JPH11264814A - Sample separating apparatus and chemical analyzer - Google Patents

Sample separating apparatus and chemical analyzer

Info

Publication number
JPH11264814A
JPH11264814A JP10069788A JP6978898A JPH11264814A JP H11264814 A JPH11264814 A JP H11264814A JP 10069788 A JP10069788 A JP 10069788A JP 6978898 A JP6978898 A JP 6978898A JP H11264814 A JPH11264814 A JP H11264814A
Authority
JP
Japan
Prior art keywords
separation
sample
flow
equal
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10069788A
Other languages
Japanese (ja)
Other versions
JP3482865B2 (en
Inventor
Akira Miyake
亮 三宅
Yoshihiro Nagaoka
嘉浩 長岡
Shigeo Watabe
成夫 渡部
So Kato
加藤  宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06978898A priority Critical patent/JP3482865B2/en
Publication of JPH11264814A publication Critical patent/JPH11264814A/en
Application granted granted Critical
Publication of JP3482865B2 publication Critical patent/JP3482865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a sample separating apparatus in which flows of a sample liquid are made uniform in a gap inside a chromatographic column, in which separated components are not mixed again and whose separating capability is high, by branching the sample liquid into a plurality of flow passages for separation, which are formed on a flat board and whose cross-sectional shape and length are equal. SOLUTION: A sample liquid of a set amount is put on the flow of a carrier liquid, and it is introduced into the inside from the entrance of a sample separating apparatus. At this time, since both the cross-sectional shape and the length of respective separating flow passages are equal, pressure drags in flow passages which are continued to respective separating flow passages 451, 461 are equal. Consequently, the carrier liquid which contains the sample liquid is branched equally into the flow passages 451, 461 at an equal flow rate so as to flow. In this manner, the flow of the sample liquid which approaches the branch part 452 of the flow passage 451 is branched into flow passages 453, 454, which are continued to it, at an equal flow rate so as to flow because a flow passage resistance is equal. In the same manner, the sample liquid is branched at an equal flow rate even in the flow passage 461 through a branch part 462 to flow passages 463, 464. Components which are separated in the respective flow passages are joined without being mixed with each other, and they go out from an exit 43 to be sent to a flow cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は試料液中に溶存する
成分を分離する試料分離装置および、分離された各々の
成分濃度を定量する化学分析装置に係わり、特に生体液
や水などの成分分析を行うクロマトグラフに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample separation device for separating components dissolved in a sample liquid and a chemical analyzer for quantifying the concentration of each separated component, and more particularly to the analysis of components such as biological fluids and water. Do chromatographs.

【0002】[0002]

【従来の技術】本発明の化学分析装置に対応する従来技
術としては、文献Gregor Ocvirk, "Integration of a m
icro liquid chromatograph onto a silicon chip", Pr
oc.. of Transducers '95 pp756-759 (1995)記載のシリ
コン基板上に形成されたクロマトカラムと光学測定用フ
ローセルがある。
2. Description of the Related Art As a prior art corresponding to the chemical analyzer of the present invention, reference is made to Gregor Ocvirk, "Integration of am
icro liquid chromatograph onto a silicon chip ", Pr
oc .. of Transducers '95 pp. 756-759 (1995) describes a chromatographic column and a flow cell for optical measurement formed on a silicon substrate.

【0003】本クロマトカラムはシリコン基板をエッチ
ング加工により幅300μm、深さ100μm、長さ2
0mmに彫った溝の上から、ガラス板を接合した後、径
5μmの微粒子(吸着物質のコート済み)を充填して形
成されている。またクロマトカラムの出口直後には、光
学測定用のフローセルが同じくエッチング加工により形
成されている。このカラム内を試料液が通過する際に、
試料液中の成分毎に微粒子表面への吸着の度合いが異な
るため、カラム出口では、吸着の低い成分から順に出て
くる。この分離成分をカラム直後に設けられた光学測定
用のフローセルで検知する。本従来技術ではクロマトカ
ラムとフローセルをエッチング加工により近接して設け
ることが可能となるため、その間の流路において分離成
分の拡散が抑えられ、高い分離性能を維持できるとして
いる。
The present chromatographic column is obtained by etching a silicon substrate to a width of 300 μm, a depth of 100 μm, and a length of 2 μm.
It is formed by bonding a glass plate from above a groove carved to 0 mm and then filling it with fine particles having a diameter of 5 μm (coated with an adsorbing substance). Immediately after the outlet of the chromatographic column, a flow cell for optical measurement is also formed by etching. When the sample solution passes through this column,
Since the degree of adsorption on the surface of the fine particles differs for each component in the sample solution, components having lower adsorption come out in order from the column outlet. This separated component is detected by a flow cell for optical measurement provided immediately after the column. According to this conventional technique, it is possible to provide a chromatographic column and a flow cell closer to each other by etching, so that diffusion of a separation component is suppressed in a flow path therebetween, and high separation performance can be maintained.

