JP2014042905A - Liquid mixing apparatus, and liquid chromatograph - Google Patents

Liquid mixing apparatus, and liquid chromatograph Download PDF

Info

Publication number
JP2014042905A
JP2014042905A JP2012188202A JP2012188202A JP2014042905A JP 2014042905 A JP2014042905 A JP 2014042905A JP 2012188202 A JP2012188202 A JP 2012188202A JP 2012188202 A JP2012188202 A JP 2012188202A JP 2014042905 A JP2014042905 A JP 2014042905A
Authority
JP
Japan
Prior art keywords
eluent
liquid
flow path
merge
branch point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012188202A
Other languages
Japanese (ja)
Inventor
Hideo Enoki
英雄 榎
Daisuke Akieda
大介 秋枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012188202A priority Critical patent/JP2014042905A/en
Priority to PCT/JP2013/068202 priority patent/WO2014034259A1/en
Publication of JP2014042905A publication Critical patent/JP2014042905A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • B01F25/43231Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors the channels or tubes crossing each other several times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • G01N2030/347Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient mixers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid mixing apparatus configured to reduce and stabilize the density unevenness in a flow direction, and to provide a liquid chromatograph using the liquid mixing apparatus.SOLUTION: A liquid mixing apparatus includes: a first introduction passage with a first eluant passing therethrough; a second introduction passage with a second eluant passing therethrough; a first branching point disposed in the first introduction passage and branching off the first eluant; a second branching point disposed in the second introduction passage and branching off the second eluant; first and second merging points in each of which the first eluant branched off from the first branching point merges with the second eluant branched off from the second branching point; a first merging passage where a liquid mixture of the first and second eluant merging at the first merging point passes therethrough; a second merging passage where the liquid mixture of the first and second eluant merged at the second merging point passes therethrough; and a third merging point where the first merging passage merges with the second merging passage. A passage time of the liquid mixture in the first merging passage is different from that of the liquid mixture in the second merging passage.

Description

本発明は、液体を混合する液体混合装置、および液体混合装置を用いた液体クロマトグラフに関する。   The present invention relates to a liquid mixing apparatus for mixing liquids, and a liquid chromatograph using the liquid mixing apparatus.

液体クロマトグラフにおけるグラジエント溶出法では、複数の溶離液の混合液(移動相と呼ばれる)を得るためにミキサと呼ばれる液体混合装置が用いられる。液体混合装置の構造には、小さな粒状のビーズを充填したものや、基板上に孔や溝を形成して流路としたものがある。このうち、後者の流路構造タイプの液体混合装置は、比較的小さい内部体積で溶離液を混合できるため、混合時間が短く、グラジエントの分解能が高いという特徴がある。   In a gradient elution method in a liquid chromatograph, a liquid mixing device called a mixer is used to obtain a mixed solution (called a mobile phase) of a plurality of eluents. As the structure of the liquid mixing apparatus, there are a structure in which small granular beads are filled and a structure in which holes and grooves are formed on a substrate to form a flow path. Among these, the latter flow channel structure type liquid mixing apparatus is characterized in that the eluent can be mixed with a relatively small internal volume, so that the mixing time is short and the gradient resolution is high.

特許文献1、2は、移動相の流れ方向濃度ムラ(液体混合装置に流入する各溶離液の混合比の時間変化)を低減する液体混合装置、および液体混合装置を用いた液体クロマトグラフに関するもので、上流側から導入路、導入路から分岐する複数本の分岐流路、複数本の分岐流路が合流する合流部、導出路からなる混合流路ユニットにより構成されている。前記複数の分岐流路は、幅、深さ、長さ、屈曲などの流路形状により、それぞれの液体通過時間が異なるよう形成されている。そのため、合流部で合流した複数の移動相の流れ方向濃度ムラは、打ち消し合い(特許文献1の場合)、平均化(特許文献2の場合)し、減少すると考えられる。   Patent Documents 1 and 2 relate to a liquid mixing device that reduces uneven concentration in the flow direction of the mobile phase (time change in the mixing ratio of each eluent flowing into the liquid mixing device), and a liquid chromatograph using the liquid mixing device. Thus, it is constituted by a mixed flow path unit including an introduction path from the upstream side, a plurality of branch flow paths branching from the introduction path, a merging portion where the plurality of branch flow paths merge, and a lead-out path. The plurality of branch channels are formed so that the liquid passage times thereof differ depending on the channel shape such as width, depth, length, and bend. Therefore, it is considered that the flow direction concentration unevenness of the plurality of mobile phases joined at the joining portion cancels each other (in the case of Patent Document 1), averages (in the case of Patent Document 2), and decreases.

