JPH11264934A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPH11264934A
JPH11264934A JP6839598A JP6839598A JPH11264934A JP H11264934 A JPH11264934 A JP H11264934A JP 6839598 A JP6839598 A JP 6839598A JP 6839598 A JP6839598 A JP 6839598A JP H11264934 A JPH11264934 A JP H11264934A
Authority
JP
Japan
Prior art keywords
light
measured
signal
detecting means
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6839598A
Other languages
Japanese (ja)
Inventor
Hideki Kobuchi
日出樹 小渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP6839598A priority Critical patent/JPH11264934A/en
Publication of JPH11264934A publication Critical patent/JPH11264934A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a focus detecting device easy to adjust, simple to control, wide in focus detectable range and capable of guiding focus direction without making position recognition impossible. SOLUTION: This device is equipped with a two-split photodetecting element 60 by which a surface to be measured is irradiated with the light from a light source output a signal corresponding to the quantity of the reflected light from the surface, a photodetection optical system which includes an objective 57 for guiding the reflected light to the two-split photodetecting element 60, photodetecting elements 61 and 62 which are arranged opposite at positions distant from the two-split photodetecting element 60 and output a signal corresponding to the quantity of light from the measured surface at a position that can not e detected by the two-split photodetecting element 60, and a signal processing system 63 which decides the position of the said measured surface according to the output signals of the two-split photodetecting element 60 and photodetecting elements 61 and 62.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、顕微鏡あるいは光
学測定機器等において、被検出体に対して合焦を行なう
焦点検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus detecting device for focusing on an object to be detected in a microscope or an optical measuring device.

【0002】[0002]

【従来の技術】プローブ光を対物レンズを通して被測定
面に照射し、その被測定面からの反射光に基づいて被検
体に対する焦点検出を行なう焦点検出装置が知られてい
る。しかし、通常の顕微鏡等では、倍率の異なる複数の
対物レンズを用意してその中から選択的に切換えて使用
する。そのため、対物レンズの倍率により異なるNA
(開口数)、焦点距離により、各対物レンズ毎に焦点検
出できる範囲が異なる。これは具体的には、対物レンズ
低倍である程に焦点検出できる範囲が広く、反対に高倍
である程に同範囲が狭くなるものである。
2. Description of the Related Art There is known a focus detection apparatus which irradiates a surface to be measured with a probe light through an objective lens and detects a focus on the object based on light reflected from the surface to be measured. However, in an ordinary microscope or the like, a plurality of objective lenses having different magnifications are prepared and selectively used among them. Therefore, different NA depending on the magnification of the objective lens
The range in which the focus can be detected differs for each objective lens depending on the (numerical aperture) and the focal length. Specifically, the lower the magnification of the objective lens, the wider the range in which the focus can be detected, and conversely, the higher the magnification, the narrower the range.

【0003】しかして、高倍率の対物レンズにおいて
は、上述した如く焦点検出できる範囲が狭いため、被測
定面の段差に対応することができず、焦点検出が不能に
なったり、時間を要することがある。
However, in the case of a high-magnification objective lens, since the focus detection range is narrow as described above, it is not possible to cope with a step on the surface to be measured, and focus detection becomes impossible or time is required. There is.

【0004】そのような場合、高倍率の対物レンズで焦
点検出できる範囲を広くするような光学系体にすれば良
いと考えられるが、そのような光学系帯では逆に低倍率
の対物レンズでの焦点検出できる範囲が広がりすぎてし
まい、検出精度を下げる結果となってしまう。
In such a case, it is considered that an optical system should be used so as to widen the range in which the focus can be detected by a high-magnification objective lens. The range in which the focus can be detected is too wide, resulting in a decrease in detection accuracy.

【0005】このような問題に対処する方法として特開
平8−43717号公報に示すような構成が考えられて
いた。図10は該特開平8−43717号公報に示す焦
点検出装置であり、レーザ出射手段20から出射された
レーザビームをコリメータレンズ40を介して平行光束
とした後(Pは中間結像位置)、光路中に配置された遮
蔽板41によって上記光束の半分が遮蔽されて、その残
り半分は集光レンズ42によって集光された後に偏光ビ
ームスプリッタ21に入射されるように構成されてい
る。
As a method for addressing such a problem, a configuration as disclosed in Japanese Patent Application Laid-Open No. 8-43717 has been considered. FIG. 10 shows a focus detection device disclosed in Japanese Patent Application Laid-Open No. 8-43717, in which a laser beam emitted from a laser emitting unit 20 is converted into a parallel light beam via a collimator lens 40 (P is an intermediate image forming position). A half of the light beam is shielded by a shielding plate 41 disposed in the optical path, and the other half is condensed by a condenser lens 42 and then incident on the polarization beam splitter 21.

【0006】偏光ビームスプリッタ21により反射され
た光は、結像レンズ22、ハーフミラー23、1/4波
長板24及び対物レンズ25を透過して被測定面26に
照射されるようになっている。
The light reflected by the polarization beam splitter 21 is transmitted through an imaging lens 22, a half mirror 23, a quarter-wave plate 24 and an objective lens 25, and is irradiated on a surface 26 to be measured. .