【0004】[0004]

【発明が解決しようとする課題】各溶解成分を高感度
に、迅速に分析するためには、検知部での各分離成分の
検出ピークが相互に重なることなく十分に離れている必
要がある。また分離能力を同等にして、クロマトカラム
を短くした場合、計測時間の短縮、送液圧力の低減によ
る送液ポンプの簡素化などの効果がある。しかし、この
検知部での分離度を上げるためには、クロマトカラムで
の分離能力をさらに向上させる必要があること、カラム
から検知部に至る流路で各分離成分が再び混合しないよ
うにする必要がある。
In order to analyze each dissolved component with high sensitivity and speed, it is necessary that the detection peaks of the separated components in the detection section are sufficiently separated without overlapping each other. When the chromatographic column is shortened with the same separation capacity, there are effects such as shortening of measurement time and simplification of the liquid sending pump by reducing liquid sending pressure. However, in order to increase the degree of separation at the detector, it is necessary to further improve the separation capacity of the chromatographic column, and it is necessary to prevent the separation components from mixing again in the flow path from the column to the detector. There is.

【0005】上記従来技術では、分離性能を上げるため
にクロマトカラムからフローセルに至る流路を短縮し
て、輸送中に起きる拡散による分離成分の再混合を極力
抑えようとしている。その一方、分離性能を司るクロマ
トカラムに関しては、機能的には微粒子を詰める従来の
管型カラムと大差なく、特に分離性能が向上しているわ
けではない。この微粒子を充填したクロマトカラムでの
分離の原理を微視的に見ると次のようになる。
[0005] In the above prior art, the flow path from the chromatographic column to the flow cell is shortened in order to improve the separation performance, and the remixing of the separated components due to the diffusion occurring during transportation is minimized. On the other hand, the chromatographic column that controls the separation performance is not much different from the conventional tubular column packed with fine particles functionally, and the separation performance is not particularly improved. Microscopically, the principle of the separation in the chromatography column filled with the fine particles is as follows.

【0006】クロマトカラム内に送液された試料液は、
まずカラム断面一杯に広がり、各微粒子間の隙間に入
り、流れ込む。この際に試料液内の溶解化学成分の分子
は、隙間の中の局所的な流れや、分子拡散によって微粒
子表面まで到達し、微粒子表面にコーティングされてい
る吸着物質との間で吸着反応を起こす。この吸着の度合
いが成分分子毎に異なるため、隙間を通過する際に成分
毎に分離が起こる。しかしながら、この微粒子を用いた
分離技術には以下の問題点がある。
The sample solution sent into the chromatography column is
First, the column spreads completely, enters the gaps between the fine particles, and flows. At this time, the molecules of the dissolved chemical components in the sample liquid reach the fine particle surface by local flow in the gap or by molecular diffusion, and cause an adsorption reaction with the adsorbed substance coated on the fine particle surface. . Since the degree of adsorption differs for each component molecule, separation occurs for each component when passing through the gap. However, the separation technique using the fine particles has the following problems.

【0007】各隙間を流れ出た試料液は、その下流では
別の隙間を流れてきた試料液と合流することになるが、
別々の隙間を通過した試料液の分離状態は、各隙間の大
きさ、距離が均一ではないため、同じ分離成分が同じタ
イミングで合流するとは限らず、異なる分離成分同士が
再び合流し混合することになる。
[0007] The sample liquid flowing out of each gap merges with the sample liquid flowing in another gap downstream thereof.
In the separation state of the sample liquid that has passed through different gaps, since the size and distance of each gap are not uniform, the same separated components do not necessarily join at the same timing, and different separated components may join again and mix. become.