WO2011158430A1WO2011158430A1 US2011/0192217US2011 / 0192217

液体クロマトグラフにおいて高圧グラジエント溶出法を実施する場合、混合すべき複数の溶離液を複数の送液ポンプに吸引し高圧にして吐出し、T字形の流体コネクタを介して1本のチューブ(流路)に合流し、さらにチューブから別の流体コネクタを介して液体混合装置の導入路に接続する。この時、それぞれの送液ポンプの動作ばらつきなどに起因する流量脈動があるため、混合液に含まれる各溶離液の比率が時間変化し流れ方向濃度ムラを生じる。
さらに、複数の溶離液は、合流部で完全に混合せず、溶離液それぞれに流路断面内で偏りを生じ濃度ムラ(断面内の位置による濃度変化、以下、径方向濃度ムラと呼ぶ)となる。通常、コネクタから液体混合装置に至るチューブの長さを十分とり分子拡散により径方向濃度ムラを低減するが、チューブが長くなると、流れ方向の拡散が大きくなりグラジエントの分解能が低下する。また、溶離液の種類や流量、流量比により径方向濃度ムラの状態が変化する。
上記特許文献1、2に記載の液体混合装置のように複数の分岐流路を有する場合、混合液が分岐流路に分流するときに、それぞれの分岐流路に入る混合液の断面内範囲がそれぞれ異なるので、流れ方向の濃度ムラが無い場合でも径方向濃度ムラが変動すると、各分岐流路に入る溶離液組成が変動する。これにより、複数の分岐流路が下流側で合流した時に径方向の濃度ムラが流れ方向濃度ムラに変換される。また、流量比が大きい時、流量の小さな方の液体が流路を偏って流れ、一方の分岐流路のみに流入する可能性があり、その場合、装置による流れ方向の濃度ムラ低減効果が期待できなくなる。また、チューブと液体混合装置の導入路は流体コネクタで接続されるが、チューブと導入路間の軸周りの取り付け角度が一定とは限らないので、液体混合装置交換や装置により分岐流路各々に入る混合液の範囲が変化し溶離液組成が変化する可能性がある。
そのため、検出器に流入する混合液には、予測し難い流れ方向濃度ムラを生じる場合がある。また、液体混合装置やチューブの交換・組直しにより軸周りの取り付け角度が変わることにより流れ方向の濃度ムラの状態が変化し、流れ方向濃度ムラのみを考慮した設計の効果が減じる恐れがある。その結果、例えば検出器に吸光度測定を用いる場合、検出される吸光度には混合液の濃度ムラの分だけ変動が生じ、また、濃度ムラが予測し難いため信号処理による補正も困難なため測定精度を低下させる恐れがある。
When a high-pressure gradient elution method is performed in a liquid chromatograph, a plurality of eluents to be mixed are sucked into a plurality of liquid feed pumps and discharged at a high pressure, and one tube (flow path) is connected via a T-shaped fluid connector. ), And is connected from the tube to the introduction path of the liquid mixing device via another fluid connector. At this time, since there is a flow rate pulsation due to operation variation of each liquid feed pump, the ratio of each eluent contained in the liquid mixture changes with time, resulting in flow direction concentration unevenness.
Furthermore, the plurality of eluents are not completely mixed at the confluence, and each eluent is biased in the cross section of the flow path, resulting in uneven density (concentration change due to position in the cross section, hereinafter referred to as radial density unevenness). Become. Normally, the length of the tube from the connector to the liquid mixing device is sufficiently long to reduce the radial concentration unevenness by molecular diffusion. However, when the tube is lengthened, the diffusion in the flow direction increases and the gradient resolution decreases. Moreover, the state of radial density unevenness changes depending on the type, flow rate, and flow rate ratio of the eluent.
In the case of having a plurality of branch channels as in the liquid mixing devices described in Patent Documents 1 and 2, when the mixed solution is divided into the branch channels, the range within the cross section of the mixed solution entering each branch channel is Since they are different from each other, even if there is no concentration unevenness in the flow direction, if the concentration unevenness in the radial direction varies, the composition of the eluent entering each branch flow path varies. As a result, when the plurality of branch flow paths merge downstream, the density unevenness in the radial direction is converted into the density unevenness in the flow direction. Also, when the flow rate ratio is large, the liquid with the smaller flow rate may flow in the channel and flow into only one branch channel. In this case, the concentration unevenness reduction effect in the flow direction by the device is expected. become unable. In addition, although the tube and the introduction path of the liquid mixing device are connected by a fluid connector, the angle of attachment around the axis between the tube and the introduction route is not always constant. There is a possibility that the range of the mixed liquid entering changes and the composition of the eluent changes.
For this reason, the mixed liquid flowing into the detector may cause uneven density in the flow direction that is difficult to predict. In addition, the state of density unevenness in the flow direction is changed by changing the mounting angle around the axis due to replacement or reassembly of the liquid mixing device or the tube, and there is a possibility that the design effect considering only the flow direction density unevenness may be reduced. As a result, for example, when absorbance measurement is used for a detector, the detected absorbance varies depending on the concentration unevenness of the liquid mixture, and it is difficult to predict the concentration unevenness, so correction by signal processing is also difficult, so measurement accuracy May decrease.

本発明の目的は、各分岐流路への溶離液分配比の変化やチューブと液体混合装置の取り付け条件による混合液の径方向の濃度ムラの変化を低減することにより、流れ方向の濃度ムラを減少・安定化する液体混合装置、および液体混合装置を用いた液体クロマトグラフを提供することである。   The object of the present invention is to reduce the concentration unevenness in the flow direction by reducing the change in the concentration unevenness in the radial direction of the mixed liquid due to the change in the eluent distribution ratio to each branch flow path and the mounting conditions of the tube and the liquid mixing device. A liquid mixing device that reduces and stabilizes, and a liquid chromatograph using the liquid mixing device.