【0007】そして、被測定26からの反射光は再度対
物レンズ25、1/4波長板24を透過した後にハーフ
ミラー23により第一の光路と第二の光路とに振り分け
られる。そして第一、第二の光路に夫々配置されている
結像レンズ22、32を透過し、結像レンズ22を介し
た光は偏光ビームスプリッタ21を透過し、結像レンズ
22の集光点Qの位置に配置された二分割受光素子43
に集光する。
[0007] The reflected light from the measured object 26 is transmitted through the objective lens 25 and the quarter-wave plate 24 again, and is then divided by the half mirror 23 into a first optical path and a second optical path. Then, the light passes through the imaging lenses 22 and 32 disposed on the first and second optical paths, and the light passing through the imaging lens 22 passes through the polarization beam splitter 21, and the condensing point Q of the imaging lens 22. Light receiving element 43 arranged at the position
Focus on

【0008】なお、二分割受光素子43は二つの光電変
換部A,Bを備えており、これらの光電変換部A,Bは
夫々受光した光量に応じた電圧信号を出力できるように
なっている。一方、結像レンズ32を介した光は、同様
に結像レンズ32の集光点Rの位置に配置された、上記
二分割受光素子43と同様の構成を有する二分割受光素
子44に集光する。
The two-division light receiving element 43 has two photoelectric conversion units A and B, and these photoelectric conversion units A and B can output a voltage signal corresponding to the amount of light received. . On the other hand, the light passing through the imaging lens 32 is condensed on a two-part light receiving element 44 similarly arranged at the condensing point R of the imaging lens 32 and having the same configuration as the two-part light receiving element 43. I do.

【0009】これら二つの受光素子43,44からの出
力信号がそれぞれ信号処理系30へ送出され、そこで演
算が実行された後に、被測定面26の変位に対応する変
位信号を得ることができるようになるものである。
The output signals from these two light receiving elements 43 and 44 are sent to the signal processing system 30, respectively, where the calculation is executed, so that a displacement signal corresponding to the displacement of the surface 26 to be measured can be obtained. It becomes something.

【0010】上記信号処理系30には、入力された各信
号に対して所定の演算、具体的には各信号の差/和演算
を実行して被測定面26の表面形状に応じた変位信号を
形成する機能が備えられている。そして、このとき形成
された変位信号に基づいて被測定面26に対する合焦制
御が行なわれる。
The signal processing system 30 executes a predetermined operation on each of the input signals, specifically, a difference / sum operation of each of the signals, and performs a displacement signal corresponding to the surface shape of the surface 26 to be measured. Is provided. Then, focusing control for the measured surface 26 is performed based on the displacement signal formed at this time.

【0011】ここで、結像レンズ22を通る第一の光路
と結像レンズ32を通る第二の光路とにおいて結像レン
ズ22,32それぞれの倍率を考慮すると、対物レンズ
25の焦点距離をf0とした場合、対物レンズ25から
の出射光束は平行光であるため、上記第一、第二の光路
における倍率をそれぞれM1,M2とすると、 M1=f1/f0 M2=f2/f0 で示される。したがって、上記f1とf2とを異なる値
に設定することにより、信号処理系30において高倍率
による変位信号と低倍率による変位信号との二つの信号
が同時に得られるようになっている。
Here, considering the respective magnifications of the imaging lenses 22 and 32 in the first optical path passing through the imaging lens 22 and the second optical path passing through the imaging lens 32, the focal length of the objective lens 25 is set to f0. In this case, since the light flux emitted from the objective lens 25 is a parallel light, if the magnifications in the first and second optical paths are M1 and M2, respectively, it is represented by M1 = f1 / f0 M2 = f2 / f0. Therefore, by setting f1 and f2 to different values, the signal processing system 30 can simultaneously obtain two signals, a displacement signal with a high magnification and a displacement signal with a low magnification.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上述し
た特開平8−43717号公報にあっては、受光光学系
を複数備え、光検出手段に二分割受光素子を用いている
ので、2つの素子の中心を高い精度で位置合わせしなけ
ればならず、さらにその作業を複数の受光光学系と光検
出手段で行なわなければならない。そのため、現実には
大変に調整が難しく、且つ作業に多大の時間を要するの
で、大幅なコストの増大を招くこととなる。
However, in the above-mentioned Japanese Patent Application Laid-Open No. 8-43717, a plurality of light receiving optical systems are provided, and a two-part light receiving element is used for the light detecting means. The center must be aligned with high accuracy, and the work must be performed by a plurality of light receiving optical systems and light detecting means. For this reason, adjustment is very difficult in practice, and a great deal of time is required for the operation, resulting in a significant increase in cost.

【0013】また、高倍率側の信号と低倍率側の信号を
同時に出力し、その複数の信号を同時に読込む制御を行
なわなければならず、制御が複雑で困難なものとなる。
具体的に言えば、低倍率側で大まかな焦点位置まで移動
させた後、どのタイミングで高倍率側に切換えるかを、
標本の反射率等によって変化する信号形状を加味しなが
らしきい値を設定し、制御しなければならない。
Further, it is necessary to simultaneously output a signal on the high-magnification side and a signal on the low-magnification side, and control to simultaneously read the plurality of signals, which makes the control complicated and difficult.
Specifically, after moving to a rough focus position on the low magnification side, at what timing to switch to the high magnification side,
The threshold value must be set and controlled while taking into account the signal shape that changes depending on the reflectance of the sample.

【0014】また、低倍率側の信号により焦点位置の範
囲が外に外れている場合、位置認識が不能となるので、
通常は原点まで一度戻ってサーチをしなおさなければな
らず、これも多大な時間の損失となる。
If the range of the focal position is out of the range due to the signal on the low magnification side, the position cannot be recognized.
Usually, it is necessary to return to the origin once and perform the search again, which also causes a great loss of time.