【0008】また、合流位置で淀むような流れがあれ
ば、そこで分離成分が再び混合してしまう。このように
微粒子を詰めたクロマトカラムでは微粒子同士の隙間の
形状が不均一のため、分離能力向上には限界がある。こ
の問題を解決するために、クロマトカラムの断面積を小
さく、断面内での流れの偏在を小さくしたり、カラム内
に充填する微粒子を小さくして、隙間の均一性を増すな
どの改良が行われているが、根本的な解決には至ってい
ない。
Further, if there is a flow that stagnates at the merging position, the separated components are mixed again there. In the chromatographic column packed with fine particles as described above, the shape of the gap between the fine particles is not uniform, and thus there is a limit in improving the separation ability. In order to solve this problem, improvements were made such as reducing the cross-sectional area of the chromatographic column, reducing the uneven distribution of the flow in the cross-section, and reducing the size of the fine particles packed in the column to increase the uniformity of the gap. However, the fundamental solution has not been reached.

【0009】本発明の目的は、クロマトカラム内におい
て隙間の流れが均一で、一度分離した成分が再び他の分
離成分と混合することのない、分離能力の高い試料分離
装置および化学分析装置を提供することである。
An object of the present invention is to provide a sample separation device and a chemical analysis device having a high separation ability, in which the flow in the gap is uniform in the chromatographic column and the component separated once does not mix with other separated components again. It is to be.

【0010】[0010]

【課題を解決するための手段】上記目的は、試料分離装
置あるいは化学分析装置において、試料液の入口と、そ
れに続く入口流路と、複数の等しい断面形状で、等しい
長さの分離用流路と、分離液の出口と、出口に繋がる出
口流路と、入口流路から複数の分離用流路に分岐させる
分岐部と、複数の分離用流路を一本の出口流路に合流さ
せる合流部を平板上に形成することにより解決される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sample separation apparatus or a chemical analysis apparatus, in which a sample liquid inlet, a subsequent inlet flow path, and a plurality of separation flow paths having the same cross-sectional shape and the same length. And an outlet for the separated liquid, an outlet channel connected to the outlet, a branch portion for branching from the inlet channel to a plurality of separating channels, and a merging for joining the plurality of separating channels to one outlet channel. The problem is solved by forming the part on a flat plate.

【0011】[0011]

【発明の実施の形態】本発明の一実施例を図1〜図6を
用いて説明する。図1は本発明の試料分離装置を備えた
化学分析装置の全体構成図、図2は本発明の試料分離装
置の詳細説明図、図3、4は本発明の別の試料分離装置
の説明図、図5は本発明の別の化学分析装置の全体構成
図を示す。図6は本発明の分離流路での分離の原理を説
明する模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a chemical analyzer provided with a sample separation device of the present invention, FIG. 2 is a detailed explanatory view of the sample separation device of the present invention, and FIGS. 3 and 4 are explanatory diagrams of another sample separation device of the present invention. FIG. 5 shows an overall configuration diagram of another chemical analyzer according to the present invention. FIG. 6 is a schematic diagram for explaining the principle of separation in the separation channel according to the present invention.

【0012】図1において本発明の化学分析装置の構成
について、上流から下流に向かって順に説明する。
Referring to FIG. 1, the configuration of the chemical analyzer of the present invention will be described in order from upstream to downstream.

【0013】移動用の媒体として用いるキャリア液11
がキャリア液槽10に保持されている。キャリア液槽1
0から試料分離装置40の間は配管12で繋がれてお
り、この配管12の途中にはキャリア液11を汲み上げ
て試料分離装置へ送液するためのポンプ20、およびキ
ャリア液11中に試料液30を注入するための注入バル
ブ31が、順に設けられている。注入バルブ31には、
試料液30を注入するための孔があり、そこに注射器3
2が取り付けられるようになっている。注射器32の中
は試料液30が吸引保持されている。
Carrier liquid 11 used as a transfer medium
Are held in the carrier liquid tank 10. Carrier liquid tank 1
0 to the sample separation device 40 are connected by a pipe 12, a pump 20 for pumping up the carrier liquid 11 and sending it to the sample separation device, and a sample liquid in the carrier liquid 11. An injection valve 31 for injecting 30 is provided in order. In the injection valve 31,
There is a hole for injecting the sample liquid 30, and the syringe 3
2 can be attached. The sample liquid 30 is suction-held in the syringe 32.