上記課題に鑑み、本願発明は以下の構成を有する。第一溶離液が通過する第一の導入路と、第二溶離液が通過する第二の導入路と、第一の導入路上に配置され、第一溶離液を分岐する第一の分岐点と、第二の導入路上に配置され、第二溶離液を分岐する第二の分岐点と、第一の分岐点から分岐した第一溶離液と第二の分岐点から分岐した第二溶離液とが合流する第一の合流部及び第二の合流部と、前記第一の合流部で合流した第一及び第二溶離液の混合液が通過する第一の合流路と、前記第二の合流部で合流した第一及び第二溶離液の混合液が通過する第二の合流路と、第一の合流路と第二の合流路が合流する第三の合流部と、を備え、第一の合流路での混合液の第二の合流路での混合液の通過時間が異なることを特徴とする混合装置。
In view of the above problems, the present invention has the following configuration. A first introduction path through which the first eluent passes, a second introduction path through which the second eluent passes, and a first branch point that is arranged on the first introduction path and branches the first eluent. A second branch point that is arranged on the second introduction path and branches the second eluent, a first eluent branched from the first branch point, and a second eluent branched from the second branch point The first merge section and the second merge section, the first merge channel through which the mixed solution of the first and second eluents merged at the first merge section passes, and the second merge A second merge channel through which a mixed solution of the first and second eluents merged at the section passes, and a third merge section at which the first merge channel and the second merge channel merge, The mixing device is characterized in that the passing times of the mixed liquid in the second combined flow path in the combined flow path are different.

本発明の実施態様によれば、各分岐流路への溶離液分配比の変化やチューブと液体混合装置の取り付け条件による混合液の径方向の濃度ムラの変化を低減することにより、流れ方向の濃度ムラを減少・安定化する液体混合装置、および液体混合装置を用いた液体クロマトグラフを提供することができる。   According to the embodiment of the present invention, by reducing the change in the eluent distribution ratio to each branch flow path and the change in the concentration unevenness in the radial direction of the mixed liquid due to the mounting conditions of the tube and the liquid mixing device, It is possible to provide a liquid mixing apparatus that reduces and stabilizes density unevenness, and a liquid chromatograph using the liquid mixing apparatus.

高圧グラジエント溶出法向け液体クロマトグラフの主要構成図Main configuration of liquid chromatograph for high pressure gradient elution method 液体混合装置の流路構成図Flow diagram of liquid mixing device 濃度ムラ低減の説明図Illustration of density unevenness reduction 流路条件の説明図Illustration of flow path conditions 液体混合装置の流路構成図Flow diagram of liquid mixing device 液体混合装置の流路構成図Flow diagram of liquid mixing device

以下、図面を用いて、本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、高圧グラジエント溶出法向け液体クロマトグラフの主要構成を示す図である。図1の液体クロマトグラフは、各構成要素を流体的に接続する配管36と配管36を流れる2種類の溶離液A13、溶離液B14、それぞれの溶離液を駆動し2台の送液ポンプ11、12、各送液ポンプの下流側で配管361、362から2種の溶離液が流入混合する液体混合装置20、混合した溶離液に測定対象であるサンプル液16を挿入するオートサンプラ31、サンプル液中の化学成分の吸着・脱着速度の違いにより各成分のピークを時間分離する分離カラム32、分離カラムで分離された化学成分を検出する検出器33、各構成要素を制御するコントローラ34、各構成要素とコントローラ34を電気的に接続する配線35を備える。   FIG. 1 is a diagram showing a main configuration of a liquid chromatograph for a high pressure gradient elution method. The liquid chromatograph of FIG. 1 includes two pipes 36 that fluidly connect the respective components and two types of eluent A13 and eluent B14 that flow through the pipes 36, driving the respective eluents, 12, a liquid mixing device 20 in which two kinds of eluents flow in and mix from pipes 361 and 362 on the downstream side of each liquid feed pump, an autosampler 31 for inserting the sample liquid 16 to be measured into the mixed eluent, and sample liquid Separation column 32 for time-separating the peak of each component according to the difference in adsorption / desorption speed of the chemical component therein, detector 33 for detecting the chemical component separated by the separation column, controller 34 for controlling each component, and each component A wiring 35 for electrically connecting the element and the controller 34 is provided.