【0015】本発明は上記のような実情に鑑みてなされ
たもので、その目的とするところは、調整が容易で制御
も簡易化しながら、焦点検出が可能な範囲を広く、且つ
位置不能とならずに焦点方向に導くことが可能な焦点検
出装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances. It is an object of the present invention to provide an easy-to-adjust and easy-to-control method, a wide range of focus detection, and a case where positioning is impossible. It is an object of the present invention to provide a focus detection device capable of guiding a focus direction without using a focus detection device.

【0016】[0016]

【課題を解決するための手段】請求項1記載の発明は、
光源からの光を被測定面に照射して被測定面からの反射
光の光量に応じた信号を出力する第1の光検出手段と、
この光検出手段に上記反射光を導くための対物レンズを
含んだ受光光学系と、上記光検出手段の出力信号に基づ
いて上記被測定面の位置を判定する信号処理系とを有し
た焦点検出装置において、上記被測定面との光軸距離が
上記第1の光検出手段に対して短い位置及び長い位置に
それぞれ配置され、該被測定面からの反射光の光量に応
じた信号を出力する複数の第2の光検出手段をさらに具
備し、上記信号処理系は上記第1の光検出手段と複数の
第2の光検出手段の出力信号に基づいて判定を行なうこ
とを特徴とする。
According to the first aspect of the present invention,
First light detection means for irradiating the surface to be measured with light from a light source and outputting a signal corresponding to the amount of light reflected from the surface to be measured;
A focus detection system comprising: a light receiving optical system including an objective lens for guiding the reflected light to the light detecting means; and a signal processing system for determining a position of the surface to be measured based on an output signal of the light detecting means. In the apparatus, an optical axis distance from the surface to be measured is disposed at a short position and a long position with respect to the first light detecting means, respectively, and a signal corresponding to the amount of reflected light from the surface to be measured is output. A plurality of second light detecting means are further provided, and the signal processing system makes a determination based on output signals of the first light detecting means and the plurality of second light detecting means.

【0017】このような構成とした結果、合焦位置に対
するずれが大きく、第1の光検出手段では受講信号が得
られない場合でも、複数の第2の光検出手段のいずれか
によって、被測定面からの光が受講され、信号が出力さ
れる。このとき、信号が得られる第2の光検出手段が被
測定面との光軸距離が第1の光検出手段に対して短い位
置と長い位置のいずれかによってその時点での合焦ずれ
の方向が認識される。したがって、調整が容易で制御も
簡易化しながら、焦点検出が可能な範囲を広く、且つ位
置認識不能とならずに焦点方向に導くことができる。
As a result of such a configuration, even when the deviation from the in-focus position is large and the attendance signal cannot be obtained with the first light detecting means, the measured light is measured by one of the plurality of second light detecting means. Light from the surface is received and a signal is output. At this time, the direction of the defocus at that time is determined by the second light detecting means from which the signal is obtained, depending on whether the optical axis distance to the surface to be measured is shorter or longer than the first light detecting means. Is recognized. Therefore, while the adjustment is easy and the control is simplified, the range in which the focus can be detected can be widened, and the focus can be guided in the focus direction without becoming unrecognizable.

【0018】請求項2記載の発明は、光源からの光を被
測定面に照射して被測定面からの反射光の光量に応じた
信号を出力する第1の光検出手段と、この光検出手段に
上記反射光を導くための対物レンズを含んだ受光光学系
と、上記光検出手段の出力信号に基づいて上記被測定面
の位置を判定する信号処理系とを有した焦点検出装置に
おいて、上記受光光学系と第1の光検出手段の間に、第
1の光検出手段に導かれる反射光の一部を遮蔽するよう
にして設置され、遮蔽した反射光の光量に応じた信号を
出力する第2の光検出手段をさらに具備し、上記信号処
理系は上記第1の光検出手段と第2の光検出手段の出力
信号に基づいて判定を行なうことを特徴とする。
According to a second aspect of the present invention, there is provided a first light detecting means for irradiating light from a light source to a surface to be measured and outputting a signal corresponding to the amount of light reflected from the surface to be measured, A light receiving optical system including an objective lens for guiding the reflected light to the means, and a focus detection device having a signal processing system for determining a position of the surface to be measured based on an output signal of the light detection means, It is installed between the light receiving optical system and the first light detecting means so as to block a part of the reflected light guided to the first light detecting means, and outputs a signal corresponding to the amount of the blocked reflected light. And a signal processing system that makes a determination based on output signals of the first light detecting means and the second light detecting means.

【0019】このような構成とした結果、第2の光検出
手段の構成をより簡略化しながら、調整が容易で制御も
簡易化でき、焦点検出が可能な範囲を広く、且つ位置認
識不能とならずに焦点方向に導くことができる。
As a result of such a configuration, while the configuration of the second light detecting means is further simplified, the adjustment and the control can be simplified, the range in which the focus can be detected is wide, and the position cannot be recognized. Can be guided in the direction of the focal point without being moved.

【0020】請求項3記載の発明は、上記請求項1また
は2記載の発明において、上記信号処理系は、上記第1
の光検出手段と第2の光検出手段の出力信号に基づき、
焦点検出を行なう範囲を規定することを特徴とする。こ
のような構成とした結果、上記請求項1または2記載の
発明の作用に加えて、焦点検出の動作を確実且つより迅
速に実行させることができる。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the signal processing system includes the first signal processing system.
Based on the output signals of the light detection means and the second light detection means,
It is characterized in that a range in which focus detection is performed is defined. As a result of such a configuration, in addition to the operation of the first or second aspect of the present invention, the focus detection operation can be performed more reliably and more quickly.