【0014】試料分離装置40には配管12と接続され
た入口41、試料分離装置40で分離した試料液の出口
42がある。この出口42から廃液槽70までは配管1
3で繋がれており、途中には液の吸収スペクトルを計測
するためのフローセル50が設けられている。またフロ
ーセル50に光を照射するための光源51、フローセル
50を透過した光を検知するための検知器52が設けら
れている。信号処理・動作制御部60からポンプ20、
光源51に対しては制御信号を、また検知器52には検
知信号用のケーブルが繋がれている。
The sample separator 40 has an inlet 41 connected to the pipe 12 and an outlet 42 for the sample liquid separated by the sample separator 40. The pipe 1 extends from the outlet 42 to the waste liquid tank 70.
3, and a flow cell 50 for measuring the absorption spectrum of the liquid is provided in the middle. Further, a light source 51 for irradiating light to the flow cell 50 and a detector 52 for detecting light transmitted through the flow cell 50 are provided. From the signal processing / operation control unit 60 to the pump 20,
A control signal is connected to the light source 51, and a detection signal cable is connected to the detector 52.

【0015】次に、図2を用いて試料分離装置40の構
造について説明する。試料分離装置40には試料液30
やキャリア液11を導入するための入口41、および分
離した試料液30を排出するための出口42が設けられ
ている。入口42から等しい断面形状、等しい長さの2
つの分離用流路451、461が分岐している。各々の
分離用流路451、461は、分岐部452、462を
経て、それぞれ等しい断面形状、等しい長さの分離用流
路453、454および463、464に別れている。
この分岐用流路453、454および463、464
は、再び合流部455、465を経てそれぞれ等しい断
面形状、等しい長さの分離用流路456、466に統合
される。更に、これらの流路456、466は一つに合
流し、出口42へと連結している。これら全ての分離用
流路の内壁には、分離用の吸着物質がコーティングされ
ている。
Next, the structure of the sample separation device 40 will be described with reference to FIG. The sample liquid 30
An inlet 41 for introducing the carrier liquid 11 and an outlet 42 for discharging the separated sample liquid 30 are provided. 2 of equal cross-sectional shape and equal length from inlet 42
The two separation channels 451 and 461 are branched. Each of the separation channels 451, 461 is divided into separation channels 453, 454 and 463, 464 having the same cross-sectional shape and the same length, respectively, via the branch portions 452, 462.
The branch channels 453, 454 and 463, 464
Are integrated again into separation channels 456 and 466 having the same cross-sectional shape and the same length via the junctions 455 and 465, respectively. Further, these channels 456, 466 join together and are connected to the outlet 42. The inner walls of all these separation channels are coated with an adsorbent for separation.

【0016】上記構成の化学分析装置は、以下のように
動作する。
The chemical analyzer having the above configuration operates as follows.

【0017】まず、信号処理・動作制御部60からの制
御信号を受けてポンプ20が送液を開始する。ポンプ2
0はキャリア液槽10からキャリア液11を一定流量で
汲み上げ配管12を通して試料分離装置40へ供給を始
める。流れが安定した時点で注入バルブ31に試料液3
0の入った注射器32を挿入し、一定量の試料液30を
配管12中に注入する。試料液30はキャリア液11の
流れに乗って試料分離装置40の入口41から内部に導
入される。ここで各分離流路の断面形状、長さともに等
しいので試料分離流路451に続く流路の圧力抵抗、4
61に続く流路の圧力抵抗は等しい。従って、試料液3
0を含むキャリア液11は流路451、461にそれぞ
れ等流量で均等に分岐して流れる。同じく流路451か
ら分岐部452へ差し掛かった流れは、それに続く流路
463、464共に流路抵抗が等しいため、均等の流量
でそれぞれに分岐して流れる。以下の流路461−分岐
部462−流路463、464においても同様であり、
等流量で分岐する。
First, upon receiving a control signal from the signal processing / operation control unit 60, the pump 20 starts liquid supply. Pump 2
At 0, the carrier liquid 11 is pumped from the carrier liquid tank 10 at a constant flow rate and supplied to the sample separation device 40 through the pipe 12. When the flow is stabilized, the sample liquid 3 is supplied to the injection valve 31.
A syringe 32 containing 0 is inserted, and a fixed amount of the sample liquid 30 is injected into the pipe 12. The sample liquid 30 is introduced into the sample separation device 40 from the inlet 41 along with the flow of the carrier liquid 11. Here, since the cross-sectional shape and length of each separation channel are equal, the pressure resistance of the channel following the sample separation channel 451,
The pressure resistance of the flow path following 61 is equal. Therefore, sample liquid 3
The carrier liquid 11 containing 0 flows equally into the flow paths 451 and 461 at equal flow rates. Similarly, the flow approaching the branch portion 452 from the flow path 451 is branched and flows at an equal flow rate, because the flow resistances of the subsequent flow paths 463 and 464 are equal. The same applies to the following channel 461-branch 462-channels 463, 464.
Branch at equal flow rate.