図2に本発明の実施例を示す。図2は液体混合装置20内の流路ユニット(破線ブロックで示す)で図の白丸(○)で示す部分は流路ユニットの出入り口、流路の分岐部、合流部を示し、それ以外の点で流路を示す2本の線が交わる場合は、それぞれの線は3次元的に分離しているとみなす。送液ポンプ11、12を経て配管361、362から液体混合装置の入口211、212に達した溶離液A13、溶離液B14はそれぞれ導入路221、222を経て分岐部231、分岐部232に達する。
導入路221は分岐部231で分岐流路241、分岐流路242に枝分かれし、導入路221を流れてきた溶離液A13がそれぞれの分岐流路に分流する。また、導入路222は分岐部232で分岐流路243、分岐流路244に枝分かれし、導入路222を流れてきた溶離液B14がそれぞれの分岐流路に分流する。分岐流路241と分岐流路243は合流部251で接続し溶離液A13と溶離液B14が合流混合する。また、同様に分岐流路242と分岐流路244は合流部252で接続し溶離液A13と溶離液B14が合流混合する。
さらに、合流部251から延びる混合液流路261と合流路252から延びる混合液流路262は、混合液の合流部253で合流しそれぞれの混合液流路から流れてきた溶離液A13と溶離液B14の混合液が合体して導出路271を経て出口281に至る。混合液流路261と混合液流路262は形状(例えば、断面積、長さ)が異なるようにし、上流側のそれぞれの混合部から入った混合液が合流部253に至るまでの時間を変える。これにより、溶離液A13と溶離液B14の流量が変動した時の出口での液量比の変化が低減する。
例えば、図3のように平均流量qで流入する溶離液A13が2つの混合液流路にそれぞれq1、q2(漏れが無いとしてq=q1+q2となる)の流量で分流したとき、流入液に生じた流量変化Δq(図のピーク)が、分流することにより各混合液流路でより小さな流量変化Δq1(Δq1=Δq・q1/q)、Δq2(Δq2=Δq・q2/q)に変わり、これらの変化が時間差(T1−T2)を持って溶離液B14と合流するため、溶離液A13による流量変化のピークが小さくなる(溶離液B14についても同様)。
なお、本実施例では溶離液は二種類であったが三種類以上の溶離液を混合する場合は、破線で示す様に溶離液毎に入口213、導入路223、分岐部233、分岐流路245、246を追加して合流部251、252に接続すればよい。また、入口流路ユニット201の下流側に液体の通過時間が異なる混合液流路263と混合液流路264を備えた混合流路ユニット202を接続してもよい(さらに下流側に新たな混合流路ユニットを接続してもよい)。
FIG. 2 shows an embodiment of the present invention. FIG. 2 is a flow path unit (shown by a broken line block) in the liquid mixing apparatus 20, and the portions indicated by white circles (◯) in the figure indicate the entrance / exit of the flow path unit, the branching section of the flow path, and the merging section. When two lines indicating the flow path intersect, it is considered that each line is three-dimensionally separated. The eluent A13 and the eluent B14 that have reached the inlets 211 and 212 of the liquid mixing device from the pipes 361 and 362 through the liquid feed pumps 11 and 12 reach the branch portions 231 and 232 through the introduction paths 221 and 222, respectively.
The introduction path 221 is branched into a branch flow path 241 and a branch flow path 242 at the branch portion 231, and the eluent A13 flowing through the introduction path 221 is branched to each branch flow path. In addition, the introduction path 222 is branched into a branch flow path 243 and a branch flow path 244 at the branch portion 232, and the eluent B14 that has flowed through the introduction path 222 is branched into each branch flow path. The branch flow path 241 and the branch flow path 243 are connected by a merging portion 251 and the eluent A13 and the eluent B14 are merged and mixed. Similarly, the branch flow path 242 and the branch flow path 244 are connected by a merging portion 252 so that the eluent A13 and the eluent B14 are merged and mixed.
Furthermore, the mixed liquid flow path 261 extending from the merging section 251 and the mixed liquid flow path 262 extending from the merging flow path 252 merge at the mixed liquid merging section 253 and flow from the respective mixed liquid flow paths to the eluent A13 and the eluent. The mixed liquid of B14 is united and reaches the outlet 281 through the outlet path 271. The mixed liquid flow path 261 and the mixed liquid flow path 262 are made to have different shapes (for example, cross-sectional area and length), and the time until the mixed liquid entering from each mixing section on the upstream side reaches the merging section 253 is changed. . Thereby, the change of the liquid volume ratio at the outlet when the flow rates of the eluent A13 and the eluent B14 fluctuate is reduced.
For example, as shown in FIG. 3, when the eluent A13 that flows in at an average flow rate q is divided into two mixed solution flow paths at flow rates q1 and q2 (q = q1 + q2 if there is no leakage), it occurs in the inflowing liquid. The flow rate change Δq (peak in the figure) is changed into smaller flow rate changes Δq1 (Δq1 = Δq · q1 / q) and Δq2 (Δq2 = Δq · q2 / q) in each liquid mixture flow path, Changes with time and has a time difference (T1-T2), so that the flow rate change peak due to the eluent A13 becomes smaller (the same applies to the eluent B14).
In this embodiment, there are two types of eluents. However, when three or more types of eluents are mixed, the inlet 213, the introduction path 223, the branch portion 233, and the branch flow path are shown for each eluent as shown by the broken lines. What is necessary is just to add 245,246 and to connect to the confluence | merging part 251,252. Further, a mixed flow channel unit 202 including a mixed liquid flow channel 263 and a mixed liquid flow channel 264 having different liquid passage times may be connected to the downstream side of the inlet flow channel unit 201 (further, a new mixing is performed on the downstream side. A flow path unit may be connected).