【0021】[0021]

【発明の実施の形態】(第1の実施の形態)以下本発明
の第1の実施の形態に係る焦点検出装置を図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) Hereinafter, a focus detection device according to a first embodiment of the present invention will be described with reference to the drawings.

【0022】図1はその構成を示すもので、50は光源
としてのレーザ出射手段である。このレーザ出射手段5
0から出射されたレーザビームをコリメータレンズ51
を介して平行光束とした後に、光路中に配置された遮蔽
板52によって上記光束の半分を遮蔽してその残りの半
分を集光レンズ53によって集光してから、中間結像位
置Sを介して偏光ビームスプリッタ54に入射するよう
に構成されている。
FIG. 1 shows the structure, and reference numeral 50 denotes a laser emitting means as a light source. This laser emitting means 5
The laser beam emitted from the collimator lens 51
After the light beam is converted into a parallel light beam, half of the light beam is shielded by a shielding plate 52 disposed in the optical path, and the other half of the light beam is condensed by a condenser lens 53. And is incident on the polarization beam splitter 54.

【0023】偏光ビームスプリッタ54により反射され
た光は、結像レンズ55、1/4波長板56、及び対物
レンズ57を透過して被測定面58に照射される。被測
定面58からの反射光は、再度対物レンズ57、1/4
波長板56、結像レンズ55を透過した後に偏光ビーム
スプリッタ54を透過し、ビームスプリッタ59により
光路が2分割される。透過した方の光は、2分割受光素
子60に集光する。なお、この二分割受光素子60は二
つの光電変換部C,Dを備えており、これら光電変換部
C,Dはそれぞれ受光した光量に応じた電圧信号を出力
するようになっている。二分割受光素子60は、結像レ
ンズ55による結像位置(またはこれと共役な位置でも
よい)に配置されている。
The light reflected by the polarizing beam splitter 54 passes through an imaging lens 55, a quarter-wave plate 56, and an objective lens 57, and irradiates a surface 58 to be measured. The reflected light from the surface to be measured 58 is again transmitted to the objective lens 57, 1/4
After passing through the wavelength plate 56 and the imaging lens 55, the light passes through the polarization beam splitter 54, and the optical path is split into two by the beam splitter 59. The transmitted light is collected on the two-divided light receiving element 60. The two-divided light receiving element 60 includes two photoelectric conversion units C and D, and these photoelectric conversion units C and D output voltage signals corresponding to the amounts of received light. The two-divided light receiving element 60 is disposed at an image forming position by the image forming lens 55 (or a position conjugate with the image forming lens 55).

【0024】一方、ビームスプリッタ59により90°
屈曲された光は光電変換部を含む受光素子62上に照射
される。また、上記ビームスプリッタ59を挟んで対向
する位置には受光素子62と同様な光電変換部を含む受
光素子61が構成されている。この時の各受光素子6
1,62の光軸方向の位置関係は、 α>γ>β の長さになるよう配置されている。
On the other hand, 90 ° by the beam splitter 59
The bent light is irradiated onto the light receiving element 62 including the photoelectric conversion unit. Further, a light receiving element 61 including a photoelectric conversion unit similar to the light receiving element 62 is formed at a position opposed to the beam splitter 59 therebetween. Each light receiving element 6 at this time
The positional relationship between the optical axes 1 and 62 in the optical axis direction is such that α>γ> β.

【0025】これら3つの受光素子60,61,62か
らの出力信号はそれぞれ信号処理系63へ送出され、こ
の信号処理系63で演算が実行されることで上記被測定
面58の変位に対応する変位信号を得ることができるよ
うになる。
Output signals from the three light receiving elements 60, 61, and 62 are sent to a signal processing system 63, and the signal processing system 63 performs an operation to correspond to the displacement of the surface 58 to be measured. A displacement signal can be obtained.

【0026】しかるに、上記信号処理系63には、入力
された各信号に対して所定の演算、具体的には2分割受
光素60で得られた2つの信号の差/和演算、受光素子
61,62で得た信号により被測定面58での前ピン、
後ピンの位置認識のための演算を実行し、被測定面58
の表面形状に応じた変位信号を算出するもので、算出し
た変位信号に基づいて被測定面58に対する合焦制御を
行なう。
The signal processing system 63 performs a predetermined operation on each of the input signals, specifically, a difference / sum operation of the two signals obtained by the two-division light-receiving element 60, and a light-receiving element 61. , 62, the front pin at the surface 58 to be measured,
An operation for recognizing the position of the rear pin is executed, and the surface to be measured 58
A displacement signal corresponding to the surface shape of the object is calculated, and focusing control for the measured surface 58 is performed based on the calculated displacement signal.

【0027】上記のような構成にあって、被測定面を光
軸方向に移動させることで、上記図1で示した本来の被
測定面58の位置より遠ざけた位置にある被測定面6
4、及び近付けた位置にある被測定面65について考え
る。
In the above configuration, by moving the surface to be measured in the optical axis direction, the surface to be measured 6 at a position farther from the original position of the surface to be measured 58 shown in FIG.
4 and the surface 65 to be measured at a close position will be considered.