【0018】図6は本発明の分離工程を示したものであ
るが、まずそれぞれの分離流路453,454におい
て、流路壁面の吸着物質との相互作用で試料液中の成分
が第1から第3までの3成分33、34、35に分離す
る。2つの流路で起こる分離パターンは2つの流路の形
状、流動条件が同じであれば、図に示したように同じパ
ターンを示す。また2つの流路の長さが同じであれば、
同様に図に示すとおり合流部において同じタイミングで
各成分同士が合流する。そのため、従来技術で顕著であ
った、微粒子間の隙間の不均一性による分離性能の低下
は発生しない。各流路で分離した成分は、相互に混合す
ることなく合流し、出口43より出て、フローセル50
に送られる。フローセル50では信号処理・駆動制御部
60からの信号を受けて光源が発光し、フローセル中の
分離成分の吸収スペクトルの時間変化を検知器52が捉
え、その信号を信号処理・駆動制御部60へ送りデータ
処理を行う。
FIG. 6 shows the separation step of the present invention. First, in each of the separation channels 453 and 454, the components in the sample liquid are changed from the first to the first by the interaction with the adsorbed substance on the channel walls. It is separated into three components 33, 34 and 35 up to the third. The separation patterns occurring in the two flow paths show the same pattern as shown in the figure if the two flow paths have the same shape and flow conditions. If the lengths of the two channels are the same,
Similarly, as shown in the figure, the components merge at the same timing at the junction. For this reason, the deterioration of the separation performance due to the unevenness of the gap between the fine particles, which is remarkable in the related art, does not occur. The components separated in the respective flow paths merge without being mixed with each other, and exit from the outlet 43, and enter the flow cell 50.
Sent to In the flow cell 50, the light source emits light in response to a signal from the signal processing / drive control unit 60, and the detector 52 detects a temporal change in the absorption spectrum of the separated component in the flow cell, and sends the signal to the signal processing / drive control unit 60. Perform feed data processing.

【0019】以上のように本発明は、クロマトカラム内
において均一な流れを形成させることが可能となり、一
度分離した成分が再び他の分離成分と混合することのな
い、分離能力の高い試料分離装置および化学分析装置を
提供することが可能となる。
As described above, the present invention makes it possible to form a uniform flow in a chromatographic column, and a component having a high separation ability can be obtained, in which components once separated do not mix again with other separated components. And a chemical analyzer.

【0020】本発明の他の実施例について図3を用いて
説明する。図3は、試料分離装置40の他の構造を示し
たものである。本実施例は、図2で示した試料液分離装
置40の分離用流路を階層構造としたもので、図2と同
じ部分は同じ番号を付した。図2の試料分離装置と同様
に、同じ階層の各流路の断面形状、流路長さは等しくな
っているので第1の実施例同様に高い分離能力が得られ
る。第1図の実施例の試料分離装置と比較すると、分離
流路の数が多くなるため、試料液と吸着物質との接触確
率は高まり、より短時間で高い分離性能が得られる。ま
た本実施例の試料分離装置は2つの試料分離部71、7
2を直列に繋げているため、より細かに成分を分離する
ことができる。
Another embodiment of the present invention will be described with reference to FIG. FIG. 3 shows another structure of the sample separation device 40. In the present embodiment, the separation channels of the sample liquid separator 40 shown in FIG. 2 have a hierarchical structure, and the same parts as those in FIG. As in the sample separation apparatus of FIG. 2, the cross-sectional shape and the flow path length of each flow path in the same layer are equal, so that a high separation capacity can be obtained as in the first embodiment. As compared with the sample separation apparatus of the embodiment shown in FIG. 1, the number of separation channels is increased, so that the probability of contact between the sample liquid and the adsorbed substance is increased, and high separation performance can be obtained in a shorter time. Further, the sample separation device of this embodiment has two sample separation units 71 and 7.
Since the two are connected in series, the components can be more finely separated.