本実施例によれば、複数の液が個別の入口から液体混合装置に入り固定した流路内で合流混合するため、入口での流体コネクタなどの接続部の取り付け位置の違いによる濃度ムラの変化が防止できる。   According to the present embodiment, since a plurality of liquids join and mix in a flow channel that enters and is fixed to the liquid mixing device from individual inlets, changes in concentration unevenness due to differences in attachment positions of connecting portions such as fluid connectors at the inlets Can be prevented.

図4に本発明の他の実施例を示す。本実施例では図1の実施例で溶離液A13と溶離液B14を混合液流路261、262に等分配するための流路の条件を示す。入口から流入する溶離液A13、溶離液B14の流量をそれぞれq1、q2とする。また、分岐流路241〜244の流体抵抗をR13、R14、R23、R24とし、流量をq13、q14、q23、q24とする。また、混合液流路261、混合液流路262の流体抵抗をそれぞれR3、R4、流量をそれぞれq35、q45とする。また、分岐部231、分岐部232、合流部251、合流部252での圧力(混合液の合流部253での圧力との差)をそれぞれP1、P2、P3、P4とする。
先ず、流量の条件から、
q1=q13+q14 …(式1)
q2=q23+q24 …(式2)
q35=q13+q23 …(式3)
q45=q14+q24 …(式4)
となる。また、各分岐流路の流体抵抗、流量、圧力の関係から、
P1−P3=R13・q13 …(式5)
P1−P4=R14・q14 …(式6)
P2−P3=R23・q23 …(式7)
P2−P4=R24・q24 …(式8)
となる。また、各混合液流路では、
P3=R3・q35 …(式9)
P4=R4・q45 …(式10)
となる。上記式群から圧力を消去し展開することで、各分岐流路の流量q13、q14、q23、q24を各流路の流体抵抗と溶離液流量でそれぞれ(式11)、(式12)、(式13)、(式14)の様に表すことができる。
FIG. 4 shows another embodiment of the present invention. In this embodiment, conditions of the flow path for equally distributing the eluent A13 and the eluent B14 to the mixed liquid flow paths 261 and 262 in the embodiment of FIG. 1 are shown. The flow rates of the eluent A13 and the eluent B14 flowing from the inlet are q1 and q2, respectively. In addition, the fluid resistances of the branch channels 241 to 244 are R13, R14, R23, and R24, and the flow rates are q13, q14, q23, and q24. In addition, the fluid resistances of the mixed liquid channel 261 and the mixed liquid channel 262 are R3 and R4, and the flow rates are q35 and q45, respectively. Further, the pressures at the branching portion 231, the branching portion 232, the joining portion 251 and the joining portion 252 (differences from the pressure at the joining portion 253 of the mixed liquid) are P1, P2, P3, and P4, respectively.
First, from the flow rate conditions,
q1 = q13 + q14 (Formula 1)
q2 = q23 + q24 (Formula 2)
q35 = q13 + q23 (Formula 3)
q45 = q14 + q24 (Formula 4)
It becomes. In addition, from the relationship of fluid resistance, flow rate, pressure of each branch flow path,
P1-P3 = R13 · q13 (Formula 5)
P1-P4 = R14 · q14 (Formula 6)
P2-P3 = R23 · q23 (Formula 7)
P2-P4 = R24 · q24 (Formula 8)
It becomes. Moreover, in each liquid mixture flow path,
P3 = R3 · q35 (Formula 9)
P4 = R4 · q45 (Formula 10)
It becomes. By eliminating the pressure from the above equation group and developing the flow rate, the flow rates q13, q14, q23, and q24 of each branch flow channel are expressed by (Equation 11), (Equation 12), (Equation 12), respectively. It can be expressed as (Equation 13) and (Equation 14).

溶離液A13と溶離液B14を混合液流路261、262に等分配する条件は、分岐流路241の流量q13と分岐流路242の流量q14が等しく、分岐流路243の流量q23と分岐流路244の流量q24が等しいということであるから、(式15)、(式16)が成り立ち、溶離液A13、溶離液B14はそれぞれ独立に流れるから、(式15)、(式16)のq1とq2の係数が0となり、R13=R14、R23=R24、R3=R4とすれば、等分配が実現する。 The condition for equally distributing the eluent A13 and the eluent B14 to the mixed liquid channels 261 and 262 is that the flow rate q13 of the branch channel 241 and the flow rate q14 of the branch channel 242 are equal, and the flow rate q23 of the branch channel 243 and the branch flow. Since the flow rate q24 of the path 244 is equal, (Equation 15) and (Equation 16) are established, and the eluent A13 and the eluent B14 flow independently from each other. Therefore, q1 in (Equation 15) and (Equation 16) If the coefficients of q2 and q2 are 0, R13 = R14, R23 = R24, and R3 = R4, equal distribution is realized.