【0028】遠ざけた被測定面64の場合、被測定面6
4からの反射光は図中に符号67で示す経路をたどり、
ビームスプリッタ59により2分割されてその一方は透
過し、2分割受光素子60に照射される。しかしなが
ら、この光線は広がっているので、二分割受光素子60
で受光できる可能性は低くなる。一方、ビームスプリッ
タ59で反射された光線は受光素子61に照射され、図
3における信号70として検出される。
In the case of the measured surface 64 distant, the measured surface 6
The reflected light from 4 follows the path indicated by reference numeral 67 in the figure,
The light is split into two by the beam splitter 59, one of which is transmitted, and is irradiated on the two-divided light receiving element 60. However, since this light beam is spread, the two-part light receiving element 60
, The possibility of receiving light is reduced. On the other hand, the light beam reflected by the beam splitter 59 irradiates the light receiving element 61 and is detected as a signal 70 in FIG.

【0029】また、近付けた被測定面65の場合、この
被測定面65からの反射光は図中に符号66で示す経路
をたどり、ビームスプリッタ59により2分割されてそ
の一方は透過し、2分割素子60に照射される。しかし
ながら、上記同様にこの光線は広がっているので、二分
割受光素子60で受光できる可能性は低くなる。一方、
ビームスプリッタ59で反射された光線は受光素子62
に照射され、図3における信号71として検出される。
In the case of the measured surface 65 approached, the reflected light from the measured surface 65 follows the path indicated by reference numeral 66 in the drawing, is split into two by the beam splitter 59, and one of the two is transmitted, and The light is applied to the splitting element 60. However, as described above, since this light beam spreads, the possibility that the light beam can be received by the two-part light receiving element 60 is low. on the other hand,
The light reflected by the beam splitter 59 is received by the light receiving element 62.
And is detected as a signal 71 in FIG.

【0030】上記のように、被測定面の位置と対物レン
ズ57との距離が変わることで、図3に示すように2分
割受光素子60により信号68,69を、受光素子61
により信号70を、そして受光素子62により信号71
をそれぞれ得ることができる。
As described above, by changing the distance between the position of the surface to be measured and the objective lens 57, the signals 68 and 69 are generated by the two-part light receiving element 60 as shown in FIG.
And a signal 71 by the light receiving element 62.
Can be obtained respectively.

【0031】実際に得られた信号は信号処理系63によ
り図4に示すように処理される。すなわち、2分割受光
素子60で得られた信号を基に演算された焦点検出信号
72と、上記被測定面58に対して実際の被測定面がど
の位置にあるか認識できるような信号73を−V側に、
信号74を+V側になるよう処理される。
The actually obtained signal is processed by the signal processing system 63 as shown in FIG. That is, a focus detection signal 72 calculated based on the signal obtained by the two-divided light receiving element 60 and a signal 73 that allows recognition of the actual position of the measured surface relative to the measured surface 58. On the -V side,
The signal 74 is processed to be on the + V side.

【0032】こうして信号処理系63で得る上記図4で
示した焦点検出信号により、被測定面を光軸方向に移動
させるか、あるいは上記ビームスプリッタ59、二分割
受光素子60、受光素子61,62を含む焦点検出装置
のユニットの側を光軸方向に移動させ、上記信号73ま
たは信号74を得ることで実際の被測定面の位置を認識
して信号72が得られるように導き、該信号72内で0
点の検出を行なうものである。
According to the focus detection signal shown in FIG. 4 obtained by the signal processing system 63, the surface to be measured is moved in the optical axis direction, or the beam splitter 59, the two-part light receiving element 60, and the light receiving elements 61 and 62 are used. Is moved in the direction of the optical axis, and the signal 73 or 74 is obtained to recognize the actual position of the surface to be measured so that the signal 72 is obtained. Within 0
This is to detect points.

【0033】このようにして、通常では2分割受光素子
60の出力する信号でしか得られなかった焦点検出でき
る範囲を広く設定することができ、特に焦点検出できる
範囲の狭い高倍率の対物レンズを使用している場合でも
該範囲を充分広く設定することができるため、通常は苦
手とされる段差や傾きの大きい被測定面に対しても正確
に焦点を合わせることができる。
In this manner, the focus detectable range which can be obtained only by the signal output from the two-divided light receiving element 60 can be set wide. In particular, a high-magnification objective lens having a narrow focus detectable range can be used. Since the range can be set sufficiently wide even in the case of use, it is possible to accurately focus even on a surface to be measured having a large step or inclination, which is usually weak.

【0034】また、上記受光素子61, 62からの出力
信号の状態によって合焦位置に対するずれの方向を認識
することができるので、位置認識不能となることなく、
迅速に合焦動作を行なうことができる。
Further, since the direction of the deviation from the in-focus position can be recognized based on the state of the output signals from the light receiving elements 61 and 62, the position can not be recognized.
The focusing operation can be performed quickly.

【0035】また、上記受光素子61,62は単に光量
を測定するだけであるので、あまり厳密な位置調整は必
要とせず、組立てを容易としてコストの点でも有利にな
る。さらに、上記受光素子61,62をそれぞれ図1中
のβ,αの距離を変えるように位置設定することによ
り、信号処理系63で得られる信号73,74も変化す
るので、より大きい段差等にも対応することができる。
Further, since the light receiving elements 61 and 62 merely measure the amount of light, there is no need for strict position adjustment, which facilitates assembly and is advantageous in terms of cost. Further, by setting the positions of the light receiving elements 61 and 62 so as to change the distances β and α in FIG. 1, the signals 73 and 74 obtained by the signal processing system 63 also change. Can also respond.

【0036】(第2の実施の形態)以下本発明の第2の
実施の形態に係る焦点検出装置を図面を参照して説明す
る。
(Second Embodiment) Hereinafter, a focus detection device according to a second embodiment of the present invention will be described with reference to the drawings.

