1, and FIG. 5B is an infrared image showing the temperature distribution of the floor material of Comparative Example 1. FIG.

【図6】 本発明の発熱体の一例を示す断面図(一
部)。
FIG. 6 is a cross-sectional view (partially) showing an example of the heating element of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 孔開け加工した均熱材を使用したことを
特徴とする発熱体。
1. A heating element characterized by using a heat equalizing material that has been perforated.
JP10082444A 1998-03-16 1998-03-16 Heating element Pending JPH11265781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082444A JPH11265781A (en) 1998-03-16 1998-03-16 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082444A JPH11265781A (en) 1998-03-16 1998-03-16 Heating element

Publications (1)

Publication Number Publication Date
JPH11265781A true JPH11265781A (en) 1999-09-28

Family

ID=13774707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082444A Pending JPH11265781A (en) 1998-03-16 1998-03-16 Heating element

Country Status (1)

Country Link
JP (1) JPH11265781A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049907A1 (en) * 2005-10-27 2007-05-03 Pacific Medical Co., Ltd. Heating mat using the plane heater
KR100762344B1 (en) 2006-05-10 2007-10-02 김상복 A sheet heater
JP2008503045A (en) * 2004-06-18 2008-01-31 テクストロニクス, インク. Textile structure for heating or warming
JP2009543288A (en) * 2006-06-27 2009-12-03 ナオス カンパニー リミテッド Planar heating element using carbon microfiber and method for producing the same
JP2018094818A (en) * 2016-12-14 2018-06-21 株式会社Mozu Heat diffusion sheet, far infrared ray radiation sheet, manufacturing method and temperature control method of heat diffusion sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503045A (en) * 2004-06-18 2008-01-31 テクストロニクス, インク. Textile structure for heating or warming
WO2007049907A1 (en) * 2005-10-27 2007-05-03 Pacific Medical Co., Ltd. Heating mat using the plane heater
KR100762344B1 (en) 2006-05-10 2007-10-02 김상복 A sheet heater
JP2009543288A (en) * 2006-06-27 2009-12-03 ナオス カンパニー リミテッド Planar heating element using carbon microfiber and method for producing the same
JP2018094818A (en) * 2016-12-14 2018-06-21 株式会社Mozu Heat diffusion sheet, far infrared ray radiation sheet, manufacturing method and temperature control method of heat diffusion sheet

Similar Documents

Publication Publication Date Title
JP3463898B2 (en) Heating element and network structure for heating element
US6433317B1 (en) Molded assembly with heating element captured therein
US5824996A (en) Electroconductive textile heating element and method of manufacture
US6392206B1 (en) Modular heat exchanger
US6452138B1 (en) Multi-conductor soft heating element
US6563094B2 (en) Soft electrical heater with continuous temperature sensing
US6415501B1 (en) Heating element containing sewn resistance material
WO2016113633A1 (en) Fabric heating element
US20100282736A1 (en) Surface heating system
US20040175163A1 (en) Low-temperature burn preventing electric floor heating system, electric floor heating panel, floor heating floor material, and electric floor heating device
JP3314867B2 (en) Heating laminate and electric heating board for floor heating
JPH11265781A (en) Heating element
JPH1140329A (en) Flat heating body
JPH11265782A (en) Heating element and fixing method for heating element
JPH1197160A (en) Sheet heater
JP3165799B2 (en) Heat woven fabric
JP4030677B2 (en) High-strength planar heating element
JPH0115098Y2 (en)
JP5845038B2 (en) Planar heating element
JP2001131539A (en) Thermally conductive material
KR20110042421A (en) Pliable heating mesh capable of unifrom heating and pliable heating sheet using the same
KR200339058Y1 (en) Plane heater
JP4041065B2 (en) Low temperature burn prevention electric floor heating system, electric floor heating panel, floor heating floor material, and electric floor heating device
KR20100038511A (en) Film heater for prevent an electric spark
JPH0676926A (en) Sheet-shape heating element