すなわち、「溶離液A13が流れる分岐流路241と分岐流路242の流体抵抗が等しい」、「溶離液B14が流れる分岐流路243と分岐流路244の流体抵抗が等しい」、「混合液流路261と混合液流路262の流体抵抗が等しい」の3条件を満たす流路とするということである。
なお、上記の条件は溶離液の種類が増えて、図1で示す破線の流路が追加されても同様の条件が成り立つことは明らかである。また、混合液流路がさらに増えても同様の条件が成り立つことは明らかである。
本実施例によれば、複数の混合液流路に複数種の液が等量分配されて流れるため混合液流路出口で時間差を持って合流した混合液の濃度ムラが低減する。
That is, “the fluid resistance of the branch channel 241 through which the eluent A13 flows is equal to the branch channel 242”, “the fluid resistance of the branch channel 243 through which the eluent B14 flows is equal to the branch channel 244”, “mixed liquid flow The channel 261 and the mixed solution channel 262 have the same fluid resistance.
Note that it is obvious that the above conditions are satisfied even if the types of eluents increase and the broken-line channels shown in FIG. 1 are added. In addition, it is clear that the same condition is satisfied even if the number of mixed liquid channels is further increased.
According to the present embodiment, a plurality of types of liquids are equally distributed in the plurality of mixed liquid channels and flow, so that the concentration unevenness of the mixed liquid having a time difference at the mixed liquid channel outlet is reduced.

図5と図6に本発明の他の実施例を示す。本実施例は導入路211、222から多数の分岐流路が分岐し、多数の合流部から多数の混合液流路を経て最終の合流部に至る液体混合装置を示す。本実施例では平板または円盤状の基板30の両面に流路を形成している。図5と図6は基板30の異なる面(図5の面を表、図6の面を裏とする)の流路を示している。図5で図示しない配管から溶離液Aが入口211に入る。溶離液Aは導入路221を経て分岐部231で放射状に多数の分岐流路2400〜2410に分流する。   5 and 6 show another embodiment of the present invention. The present embodiment shows a liquid mixing apparatus in which a large number of branch flow paths branch from the introduction paths 211 and 222, and from a large number of merge portions to a final merge portion via a large number of mixed liquid flow paths. In this embodiment, the flow paths are formed on both surfaces of a flat plate or disk-shaped substrate 30. 5 and 6 show flow paths on different surfaces of the substrate 30 (the surface of FIG. 5 is the front surface and the surface of FIG. 6 is the back surface). The eluent A enters the inlet 211 from a pipe not shown in FIG. The eluent A is diverted into a large number of branch flow paths 2400 to 2410 in a radial manner at the branch portion 231 through the introduction path 221.

各分岐流路は下流側にそれぞれ合流部2501〜2510と最終合流部2530を持つ。一方、溶離液Bは図示しない配管から入口212に至る。入口212から基板を貫通し、図6に示す裏側の入口連結部213に達し、導入路222から分岐部232に至り、放射状に配置した分岐流路2410〜2420に分流する。さらに基板30を貫通して表側の合流部2501〜2510と最終合流部2530にそれぞれ連結する連結部2510〜2520を通り溶離液Aに合流する。
それぞれの分岐流路を経て合流した溶離液Aと溶離液Bの混合液は、それぞれ通過時間の異なる混合液流路2601〜2610を経て混合液の合流部2531〜2539で順次合流し最終合流部2530に至り、チップから図示しない外部流路に接続する。
Each branch channel has junctions 2501 to 2510 and a final junction 2530 on the downstream side. On the other hand, the eluent B reaches the inlet 212 from a pipe (not shown). The substrate penetrates from the inlet 212 and reaches the inlet connecting portion 213 on the back side shown in FIG. 6, reaches the branching portion 232 from the introduction path 222, and is branched into the branching channels 2410 to 2420 arranged radially. Furthermore, it passes through the substrate 30 and joins the eluent A through connecting portions 2510 to 2520 that are connected to the front side joining portions 2501 to 2510 and the final joining portion 2530, respectively.
The mixed solutions of the eluent A and the eluent B that have joined through the respective branch flow paths are sequentially merged in the mixed liquid merge sections 2531 to 2539 via the mixed liquid flow paths 2601 to 2610 having different passage times, respectively, and the final merge section. 2530, the chip is connected to an external flow path (not shown).

本実施例によれば通過時間の異なる多数の混合液流路を通して溶離液が分割されて時間差を持って混合するので流れ方向の混合ムラが時間方向に広がることにより変動が低減する。   According to the present embodiment, since the eluent is divided and mixed with a time difference through a large number of mixed liquid channels having different passage times, fluctuations are reduced by spreading the mixing unevenness in the flow direction in the time direction.

11、12 送液ポンプ
13 溶離液A
14 溶離液B
16 サンプル
20 液体混合装置
31 オートサンプラ
32 分離カラム
33 検出器
34 コントローラ
35 配線
36 配管
201 入口流路ユニット
211、212 入口
221、222 導入路
231、232 分岐部
241、242、243、244 分岐流路
251、252 合流部
253 混合液の合流部
261、262 混合液流路
271 導出路
281 出口
361、362 配管
11, 12 Liquid feed pump 13 Eluent A
14 Eluent B
16 Sample 20 Liquid mixing device 31 Autosampler 32 Separation column 33 Detector 34 Controller 35 Wiring 36 Pipe 201 Inlet channel unit 211, 212 Inlet channel 221, 222 Inlet channel 231, 232 Branch part 241, 242, 243, 244 Branch channel 251, 252 merging part 253 merging part 261, 262 mixed liquid flow path 271 outlet 281 outlet 361, 362 piping

Claims (6)

第一溶離液が通過する第一の導入路と、
第二溶離液が通過する第二の導入路と、
第一の導入路上に配置され、第一溶離液を分岐する第一の分岐点と、
第二の導入路上に配置され、第二溶離液を分岐する第二の分岐点と、
第一の分岐点から分岐した第一溶離液と第二の分岐点から分岐した第二溶離液とが合流する第一の合流部及び第二の合流部と、
前記第一の合流部で合流した第一及び第二溶離液の混合液が通過する第一の合流路と、
前記第二の合流部で合流した第一及び第二溶離液の混合液が通過する第二の合流路と、
第一の合流路と第二の合流路が合流する第三の合流部と、
を備え、第一の合流路での混合液の第二の合流路での混合液の通過時間が異なることを特徴とする混合装置。
A first introduction path through which the first eluent passes;
A second introduction path through which the second eluent passes;
A first branch point arranged on the first introduction path and branching the first eluent;
A second branch point that is arranged on the second introduction path and branches the second eluent;
A first merging portion and a second merging portion where the first eluent branched from the first branch point and the second eluent branched from the second branch point merge;
A first merge channel through which a mixed solution of the first and second eluents merged at the first merge section passes;
A second combined flow path through which a mixed solution of the first and second eluents combined at the second combined portion passes;
A third merge section where the first merge channel and the second merge channel merge;
And the mixing time of the mixed liquid in the second combined flow path in the first combined flow path is different.
請求項1の混合装置において、
前記第一の分岐点で分岐した第一溶離液が通過する流路の流体抵抗がそれぞれ等しく、
前記第二の分岐点で分岐した第二溶離液が通過する流路の流体抵抗がそれぞれ等しく、
第一の合流路と第二の合流路の流体抵抗がそれぞれ等しいことを特徴とする混合装置。
The mixing device of claim 1.
The fluid resistances of the flow paths through which the first eluent branched at the first branch point passes are equal,
The fluid resistance of the flow path through which the second eluent branched at the second branch point passes is equal,
A mixing device characterized in that fluid resistances of the first combined flow path and the second combined flow path are equal to each other.
請求項1の混合装置において、
前記第三の合流部の下流にさらに分岐点、分岐流路及び合流点を備え、前記混合液の分岐と合流を行うことを特徴とする混合装置。
The mixing device of claim 1.
A mixing device further comprising a branch point, a branch flow path, and a junction point downstream of the third junction portion, and branching and joining the mixed solution.
溶離液を送液する送液ポンプと、前記送液ポンプにより送液された溶離液に試料を導入するオートサンプラと、前記オートサンプラで試料が導入された液体を分離する分離カラムと、前記分離カラムから送液される液体中の前記試料の成分を検出する検出器と、を備える液体クロマトグラフ装置において、
第一溶離液が通過する第一の導入路と、
第二溶離液が通過する第二の導入路と、
第一の導入路上に配置され、第一溶離液を分岐する第一の分岐点と、
第二の導入路上に配置され、第二溶離液を分岐する第二の分岐点と、
第一の分岐点から分岐した第一溶離液と第二の分岐点から分岐した第二溶離液とが合流する第一の合流部及び第二の合流部と、
前記第一の合流部で合流した第一及び第二溶離液の混合液が通過する第一の合流路と、
前記第二の合流部で合流した第一及び第二溶離液の混合液が通過する第二の合流路と、
第一の合流路と第二の合流路が合流する第三の合流部と、
を備え、第一の合流路での混合液の第二の合流路での混合液の通過時間が異なる混合装置を備えたことを特徴とする液体クロマトグラフ装置。
A liquid feed pump for feeding an eluent, an autosampler for introducing a sample into the eluent sent by the liquid feed pump, a separation column for separating a liquid into which the sample has been introduced by the autosampler, and the separation In a liquid chromatograph apparatus comprising: a detector that detects a component of the sample in a liquid sent from a column;
A first introduction path through which the first eluent passes;
A second introduction path through which the second eluent passes;
A first branch point arranged on the first introduction path and branching the first eluent;
A second branch point that is arranged on the second introduction path and branches the second eluent;
A first merging portion and a second merging portion where the first eluent branched from the first branch point and the second eluent branched from the second branch point merge;
A first merge channel through which a mixed solution of the first and second eluents merged at the first merge section passes;
A second combined flow path through which a mixed solution of the first and second eluents combined at the second combined portion passes;
A third merge section where the first merge channel and the second merge channel merge;
A liquid chromatograph apparatus comprising: a mixing device having different passage times of the mixed liquid in the second combined flow path of the mixed liquid in the first combined flow path.
請求項4の液体クロマトグラフ装置において、
前記第一の分岐点で分岐した第一溶離液が通過する流路の流体抵抗がそれぞれ等しく、
前記第二の分岐点で分岐した第二溶離液が通過する流路の流体抵抗がそれぞれ等しく、
第一の合流路と第二の合流路の流体抵抗がそれぞれ等しいことを特徴とする液体クロマトグラフ装置。
In the liquid chromatograph apparatus of Claim 4,
The fluid resistances of the flow paths through which the first eluent branched at the first branch point passes are equal,
The fluid resistance of the flow path through which the second eluent branched at the second branch point passes is equal,
A liquid chromatograph apparatus characterized in that fluid resistances of the first combined flow path and the second combined flow path are equal.
請求項4記載の液体クロマトグラフにおいて、前記送液ポンプの駆動周期が、前記分岐点の後の流路の液体通過時間の差に応じて決定されることを特徴とする液体クロマトグラフ。   5. The liquid chromatograph according to claim 4, wherein a driving cycle of the liquid feeding pump is determined according to a difference in liquid passage time of the flow path after the branch point.
JP2012188202A 2012-08-29 2012-08-29 Liquid mixing apparatus, and liquid chromatograph Pending JP2014042905A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012188202A JP2014042905A (en) 2012-08-29 2012-08-29 Liquid mixing apparatus, and liquid chromatograph
PCT/JP2013/068202 WO2014034259A1 (en) 2012-08-29 2013-07-03 Liquid mixers and liquid chromatographs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188202A JP2014042905A (en) 2012-08-29 2012-08-29 Liquid mixing apparatus, and liquid chromatograph

Publications (1)

Publication Number Publication Date
JP2014042905A true JP2014042905A (en) 2014-03-13

Family

ID=50183082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188202A Pending JP2014042905A (en) 2012-08-29 2012-08-29 Liquid mixing apparatus, and liquid chromatograph

Country Status (2)

Country Link
JP (1) JP2014042905A (en)
WO (1) WO2014034259A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179447A (en) * 2015-03-24 2016-10-13 東京瓦斯株式会社 Fluid mixing method and structure
WO2018055866A1 (en) * 2016-09-26 2018-03-29 株式会社島津製作所 Switching valve, binary pump, and liquid chromatograph provided with binary pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478749B2 (en) 2014-05-29 2019-11-19 Agilent Technologies, Inc. Apparatus and method for introducing a sample into a separation unit of a chromatography system
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
EP4013539A1 (en) 2019-08-12 2022-06-22 Waters Technologies Corporation Mixer for chromatography system
US11988647B2 (en) 2020-07-07 2024-05-21 Waters Technologies Corporation Combination mixer arrangement for noise reduction in liquid chromatography
WO2022010665A1 (en) 2020-07-07 2022-01-13 Waters Technologies Corporation Mixer for liquid chromatography
WO2022066752A1 (en) * 2020-09-22 2022-03-31 Waters Technologies Corporation Continuous flow mixer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295727U (en) * 1985-12-09 1987-06-18
JP3873929B2 (en) * 2003-05-27 2007-01-31 株式会社島津製作所 Liquid mixing device
JP2006239638A (en) * 2005-03-07 2006-09-14 Ebara Corp Mixer and mixing method
DE112011102020B4 (en) * 2010-06-16 2019-07-11 Hitachi High-Technologies Corporation Liquid mixing device and liquid chromatograph

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179447A (en) * 2015-03-24 2016-10-13 東京瓦斯株式会社 Fluid mixing method and structure
WO2018055866A1 (en) * 2016-09-26 2018-03-29 株式会社島津製作所 Switching valve, binary pump, and liquid chromatograph provided with binary pump
JPWO2018055866A1 (en) * 2016-09-26 2019-02-21 株式会社島津製作所 Switching valve, binary pump and liquid chromatograph equipped with the binary pump

Also Published As

Publication number Publication date
WO2014034259A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP2014042905A (en) Liquid mixing apparatus, and liquid chromatograph
JP6002812B2 (en) Liquid mixing device and liquid chromatograph
JP4645437B2 (en) Gradient liquid feeder
JP5012148B2 (en) Liquid chromatograph
US20190070571A1 (en) Fluid mixer
US11185830B2 (en) Fluid mixer
JP6614360B2 (en) Field flow fractionation device
CN104076112B (en) A kind of mixer and high performance liquid chromatograph
JP5861569B2 (en) Mobile phase liquid feeder and liquid chromatograph
CN103764243A (en) Method and apparatus for improved resolution chromatography
US20120103073A1 (en) Solvent Feed Systems For Chromatography Systems And Methods Of Making And Using The Same
US8658034B1 (en) Mobile phase preparation device for liquid chromatography
CN103111214B (en) Novel venturi mixer
JP6672781B2 (en) Flow path mechanism and liquid chromatograph provided with the same
JP4082309B2 (en) Solution mixer for liquid chromatography
JP5781414B2 (en) Fluid mixer and fluid mixing method
EP1219962B1 (en) Liquid homogenizing unit and high speed liquid chromatograph equipped with the same
JP6750736B2 (en) Liquid transfer device and liquid chromatograph equipped with the liquid transfer device
US20230014015A1 (en) A bioprocess fluid mixing system
CN211785368U (en) Mobile phase mixing system and liquid chromatograph-mass spectrometer
US11493375B2 (en) Separation type multiphase flowmeter with separate flow metering devices with different cross-sectional areas
CN106442815A (en) Integrated speciation and aggregate analysis atomic fluorescence sample feeding and pre-treating system
JP3482865B2 (en) Sample separation device and chemical analysis device
JP2013081911A5 (en)
CN117580636A (en) Passive solvent mixer for liquid chromatography