【0037】図5はその構成を示すもので、基本的には
上記図1に示したものと同様であり、同一部分には同一
符号を付してその説明は省略する。しかして、同図にあ
っては、上記図1で説明した偏光ビームスプリッタ54
と2分割受光素子60の間に配置していた偏光ビームス
プリッタ59及び受光素子61,62を簡略化し、代わ
って受光素子75を光路の半分、例えば二分割受光素子
60の光電変換部Cを遮蔽するように配置したものであ
る。
FIG. 5 shows the structure, which is basically the same as that shown in FIG. 1 above, and the same parts are denoted by the same reference numerals and description thereof is omitted. In this figure, the polarization beam splitter 54 shown in FIG.
The polarization beam splitter 59 and the light receiving elements 61 and 62 disposed between the light receiving element 60 and the light receiving element 60 are simplified. It is arranged so that.

【0038】このような構成としたことにより、図6に
示す如く本来の被測定面58に比して対物レンズ57か
ら離れた位置に被測定面64がある場合、その反射光は
符号77のような経路をたどり、上記受光素子75に照
射されて、図7の信号78として検出される。
With this configuration, when the measured surface 64 is located farther from the objective lens 57 than the original measured surface 58 as shown in FIG. Following such a path, the light is irradiated on the light receiving element 75 and detected as a signal 78 in FIG.

【0039】一方、本来の被測定面58に比して対物レ
ンズ57に近づいた位置に被測定面65がある場合、そ
の反射光は、図7の符号76のような経路をたどり、2
分割受光素子60にのみ照射される。しかし、被測定面
58と対物レンズ57の間の距離が大きくなればなる
程、図7における信号69のように上記信号78の成分
はなくなっていく。
On the other hand, when the measured surface 65 is located closer to the objective lens 57 than the original measured surface 58, the reflected light follows the path indicated by reference numeral 76 in FIG.
The light is emitted only to the divided light receiving element 60. However, as the distance between the surface 58 to be measured and the objective lens 57 increases, the component of the signal 78 disappears like the signal 69 in FIG.

【0040】上記図7で得られた信号を信号処理系63
で処理して図8に示すような信号を得る。すなわち、2
分割受光素子60で得られた信号68,69を基に演算
して焦点検出信号72を、受光素子75により得られた
信号78を上記信号72に合わせて−V側に処理して焦
点検出信号79をそれぞれ得るものである。
The signal obtained in FIG.
To obtain a signal as shown in FIG. That is, 2
The focus detection signal 72 is calculated based on the signals 68 and 69 obtained by the divided light receiving element 60, and the signal 78 obtained by the light receiving element 75 is processed to the -V side in accordance with the signal 72, and the focus detection signal is processed. 79 are obtained.

【0041】こうして信号処理系63で得る上記図8で
示した焦点検出信号72または79により、被測定面を
光軸方向に移動させるか、あるいは上記二分割受光素子
60、受光素子75を含む焦点検出装置のユニットの側
を光軸方向に移動させ、被測定面が本来の位置範囲より
対物レンズ57から離れた位置にある場合には上記信号
79を得ることでこれを認識し、信号72が得られるよ
うになるまで上記移動を実行し、該信号72内で0点の
検出を行なうものである。
According to the focus detection signal 72 or 79 shown in FIG. 8 obtained by the signal processing system 63 in this way, the surface to be measured is moved in the optical axis direction, or the focus including the two-part light receiving element 60 and the light receiving element 75 is used. The unit side of the detection device is moved in the direction of the optical axis, and when the surface to be measured is located farther from the objective lens 57 than the original position range, the signal 79 is obtained by recognizing the signal 79, and the signal 72 is recognized. The above-mentioned movement is executed until it becomes possible to detect the zero point in the signal 72.

【0042】また、被測定面が本来の位置範囲より対物
レンズ57に近い位置にある場合、得られる信号がない
ことから、被測定面と対物レンズ57が離れる方向に移
動させて上記信号72が得られるのを待機し、得られた
時点でその後はこの信号72内で0点の検出を行なうも
のである。
When the surface to be measured is located closer to the objective lens 57 than the original position range, there is no signal to be obtained. It waits until it is obtained, and at the time when it is obtained, the zero point is detected in the signal 72.

【0043】このような構成及び動作とすることによ
り、上記第1の実施の形態と同様の作用効果を得なが
ら、装置の構成を大幅に簡略化することが可能となるの
で、組立性が良く、調整にかかる工数も少ないためコス
トの点でもより優位となる。
By adopting such a configuration and operation, it is possible to greatly simplify the configuration of the apparatus while obtaining the same operation and effects as those of the first embodiment, thereby improving the assemblability. In addition, since the number of man-hours required for adjustment is small, it is more advantageous in terms of cost.

【0044】(第3の実施の形態)次いで本発明の第3
の実施の形態について図面を参照して説明する。なお。
装置の構成自体は上記図1または図5に示したものと同
様であるものと、その図示及び説明は省略するものとす
る。
(Third Embodiment) Next, a third embodiment of the present invention will be described.
An embodiment will be described with reference to the drawings. In addition.
The configuration itself of the device is the same as that shown in FIG. 1 or FIG. 5, and illustration and description thereof are omitted.