【0021】図4は本発明の他の実施例の試料分離装置
を示したものである。
FIG. 4 shows a sample separation apparatus according to another embodiment of the present invention.

【0022】図4では3枚の分離用流路プレート91、
92、93を縦方向に積層したものであり、入口41か
ら入った試料液は3枚の分離用流路プレートに均等に分
散する。それぞれのプレート内の流路において、左から
右に向かって試料液が流れて行くが、どの経路を辿って
も入口から出口までの距離は同じとなるように格子状に
流路が形成されている。格子の一辺に相当する単位流路
要素94の断面形状を同じにしておけば、合流位置で異
なる分離成分が混合することはない。さらに本実施例に
おいては3つの分離用流路プレートを重ねて並列接続し
ているため、多量の分離成分を短時間に得ることがで
き、測定の感度も向上する。なお分離流路の形状は図2
又は図3と同じ形状に構成していも良い。
In FIG. 4, three flow path plates 91 for separation,
The sample liquids 92 and 93 are stacked in the vertical direction, and the sample liquid entered from the inlet 41 is evenly dispersed in the three channel plates for separation. In each channel in the plate, the sample solution flows from left to right, but the channels are formed in a grid so that the distance from the inlet to the outlet is the same regardless of the route. I have. If the cross-sectional shapes of the unit flow path elements 94 corresponding to one side of the lattice are the same, different separation components will not be mixed at the merging position. Further, in this embodiment, since three separation flow path plates are overlapped and connected in parallel, a large amount of separation components can be obtained in a short time, and the measurement sensitivity is improved. The shape of the separation channel is shown in FIG.
Alternatively, it may be configured in the same shape as in FIG.

【0023】図2、図3、図4記載の試料分離装置内の
分離流路を同じ断面形状で高精度に形成するためには、
エッチング等の半導体製造技術を利用する。従来の微粒
子を充填することにより、隙間に匹敵する幅の微細な流
路を非常に容易に薄い板に多数形成でき、これを複数枚
重ねることで小さな容積で高密度に分離流路が実装で
き、小形化に寄与する。
In order to form the separation channels in the sample separation device shown in FIGS. 2, 3 and 4 with the same cross-sectional shape with high precision,
A semiconductor manufacturing technique such as etching is used. By filling with conventional microparticles, a large number of fine channels with a width comparable to the gap can be formed very easily on a thin plate, and by stacking a plurality of these, a separation channel with a small volume and high density can be mounted. , Contribute to miniaturization.

【0024】本発明の他の実施例を図5を用いて説明す
る。図5は高分離性能を得るために、図1に示すキャリ
ア液と試料液が混合された状態で送液用のポンプ20で
吸引送出して、その他の部品を直列に連結して構成した
化学分析装置である。
Another embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a chemical composition in which the carrier liquid and the sample liquid shown in FIG. 1 are mixed and suctioned and sent out by a pump 20 for feeding, and other parts are connected in series in order to obtain high separation performance. It is an analyzer.

【0025】この構成の場合、各試料分離装置での圧力
損失が積算されるため、駆動ポンプとして高圧で大型の
ポンプが必要となる。そこで、これらの問題を解決する
ために試料分離装置の各々の間に薄型の小形ポンプ20
を設けたものである。本実施例のポンプ20はバイモル
フ振動体21、逆止弁22、23から成る。最下部のポ
ンプより吸引された試料およびキャリア液は順次下から
フローセル50に向かって汲み上げられる。ひとつのポ
ンプはひとつの試料分離装置内のみ試料液を送液するだ
けの圧力があれば良いから、図に示したようなダイヤフ
ラム型の簡素なポンプであっても試料液の送液ができ、
全体システムの小形化へ寄与する。
In the case of this configuration, since the pressure loss in each sample separation device is integrated, a large-sized high-pressure pump is required as a driving pump. Therefore, in order to solve these problems, a thin small pump 20 is provided between each of the sample separation devices.
Is provided. The pump 20 according to the present embodiment includes a bimorph vibrator 21 and check valves 22 and 23. The sample and the carrier liquid sucked from the lowermost pump are sequentially pumped from below toward the flow cell 50. One pump only needs to have a pressure enough to send the sample liquid only in one sample separation device, so even a simple diaphragm type pump as shown in the figure can send the sample liquid.
It contributes to downsizing of the whole system.