【0045】しかして、その信号処理系63において実
行する演算の原理について図9により説明する。すなわ
ち信号処理系63では、図9に示す如く電圧のノイズ等
のマージンを見込んだ一定電圧の信号80を設定し、こ
の信号80と上記信号70,71の交点で規定される幅
Xの範囲でのみ焦点検出動作を行なうものとする。ここ
で上記信号70,71は合焦する側においても上記信号
80との交点を有するものであるが、この合焦する側の
交点では信号68,69も同時に存在するので、その信
号68,69の有無により交点幅Xを検出する。
The principle of the operation performed in the signal processing system 63 will be described with reference to FIG. That is, in the signal processing system 63, as shown in FIG. 9, a signal 80 of a constant voltage is set in consideration of a margin such as voltage noise, and the signal 80 is set within a range of a width X defined by an intersection of the signal 80 and the signals 70 and 71. Only the focus detection operation is performed. Here, the signals 70 and 71 also have an intersection with the signal 80 on the focusing side. However, at the intersection on the focusing side, the signals 68 and 69 also exist at the same time. The intersection width X is detected based on the presence or absence of.

【0046】信号処理系63でこのような処理を実行す
ることにより、上記第1及び第2の実施の形態で説明し
た作用効果に加えて、範囲を規定することで検出信号を
感知できなくなるところがないため、信号をサーチして
探す必要がなく、確実且つ迅速に焦点検出を実行させる
ことが可能となる。
By performing such processing in the signal processing system 63, in addition to the operation and effect described in the first and second embodiments, the detection signal cannot be sensed by defining the range. Since there is no need to search for a signal, it is possible to execute focus detection reliably and quickly.

【0047】[0047]

【発明の効果】請求項1記載の発明によれば、合焦位置
に対するずれが大きく、第1の光検出手段では受講信号
が得られない場合でも、複数の第2の光検出手段のいず
れかによって、被測定面からの光が受講され、信号が出
力される。このとき、信号が得られる第2の光検出手段
が被測定面との光軸距離が第1の光検出手段に対して短
い位置と長い位置のいずれかによってその時点での合焦
ずれの方向が認識される。したがって、調整が容易で制
御も簡易化しながら、焦点検出が可能な範囲を広く、且
つ位置認識不能とならずに焦点方向に導くことができ
る。
According to the first aspect of the present invention, even if the deviation from the in-focus position is large and the attending signal cannot be obtained with the first light detecting means, any one of the plurality of second light detecting means can be used. As a result, light from the surface to be measured is received, and a signal is output. At this time, the direction of the defocus at that time is determined by the second light detecting means from which the signal is obtained, depending on whether the optical axis distance to the surface to be measured is shorter or longer than the first light detecting means. Is recognized. Therefore, while the adjustment is easy and the control is simplified, the range in which the focus can be detected can be widened, and the focus can be guided in the focus direction without becoming unrecognizable.

【0048】請求項2記載の発明によれば、第2の光検
出手段の構成をより簡略化しながら、調整が容易で制御
も簡易化でき、焦点検出が可能な範囲を広く、且つ位置
認識不能とならずに焦点方向に導くことができる。請求
項3記載の発明によれば、上記請求項1または2記載の
発明の効果に加えて、焦点検出の動作を確実且つより迅
速に実行させることができる。
According to the second aspect of the present invention, while the structure of the second light detecting means is further simplified, the adjustment and the control can be simplified, the range in which the focus can be detected is wide, and the position cannot be recognized. It can be guided in the focus direction without being affected. According to the third aspect of the invention, in addition to the effects of the first or second aspect of the invention, it is possible to execute the focus detection operation reliably and more quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る焦点検出装置
の構成を示す図。
FIG. 1 is a diagram showing a configuration of a focus detection device according to a first embodiment of the present invention.

【図2】図1の装置で被測定面を光軸方向に移動させた
場合の光線の変化を示す図。
FIG. 2 is a view showing a change of a light beam when a surface to be measured is moved in an optical axis direction by the apparatus of FIG.

【図3】同実施の形態に係る各受光素子より検出した信
号を表す図。
FIG. 3 is a diagram showing a signal detected from each light receiving element according to the embodiment.

【図4】同実施の形態に係る検出信号から得られた制御
信号を表す図。
FIG. 4 is a view showing a control signal obtained from a detection signal according to the embodiment.

【図5】本発明の第2の実施の形態に係る焦点検出装置
の構成を示す図。
FIG. 5 is a diagram showing a configuration of a focus detection device according to a second embodiment of the present invention.

【図6】図5の装置で被測定面を光軸方向に移動させた
場合の光線の変化を示す図。
FIG. 6 is a diagram showing a change in a light beam when the surface to be measured is moved in the optical axis direction by the apparatus in FIG.

【図7】同実施の形態に係る各受光素子より検出した信
号を表す図。
FIG. 7 is a diagram showing a signal detected from each light receiving element according to the embodiment.

【図8】同実施の形態に係る検出信号から得られた制御
信号を表す図。
FIG. 8 is a diagram showing a control signal obtained from a detection signal according to the embodiment.

【図9】本発明の第3の実施の形態に係る信号処理系の
動作を説明する図。
FIG. 9 is a diagram illustrating an operation of a signal processing system according to a third embodiment of the present invention.

【図10】従来の焦点検出装置の構成を例示する図。FIG. 10 is a diagram illustrating a configuration of a conventional focus detection device.

【符号の説明】[Explanation of symbols]

50…レーザ出射手段 51…コリメータレンズ 52…遮蔽板 53…集光レンズ 54…偏光ビームスプリッタ 55…結像レンズ 56…1/4波長板 57…対物レンズ 58…被測定面 59…ビームスプリッタ 60…二分割受光素子 61…受光素子 62…受光素子 63…信号処理系 75…受光素子 Reference Signs List 50 laser emitting means 51 collimator lens 52 shielding plate 53 condensing lens 54 polarizing beam splitter 55 imaging lens 56 quarter-wave plate 57 objective lens 58 measured surface 59 beam splitter 60 Split light receiving element 61 ... Light receiving element 62 ... Light receiving element 63 ... Signal processing system 75 ... Light receiving element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光を被測定面に照射して被測
定面からの反射光の光量に応じた信号を出力する第1の
光検出手段と、この光検出手段に上記反射光を導くため
の対物レンズを含んだ受光光学系と、上記光検出手段の
出力信号に基づいて上記被測定面の位置を判定する信号
処理系とを有した焦点検出装置において、 上記被測定面との光軸距離が上記第1の光検出手段に対
して短い位置及び長い位置にそれぞれ配置され、該被測
定面からの反射光の光量に応じた信号を出力する複数の
第2の光検出手段をさらに具備し、 上記信号処理系は上記第1の光検出手段と複数の第2の
光検出手段の出力信号に基づいて判定を行なうことを特
徴とする焦点検出装置。
1. A first light detecting means for irradiating light from a light source onto a surface to be measured and outputting a signal corresponding to the amount of reflected light from the surface to be measured, and applying the reflected light to the light detecting means. A focus detection device having a light receiving optical system including an objective lens for guiding, and a signal processing system for determining a position of the surface to be measured based on an output signal of the light detection means; A plurality of second light detecting means, each having an optical axis distance disposed at a short position and a long position with respect to the first light detecting means and outputting a signal corresponding to the amount of reflected light from the measured surface, The focus detection device further comprises: the signal processing system makes a determination based on output signals of the first light detection means and the plurality of second light detection means.
【請求項2】 光源からの光を被測定面に照射して被測
定面からの反射光の光量に応じた信号を出力する第1の
光検出手段と、この光検出手段に上記反射光を導くため
の対物レンズを含んだ受光光学系と、上記光検出手段の
出力信号に基づいて上記被測定面の位置を判定する信号
処理系とを有した焦点検出装置において、 上記受光光学系と第1の光検出手段の間に、第1の光検
出手段に導かれる反射光の一部を遮蔽するようにして設
置され、遮蔽した反射光の光量に応じた信号を出力する
第2の光検出手段をさらに具備し、 上記信号処理系は上記第1の光検出手段と第2の光検出
手段の出力信号に基づいて判定を行なうことを特徴とす
る焦点検出装置。
2. A first light detecting means for irradiating light from a light source onto a surface to be measured and outputting a signal corresponding to the amount of reflected light from the surface to be measured, and applying the reflected light to the light detecting means. A focus detection device comprising: a light receiving optical system including an objective lens for guiding the light; and a signal processing system for determining a position of the surface to be measured based on an output signal of the light detecting means. A second light detection unit that is provided between the first light detection unit and shields a part of the reflected light guided to the first light detection unit, and outputs a signal corresponding to the amount of the shielded reflected light; A focus detection device, further comprising: a signal processing system, wherein the signal processing system makes a determination based on output signals of the first light detection means and the second light detection means.
【請求項3】 上記信号処理系は、上記第1の光検出手
段と第2の光検出手段の出力信号に基づき、焦点検出を
行なう範囲を規定することを特徴とする請求項1または
2記載の焦点検出装置。
3. The signal processing system according to claim 1, wherein a range in which focus detection is performed is defined based on output signals of the first light detecting means and the second light detecting means. Focus detection device.
JP6839598A 1998-03-18 1998-03-18 Focus detecting device Withdrawn JPH11264934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6839598A JPH11264934A (en) 1998-03-18 1998-03-18 Focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6839598A JPH11264934A (en) 1998-03-18 1998-03-18 Focus detecting device

Publications (1)

Publication Number Publication Date
JPH11264934A true JPH11264934A (en) 1999-09-28

Family

ID=13372484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6839598A Withdrawn JPH11264934A (en) 1998-03-18 1998-03-18 Focus detecting device

Country Status (1)

Country Link
JP (1) JPH11264934A (en)

Similar Documents

Publication Publication Date Title
JPH0772378A (en) Focusing device
JP2000097632A (en) Device for maintaining target separating distance between object of main optical system and optical output stage and maintaining method
KR101891182B1 (en) Apparatus for controlling auto focus
US5317142A (en) Automatic focusing apparatus which removes light reflected by a lower surface of a sample
JPH10172898A (en) Observation apparatus position sensor and exposure apparatus with the position sensor
JP6590366B2 (en) Microscope device, autofocus device, and autofocus method
JPS6161178B2 (en)
JP2001242375A (en) Focusing device and microscope
JPH11264934A (en) Focus detecting device
JPH1089953A (en) Focus detecting apparatus
JPH11337812A (en) Autofocus device
KR100408903B1 (en) Focusing method
JPH0593845A (en) Automatic focus detecting device
JPH10133117A (en) Microscope equipped with focus detecting device
JPH07294231A (en) Optical surface roughness sensor
CN106908386B (en) Optical pickup device
JPH11306554A (en) Focus detector
JP2007148084A (en) Focus detector
JPH1123953A (en) Microscope equipped with focus detector and displacement measuring device
JP3542171B2 (en) Microscope equipment
JP3204726B2 (en) Edge sensor
JPH07174552A (en) Apparatus for detecting focal point
JPH0315710A (en) Displacement detector
JP2003121727A (en) Focus detecting device
JPH0637375Y2 (en) Auto focus device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607