【0026】[0026]

【発明の効果】本発明により、クロマトカラム内におい
て隙間の流れが均一で、一度分離した成分が再び他の分
離成分と混合することのない、分離能力の高い試料分離
装置および化学分析装置を提供することが可能となる。
According to the present invention, there is provided a sample separation apparatus and a chemical analysis apparatus having a high separation ability, in which the flow in the gap is uniform in the chromatographic column and the component once separated does not mix again with other separated components. It is possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の化学分析装置の構成図である。FIG. 1 is a configuration diagram of a chemical analyzer according to the present invention.

【図2】 本発明の試料分離装置の構成図である。FIG. 2 is a configuration diagram of a sample separation device of the present invention.

【図3】 本発明の別の試料分離装置の構成図である。FIG. 3 is a configuration diagram of another sample separation device of the present invention.

【図4】 本発明の別の試料分離装置の構成図である。FIG. 4 is a configuration diagram of another sample separation device of the present invention.

【図5】 本発明の別の化学分析装置の構成図である。FIG. 5 is a configuration diagram of another chemical analysis device of the present invention.

【図6】 本発明の分離流路での試料分離の状態の様子
を示す説明図である。
FIG. 6 is an explanatory diagram showing a state of sample separation in a separation channel of the present invention.

【符号の説明】[Explanation of symbols]

10…キャリア液槽、11…キャリア液、12、13…
配管、20…ポンプ、30…試料液、31…注入バル
ブ、32…注射器、40…試料分離装置、41…入口、
42…出口、50…フローセル、51…光源、52…検
知器、60…信号処理・動作制御部、451〜466…
分離流路、71…第1試料分離部、72…第2試料分離
部、91、92、93…分離用プレート、94…単位流
路要素、21…バイモルフ振動体、22、23…逆止
弁。
10 ... Carrier liquid tank, 11 ... Carrier liquid, 12, 13 ...
Piping, 20 pump, 30 sample liquid, 31 injection valve, 32 syringe, 40 sample separation device, 41 inlet,
42 outlet, 50 flow cell, 51 light source, 52 detector, 60 signal processing / operation control unit, 451 to 466
Separation flow path, 71: first sample separation section, 72: second sample separation section, 91, 92, 93: separation plate, 94: unit flow path element, 21: bimorph vibrator, 22, 23: check valve .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 宗 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mune Kato 502, Kandachicho, Tsuchiura-shi, Ibaraki Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】試料液の入口と、それに続く入口流路と、
複数の等しい断面形状で、等しい長さの分離用流路と、
分離液の出口と、出口に繋がる出口流路と、入口流路か
ら複数の分離用流路に分岐させる分岐部と、複数の分離
用流路を一本の出口流路に合流させる合流部を平板上に
形成したことを特徴とする試料分離装置。
An inlet for a sample liquid, an inlet channel following the inlet,
A plurality of equal cross-sectional shapes, equal length separation channels,
An outlet for the separated liquid, an outlet flow path connected to the outlet, a branching part for branching from the inlet flow path to a plurality of separation flow paths, and a merging part for joining the plurality of separation flow paths to one outlet flow path. A sample separation device formed on a flat plate.
【請求項2】請求項1において、前記分離用流路の合流
部に、分岐部と複数の分離流路と合流部を備えた試料分
離部を階層的に設けたことを特徴とする試料分離装置。
2. The sample separation method according to claim 1, wherein a sample separation section having a branching section, a plurality of separation flow paths and a junction section is provided in a hierarchy at a junction of the separation flow paths. apparatus.
【請求項3】請求項1において、前記分岐部から合流部
に至る分離用流路は、格子状に交差しており、格子間の
流路は、全て等断面、同じ長さであり、分岐部から合流
部まで下流方向に沿ってどの経路を辿っても同じ距離と
なるように形成したことを特徴とする試料分離装置。
3. The separation channel according to claim 1, wherein the separation channels from the branch portion to the junction portion intersect in a grid pattern, and all the channels between the grids have the same cross section and the same length. A sample separation device characterized in that the distance is the same regardless of the path along the downstream direction from the junction to the junction.
【請求項4】試料液中の溶解化学成分を分離し、各分離
成分の濃度を検出する化学分析装置において、 試料液の入口と、それに続く入口流路と、複数の等しい
断面形状で、等しい長さの分離用流路と、分離液の出口
と、出口に繋がる出口流路と、入口流路から複数の分離
用流路に分岐させる分岐部と、複数の分離用流路を一本
の出口流路に合流させる合流部を平板上に形成した試料
分離装置を設けたことを特徴とする化学分析装置。
4. A chemical analyzer for separating a dissolved chemical component in a sample liquid and detecting the concentration of each separated component, wherein a sample liquid inlet, a subsequent inlet channel, and a plurality of equal cross-sectional shapes are equal. The length of the separation channel, the outlet of the separation liquid, the outlet channel connected to the outlet, the branch portion that branches from the inlet channel to the plurality of separation channels, and the plurality of separation channels into one A chemical analysis device comprising a sample separation device in which a merging portion for merging with an outlet channel is formed on a flat plate.
【請求項5】請求項4において、前記試料分離装置を複
数積層して構成すると共に、前記各試料分離装置の間に
試料送液手段を設けたことを特徴とする化学分析装置。
5. The chemical analyzer according to claim 4, wherein a plurality of the sample separation devices are stacked and a sample liquid sending means is provided between each of the sample separation devices.
JP06978898A 1998-03-19 1998-03-19 Sample separation device and chemical analysis device Expired - Fee Related JP3482865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06978898A JP3482865B2 (en) 1998-03-19 1998-03-19 Sample separation device and chemical analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06978898A JP3482865B2 (en) 1998-03-19 1998-03-19 Sample separation device and chemical analysis device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003206161A Division JP2004045410A (en) 2003-08-06 2003-08-06 Sample separation device and chemical analysis device

Publications (2)

Publication Number Publication Date
JPH11264814A true JPH11264814A (en) 1999-09-28
JP3482865B2 JP3482865B2 (en) 2004-01-06

Family

ID=13412854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06978898A Expired - Fee Related JP3482865B2 (en) 1998-03-19 1998-03-19 Sample separation device and chemical analysis device

Country Status (1)

Country Link
JP (1) JP3482865B2 (en)

Also Published As

Publication number Publication date
JP3482865B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US6993958B2 (en) Capillary column chromatography process and system
JP5138223B2 (en) Hydrodynamic multilayer sheath flow structure
JP4199609B2 (en) ANALYSIS CHIP, ANALYSIS CHIP UNIT, ANALYSIS DEVICE, AND METHOD FOR PRODUCING ANALYSIS CHIP
US8007648B2 (en) Integrated electrokinetic devices and methods of manufacture
US9421540B2 (en) Microfluidic device with auxiliary and bypass channels
US20020187074A1 (en) Microfluidic analytical devices and methods
JP2009008690A (en) Chip for analysis, chip unit for analysis and analyzer, and manufacturing method of chip for analysis
WO2011026128A2 (en) Flowcells and methods of filling and using same
JP2005030906A (en) Analytical chip and analyzing method
JP6614360B2 (en) Field flow fractionation device
US6833068B2 (en) Passive injection control for microfluidic systems
TW200525024A (en) Sorting particles in parallel
JP2008132410A (en) Device for fractionizing trace of liquid
CN203108546U (en) Fluidic chip device
JP2014042905A (en) Liquid mixing apparatus, and liquid chromatograph
JP2004045410A (en) Sample separation device and chemical analysis device
JP2005017057A (en) Liquid injection structure and this structure
JP3482865B2 (en) Sample separation device and chemical analysis device
JP2006090813A (en) Chromatograph
US8635901B2 (en) Folded passage gas chromatography column
Kuldvee et al. Nonconventional samplers in capillary electrophoresis
US11946909B2 (en) Microfluidic asymmetric flow field-flow fractionation device and method of using the same
WO2002101381A1 (en) Liquid chromatograph and analyzing system
JP3754038B2 (en) Flow control device and flow control system
US8647590B2 (en) Optical detection cell with micro-fluidic chip

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees