JPH11264790A - Differential type measuring device for degree of electrical movement - Google Patents

Differential type measuring device for degree of electrical movement

Info

Publication number
JPH11264790A
JPH11264790A JP6742198A JP6742198A JPH11264790A JP H11264790 A JPH11264790 A JP H11264790A JP 6742198 A JP6742198 A JP 6742198A JP 6742198 A JP6742198 A JP 6742198A JP H11264790 A JPH11264790 A JP H11264790A
Authority
JP
Japan
Prior art keywords
enclosure
slit
sheath gas
rod
electric mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6742198A
Other languages
Japanese (ja)
Other versions
JP3487756B2 (en
Inventor
Kazuo Takeuchi
内 一 夫 武
Shohei Isomura
村 昌 平 磯
Seiichi Hirasawa
澤 誠 一 平
Kikuo Okuyama
山 喜久夫 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP06742198A priority Critical patent/JP3487756B2/en
Publication of JPH11264790A publication Critical patent/JPH11264790A/en
Application granted granted Critical
Publication of JP3487756B2 publication Critical patent/JP3487756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a differential type measuring device for the degree of electrical movement, whereby it is possible to accurately measure the size of particulate under the low pressure condition. SOLUTION: Charged particles drawn in from one slit 4 move downward along the center axis together with a sheath gas supplied from a discharge hole 7 in an enclosure 2, and each particulate is drawn toward a center rod 3 from the side with the enclosure 2 at a speed complying with the degree of electrical movement upon being influenced by the electric field generated by a voltage V impressed by a variable voltage source 10 between the inside circumferential surface of the enclosure 2 and the peripheral surface of the center rod 3. Only those particulates having specified size are taken out, which have advanced for the distance L in drawing the specified locus and reached the other slit 5 in the center rod 3. The sheath gas supplied from a draw-in hole 7 in the enclosure 2 is exhausted from the discharge hole 9 in the enclosure 2 upon passing through the slit 5, but because an orifice 11 is provided in the downstream of the slit 5, the sheath gas is hindered from flowing, and a pressure difference is generated between in front of and behind the orifice 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はナノ(nano)粒子等
の微粒子(エアロゾル)を測定する微分型電気移動度測
定器(DMA:differential mobility analyzer)に係
り、とりわけ微粒子の粒径を低圧条件下で精度良く測定
することができる微分型電気移動度測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential mobility analyzer (DMA) for measuring fine particles (aerosol) such as nano particles, and more particularly to a method for measuring the particle size of fine particles under low pressure conditions. The present invention relates to a differential-type electric mobility measurement device capable of measuring with high accuracy.

【0002】[0002]

【従来の技術】近年、半導体製造プロセスにおける粒子
汚染の抑制や量子ナノ材料の開発等に関連して、雰囲気
中に浮遊するナノ粒子等の微粒子が注目を集めている。
このような微粒子の測定装置としては従来から、帯電し
た微粒子の電場中での移動速度(電気移動度)の違いを
利用して微粒子の粒径を測定する微分型電気移動度測定
器が知られている。ここで、このような微分型電気移動
度測定器の原理について図8により説明する。
2. Description of the Related Art In recent years, fine particles such as nanoparticles floating in an atmosphere have attracted attention in connection with the suppression of particle contamination and the development of quantum nanomaterials in a semiconductor manufacturing process.
As such a fine particle measuring apparatus, there has been conventionally known a differential electric mobility measuring device which measures a particle diameter of a fine particle by utilizing a difference in a moving speed (electric mobility) of a charged fine particle in an electric field. ing. Here, the principle of such a differential electric mobility measuring device will be described with reference to FIG.

【0003】図8に示すように、微分型電気移動度測定
器1は、中心ロッド(内筒)3および囲み体(外筒)2
からなる二重円筒構造を有し、囲み体2の内周面と中心
ロッド3の外周面との間には可変電圧源10により所定
電圧が印加されている。また、囲み体2には帯電した微
粒子(帯電粒子)を内部に引き込むためのスリット4が
設けられ、また中心ロッド3にはスリット4から引き込
まれた帯電粒子を外部に取り出すためのスリット5が設
けられている。さらに、囲み体2の内周面と中心ロッド
3の外周面との間の空間には囲み体2の上部からシース
ガスが供給されるようになっている。
As shown in FIG. 8, a differential type electric mobility measuring instrument 1 has a center rod (inner cylinder) 3 and an enclosure (outer cylinder) 2.
And a variable voltage source 10 applies a predetermined voltage between the inner peripheral surface of the enclosure 2 and the outer peripheral surface of the center rod 3. Further, the enclosure 2 is provided with a slit 4 for drawing charged fine particles (charged particles) into the inside, and the center rod 3 is provided with a slit 5 for taking out the charged particles drawn from the slit 4 to the outside. Have been. Further, a sheath gas is supplied from above the enclosure 2 to a space between the inner peripheral surface of the enclosure 2 and the outer peripheral surface of the center rod 3.

【0004】図8において、帯電粒子が囲み体2のスリ
ット4から引き込まれると、この引き込まれた帯電粒子
は囲み体2の上部から供給されるシースガスとともに中
心軸方向下方に移動するとともに、囲み体2の内周面と
中心ロッド3の外周面との間に形成される電場の影響を
受けて個々の微粒子が電気移動度に応じた速度で囲み体
2側から中心ロッド3側へ引き寄せられる。そして、所
定の軌跡を描いて中心ロッド3のスリット5に到達した
微粒子のみが外部に取り出される。
In FIG. 8, when the charged particles are drawn in from the slits 4 of the enclosure 2, the charged particles move downward with the sheath gas supplied from the upper part of the enclosure 2 in the central axis direction. Under the influence of the electric field formed between the inner peripheral surface of the inner rod 2 and the outer peripheral surface of the center rod 3, individual particles are drawn from the surrounding body 2 side to the center rod 3 side at a speed corresponding to the electric mobility. Then, only the fine particles that reach the slit 5 of the center rod 3 along a predetermined trajectory are taken out.

【0005】ここで、中心ロッド3のスリット5に到達
する微粒子の電気移動度Zpは、次式(1)により算出
される。 Zp=Q・ln(r2/r1)/(2・π・V・L) … (1) 上式(1)において、Qはシースガス流量、r1,r2
それぞれ中心ロッド3の外周面の半径,囲み体2の内周
面の半径である。また、Vは囲み体2の内周面と中心ロ
ッド3の外周面との間に印加される電圧、Lはスリット
4およびスリット5間の距離である。
Here, the electric mobility Z p of the fine particles reaching the slit 5 of the center rod 3 is calculated by the following equation (1). Z p = Q · ln (r 2 / r 1 ) / (2 · π · VL) (1) In the above equation (1), Q is the sheath gas flow rate, and r 1 and r 2 are the center rod 3 respectively. These are the radius of the outer peripheral surface and the radius of the inner peripheral surface of the enclosure 2. V is a voltage applied between the inner peripheral surface of the enclosure 2 and the outer peripheral surface of the center rod 3, and L is the distance between the slits 4 and 5.

【0006】また、微粒子の電気移動度Zpと粒径Dp
の間には次式(2)により表される関係がある。 Zp=n・e・Cm/(3・π・μ・Dp) … (2) 上式(2)において、nは微粒子の電荷量、eは電気素
量(1.6×10-19クーロン)、Cmはカニンガムの補
正係数、μは供給されるシースガスの粘性係数である。
Further, there is a relationship expressed by the following equation (2) between the electric mobility Z p of the fine particles and the particle diameter D p . Z p = n · e · C m / (3 · π · D p ) (2) In the above equation (2), n is the charge amount of the fine particles, and e is the elementary charge (1.6 × 10 −). 19 coulombs), C m is Cunningham's correction coefficient, and μ is the viscosity coefficient of the supplied sheath gas.

【0007】そして、微分型電気移動度測定器1から外
部に取り出される微粒子の粒径Dpは上式(1)(2)
に基づいて決定され、操作条件であるシースガス流量Q
および印加電圧Vに対応する所定粒径Dpの微粒子のみ
が外部に取り出される。
The particle diameter D p of the fine particles taken out of the differential type electric mobility measuring device 1 is expressed by the above formulas (1) and (2).
The sheath gas flow rate Q, which is determined based on
And only particles having a predetermined particle diameter D p which corresponds to the applied voltage V is taken out.

【0008】[0008]

【発明が解決しようとする課題】上述したように、図8
に示す微分型電気移動度測定器1においては、囲み体2
のスリット4から引き込まれた帯電粒子をシースガスと
ともに中心軸方向下方へ移動させるとともに、囲み体2
の内周面と中心ロッド3の外周面との間に形成される電
場により個々の微粒子を囲み体2側から中心ロッド3側
へ移動させ、所定の軌跡を描いて中心ロッド3のスリッ
ト5に到達した所定粒径Dpの微粒子のみを外部に取り
出している。
As described above, FIG.
In the differential type electric mobility measuring device 1 shown in FIG.
The charged particles drawn from the slits 4 are moved downward in the central axis direction together with the sheath gas,
The individual particles are moved from the surrounding body 2 side to the center rod 3 side by the electric field formed between the inner circumferential surface of It is taken out only particles of a predetermined particle diameter D p which reaches the outside.

【0009】ところで、このような微分型電気移動度測
定器においては最近、低圧条件下の雰囲気中に浮遊する
微粒子を測定することが強く望まれている。しかしなが
ら、従来の微分型電気移動度測定器では、シースガスの
整流性および圧力の安定性を向上させることが難しく、
シースガスおよび分級後の微粒子の排出量を適切に制御
することができないので、低圧条件下では微粒子の粒径
を精度良く測定することができないという問題がある。
なお、微粒子の粒径Dpを精度良く測定するためにはシ
ースガス流量の変動を約1%以下に抑える必要があるこ
とが知られている(文献(G.P.Reischl,et.al.: " Perf
ormance of Vienna Type DifferentialMobility Analyz
er at 1.2-20 Nanometer ," Aerosol Science and Tech
nology27, P.651(1997))参照)。
Recently, it has been strongly desired for such a differential electric mobility measuring instrument to measure fine particles floating in an atmosphere under low pressure conditions. However, with the conventional differential mobility analyzer, it is difficult to improve the rectifying property of the sheath gas and the stability of the pressure,
Since the discharge amount of the sheath gas and the fine particles after classification cannot be appropriately controlled, there is a problem that the particle diameter of the fine particles cannot be measured accurately under low pressure conditions.
In order to accurately measure the particle diameter D p of the fine particles it is known that it is necessary to suppress variation in the sheath gas flow rate of about 1% or less (literature (GPReischl, et.al .: "Perf
ormance of Vienna Type DifferentialMobility Analyz
er at 1.2-20 Nanometer, "Aerosol Science and Tech
nology27, p.651 (1997)).

【0010】本発明はこのような点を考慮してなされた
ものであり、微粒子の粒径を低圧条件下で精度良く測定
することができる微分型電気移動度測定器を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a differential electric mobility measuring instrument capable of accurately measuring the particle diameter of fine particles under low pressure conditions. I do.

【0011】[0011]

【課題を解決するための手段】本発明は、帯電した微粒
子を内部に引き込むための一方のスリットを有する囲み
体と、前記囲み体の内部に延びるとともに前記帯電した
微粒子を外部に取り出すための他方のスリットを有する
ロッドとを備え、前記囲み体と前記ロッドとの間には前
記帯電した微粒子を前記囲み体側から前記ロッド側へ移
動させるよう所定電圧が印加され、前記囲み体内には前
記帯電した微粒子を前記ロッドが延びる方向に沿って移
動させるようシースガスが供給され、前記帯電した微粒
子が取り出される前記他方のスリットの下流側には前記
シースガスに流体抵抗を与えるための流体抵抗手段が設
けられていることを特徴とする微分型電気移動度測定器
を提供する。
According to the present invention, there is provided an enclosure having one slit for drawing charged fine particles therein, and another for extending the interior of the enclosure and extracting the charged fine particles to the outside. A rod having a slit, a predetermined voltage is applied between the enclosure and the rod to move the charged fine particles from the enclosure side to the rod side, and the charged body is charged inside the enclosure. A sheath gas is supplied so as to move the fine particles along the direction in which the rod extends, and a fluid resistance means for providing a fluid resistance to the sheath gas is provided downstream of the other slit from which the charged fine particles are taken out. To provide a differential-type electric mobility measuring device.

【0012】なお本発明においては、前記流体抵抗手段
として、前記囲み体と前記ロッドとの間の流路断面積を
減少させるオリフィス部材、篩状の網部材、または多孔
質部材を用いるようにするとよい。また、前記流体抵抗
手段が前記流路断面積を可変に調節するための調節機構
を有するようにするとよい。
In the present invention, as the fluid resistance means, an orifice member, a sieve-like net member, or a porous member for reducing the cross-sectional area of the flow path between the enclosure and the rod is used. Good. Preferably, the fluid resistance means has an adjusting mechanism for variably adjusting the cross-sectional area of the flow passage.

【0013】本発明によれば、帯電した微粒子が取り出
される他方のスリットの下流側にシースガスに流体抵抗
を与えるための流体抵抗手段が設けられているので、流
体抵抗手段の上流側におけるシースガスの整流性および
圧力の安定性を向上させることができ、また流体抵抗手
段の前後で圧力差が生じるので、シースガスの排出量と
分級後の微粒子の排出量とを適切に制御することがで
き、このため低圧条件下でも微粒子の粒径を精度良く測
定することができる。また、囲み体と中心ロッドとの間
の流路断面積を可変に調節できるようにした場合には、
圧力条件に応じた最適な流路断面積を選択することがで
き、このため流体抵抗手段における圧力損失を最小限に
抑えつつ上述した作用効果を奏することができる。
According to the present invention, since the fluid resistance means for giving fluid resistance to the sheath gas is provided downstream of the other slit from which the charged fine particles are taken out, the rectification of the sheath gas upstream of the fluid resistance means is provided. And the stability of pressure can be improved, and a pressure difference occurs before and after the fluid resistance means, so that the discharge amount of the sheath gas and the discharge amount of the fine particles after classification can be appropriately controlled. The particle size of the fine particles can be measured accurately even under low pressure conditions. Also, when the cross-sectional area of the flow path between the enclosure and the center rod can be variably adjusted,
An optimum flow path cross-sectional area according to the pressure condition can be selected, and thus, the above-described effects can be obtained while minimizing the pressure loss in the fluid resistance means.

【0014】[0014]

【発明の実施の形態】第1の実施の形態 以下、図面を参照して本発明の実施の形態について説明
する。図1および図2は本発明による微分型電気移動度
測定器の第1の実施の形態を示す図である。ここで、図
1は微分型電気移動度測定器を示す縦断面図、図2は図
1に示す微分型電気移動度測定器のI−I線に沿った断
面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are views showing a first embodiment of a differential electric mobility measuring device according to the present invention. Here, FIG. 1 is a longitudinal sectional view showing the differential electric mobility measuring device, and FIG. 2 is a sectional view of the differential electric mobility measuring device shown in FIG. 1 along the line II.

【0015】図1および図2に示すように、微分型電気
移動度測定器1は、帯電した微粒子(帯電粒子)を内部
に引き込むための一方のスリット4を有する囲み体2
と、囲み体2の内部に延びるとともに帯電粒子を外部に
取り出すための他方のスリット5を有する中心ロッド3
とを備えている。なお、一方のスリット4は囲み体2の
内周面に沿って環状に設けられ、また他方のスリット5
は中心ロッド3の外周面に沿って環状に設けられてい
る。
As shown in FIGS. 1 and 2, a differential type electric mobility measuring device 1 has an enclosure 2 having one slit 4 for drawing charged fine particles (charged particles) into the inside.
And a central rod 3 extending inside the enclosure 2 and having the other slit 5 for taking out charged particles to the outside.
And In addition, one slit 4 is provided annularly along the inner peripheral surface of the enclosure 2, and the other slit 5
Is provided annularly along the outer peripheral surface of the center rod 3.

【0016】ここで一方のスリット4は、外部に設けら
れたサンプリング装置等に接続される引込口6と連通し
ている。また他方のスリット5は、連通管12を介して
ファラデーカップ電流計(FCE:Faraday cup electr
ometer)13に接続され、分級後の微粒子(分級粒子)
の粒子数が計数されるようになっている。なお、ファラ
デーカップ電流計13により粒子数が計数された分級粒
子は吐出口14からポンプ等により外部に排出されるよ
うになっている。
Here, one slit 4 communicates with an inlet 6 connected to a sampling device or the like provided outside. The other slit 5 is connected to a Faraday cup ammeter (FCE: Faraday cup electr) through a communication pipe 12.
micrometer (Classified particles)
Is counted. The classified particles whose particle number has been counted by the Faraday cup ammeter 13 are discharged from the discharge port 14 to the outside by a pump or the like.

【0017】また、囲み体2および中心ロッド3はとも
に導体からなり、囲み体2と中心ロッド3との間に接続
された可変電圧源10により所定電圧Vが印加されるよ
うになっている。
The enclosure 2 and the center rod 3 are both made of a conductor, and a predetermined voltage V is applied by a variable voltage source 10 connected between the enclosure 2 and the center rod 3.

【0018】さらに、囲み体2の上部には、囲み体2の
内周面と中心ロッド3の外周面との間の空間にシースガ
スを供給するための引込口7が設けられるとともに、シ
ースガスの流れを整えるとともに不純物を除去するため
のフィルタ8が取り付けられている。なお、囲み体2の
引込口7から供給されたシースガスは囲み体2の下部に
設けられた吐出口9からポンプ等により排出されるよう
になっている。
Further, a suction port 7 for supplying a sheath gas to a space between the inner peripheral surface of the enclosure 2 and the outer peripheral surface of the center rod 3 is provided at an upper portion of the enclosure 2, and a flow of the sheath gas is provided. And a filter 8 for removing impurities. The sheath gas supplied from the inlet 7 of the enclosure 2 is discharged from a discharge port 9 provided at a lower part of the enclosure 2 by a pump or the like.

【0019】さらにまた、中心ロッド3の他方のスリッ
ト5の下流側には、囲み体2の吐出口9から排出される
シースガスに流体抵抗を与えるためのオリフィス部材
(流体抵抗手段)11が設けられている。ここでオリフ
ィス部材11は、図1および図2に示すように、囲み体
2の中心ロッド3との間の流路断面積を減少させるよう
囲み体2側から中心ロッド3側へ向けて突出する環状の
突起部として構成されている。
Further, an orifice member (fluid resistance means) 11 for providing fluid resistance to the sheath gas discharged from the discharge port 9 of the enclosure 2 is provided downstream of the other slit 5 of the center rod 3. ing. Here, as shown in FIGS. 1 and 2, the orifice member 11 projects from the enclosure 2 toward the center rod 3 so as to reduce the cross-sectional area of the flow path between the enclosure 2 and the center rod 3. It is configured as an annular projection.

【0020】次に、このような構成からなる本発明の第
1の実施の形態の作用について図1および図2により説
明する。
Next, the operation of the first embodiment of the present invention having such a configuration will be described with reference to FIGS.

【0021】囲み体2の一方のスリット4から帯電粒子
が引き込まれると、この引き込まれた帯電粒子は、囲み
体2の吐出口7から供給されるシースガスとともに中心
軸方向下方(中心ロッド3が延びる方向)に移動すると
ともに、囲み体2の内周面と中心ロッド3の外周面との
間で可変電圧源10により印加される電圧Vにより形成
される電場の影響を受けて個々の微粒子が電気移動度に
応じた速度で囲み体2側から中心ロッド3側へ引き寄せ
られる。そして、所定の軌跡を描いて距離Lだけ進み、
中心ロッド3の他方のスリット5に到達した所定粒径の
微粒子のみが外部に取り出される。
When the charged particles are drawn in from one slit 4 of the enclosure 2, the charged particles are pulled downward along the central axis along with the sheath gas supplied from the discharge port 7 of the enclosure 2 (the center rod 3 extends). Direction), and at the same time, the individual fine particles are affected by the electric field formed by the voltage V applied by the variable voltage source 10 between the inner peripheral surface of the enclosure 2 and the outer peripheral surface of the center rod 3. It is drawn from the surrounding body 2 side to the center rod 3 side at a speed according to the mobility. Then, draw a predetermined trajectory and advance by the distance L,
Only fine particles having a predetermined particle size that have reached the other slit 5 of the center rod 3 are taken out.

【0022】ここで、囲み体2の引込口7から供給され
るシースガスは中心ロッド3の他方のスリット5を越え
て下方に移動して囲み体2の吐出口9から排出される
が、他方のスリット5の下流側にはオリフィス部材11
が設けられているので、シースガスの流れが妨げられて
オリフィス部材11の前後で圧力差が生じる。
Here, the sheath gas supplied from the inlet 7 of the enclosure 2 moves downward beyond the other slit 5 of the center rod 3 and is discharged from the discharge port 9 of the enclosure 2, An orifice member 11 is provided downstream of the slit 5.
Is provided, the flow of the sheath gas is hindered, and a pressure difference occurs before and after the orifice member 11.

【0023】このように本発明の第1の実施の形態によ
れば、帯電粒子が取り出される他方のスリット5の下流
側に囲み体2と中心ロッド3との間の流路断面積を減少
させるオリフィス部材11が設けられているので、オリ
フィス部材11の上流側におけるシースガスの整流性お
よび圧力の安定性を向上させることができる。また、オ
リフィス部材11の前後で圧力差が生じるので、シース
ガスの排出量と分級粒子の排出量とを適切に制御するこ
とができる。このため、低圧条件下でも微粒子の粒径を
精度良く測定することができる。
As described above, according to the first embodiment of the present invention, the flow path cross-sectional area between the surrounding body 2 and the center rod 3 is reduced on the downstream side of the other slit 5 from which the charged particles are taken out. Since the orifice member 11 is provided, the rectifying property of the sheath gas and the stability of the pressure on the upstream side of the orifice member 11 can be improved. Further, since a pressure difference occurs before and after the orifice member 11, the discharge amount of the sheath gas and the discharge amount of the classified particles can be appropriately controlled. For this reason, the particle size of the fine particles can be accurately measured even under low pressure conditions.

【0024】なお、上述した第1の実施の形態において
は、流体抵抗手段として、囲み体2側から中心ロッド3
側へ向けて突出する環状の突起部として構成されたオリ
フィス部材11を用いているが、突起部の形状は図1お
よび図2に示すようなものに限らず、例えば図3に示す
ようなカール状の突起部としてもよく、これにより突起
部に起因するシースガスの乱れを最小限に抑えることが
できる。
In the first embodiment described above, the center rod 3 from the side of the enclosure 2 is used as the fluid resistance means.
Although the orifice member 11 configured as an annular protrusion projecting toward the side is used, the shape of the protrusion is not limited to that shown in FIGS. The protrusion may be shaped like a protrusion, so that the disturbance of the sheath gas caused by the protrusion can be minimized.

【0025】また、流体抵抗手段としては、図1および
図2に示すようなオリフィス部材11に限らず、例えば
図4に示すような篩状の網部材や、図5に示すような多
孔板(多孔質部材)を用いるようにしてもよい。なお、
多孔質部材としては例えば多数の孔を有する海綿状また
はスポンジ状の多孔体を用いてもよい。
The fluid resistance means is not limited to the orifice member 11 as shown in FIGS. 1 and 2, for example, a sieve-like mesh member as shown in FIG. 4 or a perforated plate as shown in FIG. (A porous member) may be used. In addition,
As the porous member, for example, a spongy or sponge-like porous body having a large number of holes may be used.

【0026】第2の実施の形態 次に、図6(a)(b)により、本発明による微分型電
気移動度測定器の第2の実施の形態について説明する。
本発明の第2の実施の形態は、流体抵抗手段が流路断面
積を可変に調節するための調節機構を有している点を除
いて、他は図1乃至図5に示す第1の実施の形態と略同
一である。本発明の第2の実施の形態において、図1乃
至図5に示す第1の実施の形態と同一部分には同一符号
を付して詳細な説明は省略する。
Second Embodiment Next, referring to FIGS. 6A and 6B, a second embodiment of the differential electric mobility measuring device according to the present invention will be described.
The second embodiment of the present invention is the same as the first embodiment shown in FIGS. 1 to 5 except that the fluid resistance means has an adjustment mechanism for variably adjusting the cross-sectional area of the flow path. This is substantially the same as the embodiment. In the second embodiment of the present invention, the same parts as those in the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description is omitted.

【0027】図6(a)は微分型電気移動度測定器の要
部を示す図2と同様な図、図6(b)は図6(a)に示
す微分型電気移動度測定器のII−II線に沿った断面図で
ある。図6(a)(b)に示すように、中心ロッド3の
他方のスリット5の下流側には、囲み体2の吐出口(図
示せず)から排出されるシースガスに流体抵抗を与える
ための一対のオリフィス部材(流体抵抗手段)17,1
8が設けられている。ここで各オリフィス部材17,1
8はそれぞれ、複数の開口17a,17bが等ピッチで
設けられた同一形状の環状の部材からなり、各オリフィ
ス部材17,18を円周方向に相対的に移動させること
により、囲み体2と中心ロッド3との間の流路断面積を
可変に調節できるようになっている。
FIG. 6A is a view similar to FIG. 2 showing a main part of the differential electric mobility measuring device, and FIG. 6B is a diagram showing the II of the differential electric mobility measuring device shown in FIG. FIG. 2 is a cross-sectional view along the line II. As shown in FIGS. 6A and 6B, downstream of the other slit 5 of the center rod 3, a fluid resistance is applied to a sheath gas discharged from a discharge port (not shown) of the enclosure 2. A pair of orifice members (fluid resistance means) 17,1
8 are provided. Here, each orifice member 17, 1
Reference numeral 8 denotes an annular member having the same shape in which a plurality of openings 17a and 17b are provided at equal pitches, and the orifice members 17 and 18 are relatively moved in the circumferential direction, thereby forming a center with the surrounding body 2. The cross-sectional area of the flow passage with the rod 3 can be variably adjusted.

【0028】このように本発明の第2の実施の形態によ
れば、囲み体2と中心ロッド3との間の流路断面積を可
変に調節することができるので、圧力条件に応じた最適
な流路断面積を選択することができ、このためオリフィ
ス部材17,18における圧力損失を最小限に抑えつ
つ、上述した第1の実施の形態の作用効果を奏すること
ができる。
As described above, according to the second embodiment of the present invention, the cross-sectional area of the flow path between the enclosure 2 and the center rod 3 can be variably adjusted, so that the optimum value according to the pressure condition can be obtained. Therefore, the effect of the first embodiment described above can be achieved while minimizing the pressure loss in the orifice members 17 and 18.

【0029】なお、上述した第2の実施の形態において
は、流路断面積を可変に調節するための調節機構とし
て、複数の開口17a,17bが等ピッチで設けられた
同一形状の環状のオリフィス部材17,18を用いてい
るが、これに限らず、絞り機構のような既存の任意の調
節機構を用いることができる。
In the second embodiment described above, an annular orifice of the same shape having a plurality of openings 17a, 17b provided at equal pitches is used as an adjusting mechanism for variably adjusting the cross-sectional area of the flow path. Although the members 17 and 18 are used, the present invention is not limited to this, and any existing adjusting mechanism such as an aperture mechanism can be used.

【0030】[0030]

【実施例】次に、図1および図2に示す微分型電気移動
度測定器の具体的実施例について述べる。図7(a)
(b)は図1および図2に示す微分型電気移動度測定器
1に連結されたファラデーカップ電流計13により検出
された信号強度(分級粒子の粒子数に対応)の時間変化
を示したものであり、このうち図7(a)は図1および
図2に示す微分型電気移動度測定器を用いた実験結果を
示す図、図7(b)は従来の微分型電気移動度測定器
(図1および図2に示す微分型電気移動度測定器でオリ
フィス部材11を省略したもの)を用いた実験結果を示
す図である。
Next, a specific embodiment of the differential electric mobility measuring device shown in FIGS. 1 and 2 will be described. FIG. 7 (a)
(B) shows the time change of the signal intensity (corresponding to the number of classified particles) detected by the Faraday cup ammeter 13 connected to the differential electric mobility measuring device 1 shown in FIGS. 1 and 2. 7A shows the results of experiments using the differential electric mobility measuring device shown in FIGS. 1 and 2, and FIG. 7B shows a conventional differential electric mobility measuring device ( FIG. 3 is a diagram showing an experimental result using the differential-type electric mobility measuring device shown in FIGS. 1 and 2 omitting an orifice member 11).

【0031】図7(a)(b)を比較すると分かるよう
に、図1および図2に示す微分型電気移動度測定器で
は、得られた信号値が大きく、かつその時間推移も安定
していた(図7(a)参照)。これに対し、従来の微分
型電気移動度測定器では、信号値が半減し、かつその時
間推移も不安定であった(図7(b)参照)。
As can be seen by comparing FIGS. 7 (a) and 7 (b), in the differential type electric mobility measuring device shown in FIGS. 1 and 2, the obtained signal value is large and its time transition is stable. (See FIG. 7A). On the other hand, in the conventional differential-type electric mobility measuring device, the signal value was reduced by half and its time transition was unstable (see FIG. 7B).

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、流
体抵抗手段の上流側におけるシースガスの整流性および
圧力の安定性を向上させることができ、またシースガス
の排出量と分級後の微粒子の排出量とを適切に制御する
ことができ、このため低圧条件下でも微粒子の粒径を精
度良く測定することができる。また、圧力条件に応じた
最適な流路断面積を選択することができ、このため流体
抵抗手段における圧力損失を最小限に抑えることができ
る。
As described above, according to the present invention, the rectifying property of the sheath gas and the stability of the pressure on the upstream side of the fluid resistance means can be improved, and the discharge amount of the sheath gas and the fine particles after classification can be improved. The discharge amount can be appropriately controlled, and therefore, the particle size of the fine particles can be measured accurately even under low pressure conditions. Further, it is possible to select an optimum flow path cross-sectional area according to the pressure condition, and thus it is possible to minimize the pressure loss in the fluid resistance means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による微分型電気移動度測定器の第1の
実施の形態を示す縦断面図。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a differential electric mobility measuring instrument according to the present invention.

【図2】図1に示す微分型電気移動度測定器のI−I線
に沿った断面図。
FIG. 2 is a cross-sectional view of the differential-type electric mobility measurement device shown in FIG. 1, taken along line II.

【図3】図1および図2に示すオリフィス部材の変形例
を示す図。
FIG. 3 is a diagram showing a modified example of the orifice member shown in FIGS. 1 and 2.

【図4】図1および図2に示す微分型電気移動度測定器
の一変形例を示す図2と同様の図。
FIG. 4 is a view similar to FIG. 2, showing a modified example of the differential electric mobility measuring device shown in FIGS. 1 and 2;

【図5】図1および図2に示す微分型電気移動度測定器
の別の変形例を示す図2と同様の図。
FIG. 5 is a view similar to FIG. 2, showing another modified example of the differential electric mobility measuring device shown in FIGS. 1 and 2;

【図6】本発明による微分型電気移動度測定器の第2の
実施の形態の要部を示す図。
FIG. 6 is a diagram showing a main part of a second embodiment of the differential electric mobility measuring device according to the present invention.

【図7】微分型電気移動度測定器を用いた実験結果を示
す図。
FIG. 7 is a diagram showing an experimental result using a differential type electric mobility measurement device.

【図8】微分型電気移動度測定器の原理を説明するため
の図。
FIG. 8 is a diagram for explaining the principle of a differential electric mobility measurement device.

【符号の説明】[Explanation of symbols]

1 微分型電気移動度測定器 2 囲み体 3 中心ロッド 4,5 スリット 10 可変電圧源 11,17,18 オリフィス部材 13 ファラデーカップ電流計 15 網部材 16 多孔板 DESCRIPTION OF SYMBOLS 1 Differential type electric mobility measuring device 2 Enclosure 3 Center rod 4,5 Slit 10 Variable voltage source 11,17,18 Orifice member 13 Faraday cup ammeter 15 Net member 16 Perforated plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】帯電した微粒子を内部に引き込むための一
方のスリットを有する囲み体と、 前記囲み体の内部に延びるとともに前記帯電した微粒子
を外部に取り出すための他方のスリットを有するロッド
とを備え、 前記囲み体と前記ロッドとの間には前記帯電した微粒子
を前記囲み体側から前記ロッド側へ移動させるよう所定
電圧が印加され、前記囲み体内には前記帯電した微粒子
を前記ロッドが延びる方向に沿って移動させるようシー
スガスが供給され、前記帯電した微粒子が取り出される
前記他方のスリットの下流側には前記シースガスに流体
抵抗を与えるための流体抵抗手段が設けられていること
を特徴とする微分型電気移動度測定器。
1. An enclosure having one slit for drawing charged fine particles therein, and a rod extending inside the enclosure and having another slit for extracting the charged fine particles to the outside. A predetermined voltage is applied between the enclosing body and the rod so as to move the charged fine particles from the enclosing body side to the rod side, and the charged fine particles are moved in the enclosing body in a direction in which the rod extends. A fluid resistance means for providing fluid resistance to the sheath gas is provided downstream of the other slit from which the charged gas is taken out, and a sheath gas is supplied to move the sheath gas along the sheath gas. Electric mobility meter.
【請求項2】前記流体抵抗手段は前記囲み体と前記ロッ
ドとの間の流路断面積を減少させるオリフィス部材から
なることを特徴とする請求項1記載の微分型電気移動度
測定器。
2. A differential electric mobility measuring instrument according to claim 1, wherein said fluid resistance means comprises an orifice member for reducing a cross-sectional area of a flow path between said enclosure and said rod.
【請求項3】前記流体抵抗手段は前記囲み体と前記ロッ
ドとの間の流路断面積を減少させる篩状の網部材からな
ることを特徴とする請求項1記載の微分型電気移動度測
定器。
3. The differential electric mobility measurement according to claim 1, wherein said fluid resistance means comprises a sieve-like net member for reducing a flow path cross-sectional area between said enclosure and said rod. vessel.
【請求項4】前記流体抵抗手段は前記囲み体と前記ロッ
ドとの間の流路断面積を減少させる多孔質部材からなる
ことを特徴とする請求項1記載の微分型電気移動度測定
器。
4. A differential electric mobility measuring instrument according to claim 1, wherein said fluid resistance means comprises a porous member for reducing a flow path cross-sectional area between said enclosure and said rod.
【請求項5】前記流体抵抗手段は前記囲み体と前記ロッ
ドとの間の流路断面積を減少させる部材からなり、この
部材は前記流路断面積を可変に調節するための調節機構
を有していることを特徴とする請求項1記載の微分型電
気移動度測定器。
5. The fluid resistance means comprises a member for reducing the cross-sectional area of the flow path between the enclosure and the rod, and the member has an adjusting mechanism for variably adjusting the cross-sectional area of the flow path. The differential electric mobility measurement device according to claim 1, wherein the measurement is performed.
JP06742198A 1998-03-17 1998-03-17 Differential electric mobility meter Expired - Fee Related JP3487756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06742198A JP3487756B2 (en) 1998-03-17 1998-03-17 Differential electric mobility meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06742198A JP3487756B2 (en) 1998-03-17 1998-03-17 Differential electric mobility meter

Publications (2)

Publication Number Publication Date
JPH11264790A true JPH11264790A (en) 1999-09-28
JP3487756B2 JP3487756B2 (en) 2004-01-19

Family

ID=13344438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06742198A Expired - Fee Related JP3487756B2 (en) 1998-03-17 1998-03-17 Differential electric mobility meter

Country Status (1)

Country Link
JP (1) JP3487756B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1446820A2 (en) * 2001-11-02 2004-08-18 Yale University Method and apparatus to increase the resolution and widen the range of differential mobility analyzers (dmas)
US6892142B2 (en) 2001-11-15 2005-05-10 Riken Method of analyzing particles suspended in liquid and liquid-suspended particle analyzer for carrying out the method
KR100974166B1 (en) 2008-04-10 2010-08-04 금오공과대학교 산학협력단 Apparatus and Method for Optimizing the Performance of Differential Mobility Analyzer
KR100991023B1 (en) 2008-02-21 2010-10-29 한국표준과학연구원 apparatus for measuring particles by using DMA
EP2352008A2 (en) 2010-02-02 2011-08-03 Riken Differential mobility analyzer, particle measuring system, and particle sorting system
CN102500559A (en) * 2011-11-10 2012-06-20 中国科学院合肥物质科学研究院 Device for grading particle sizes of nanometer particles on line
WO2015173562A1 (en) * 2014-05-13 2015-11-19 Micromass Uk Limited Multi-dimensional ion separation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1446820A2 (en) * 2001-11-02 2004-08-18 Yale University Method and apparatus to increase the resolution and widen the range of differential mobility analyzers (dmas)
EP1446820A4 (en) * 2001-11-02 2008-09-24 Univ Yale Method and apparatus to increase the resolution and widen the range of differential mobility analyzers (dmas)
US6892142B2 (en) 2001-11-15 2005-05-10 Riken Method of analyzing particles suspended in liquid and liquid-suspended particle analyzer for carrying out the method
KR100991023B1 (en) 2008-02-21 2010-10-29 한국표준과학연구원 apparatus for measuring particles by using DMA
KR100974166B1 (en) 2008-04-10 2010-08-04 금오공과대학교 산학협력단 Apparatus and Method for Optimizing the Performance of Differential Mobility Analyzer
EP2352008A2 (en) 2010-02-02 2011-08-03 Riken Differential mobility analyzer, particle measuring system, and particle sorting system
CN102192949A (en) * 2010-02-02 2011-09-21 独立行政法人理化学研究所 Differential mobility analyzer, particle measuring system, and particle sorting system
US8698076B2 (en) 2010-02-02 2014-04-15 Riken Differential mobility analyzer, particle measuring system, and particle sorting system
CN102500559A (en) * 2011-11-10 2012-06-20 中国科学院合肥物质科学研究院 Device for grading particle sizes of nanometer particles on line
WO2015173562A1 (en) * 2014-05-13 2015-11-19 Micromass Uk Limited Multi-dimensional ion separation
US9899200B2 (en) 2014-05-13 2018-02-20 Micromass Uk Limited Multi-dimensional ion separation

Also Published As

Publication number Publication date
JP3487756B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
Liu et al. On the performance of the electrical aerosol analyzer
Zhang et al. Radial differential mobility analyzer
Chen et al. Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA)
JP4561835B2 (en) Classification device and fine particle measuring device
CN106769707B (en) Potential well voltage-adjustable particle size spectrum measurement device and measurement method thereof
DE3907387A1 (en) METHOD FOR MEASURING PARTICLES IN POLYDISPERSE SYSTEMS AND OF PARTICLE CONCENTRATIONS OF MONODISPERS AEROSOLS AND MEASURING DEVICE FOR IMPLEMENTING THE METHOD
JPH04216439A (en) Method and apparatus for calibrating particle counter
CN105717004B (en) A kind of 1-3 nanometer aerosol screening plant and application based on electromobility
JPH11264790A (en) Differential type measuring device for degree of electrical movement
Seol et al. A differential mobility analyzer and a Faraday cup electrometer for operation at 200–930 Pa pressure
JP3459359B2 (en) Differential electric mobility meter
JP4286678B2 (en) Particle analyzer
Santos et al. Performance evaluation of a high-resolution parallel-plate differential mobility analyzer
US4769609A (en) Measurement of ultra-fine particles utilizing pulsed corona signals
JP4898385B2 (en) Fine particle classifier
Liu et al. Electrical aerosol analyzer: history, principle, and data reduction
JP5094520B2 (en) Ion filter, mass spectrometry system and ion mobility spectrometer
Eichler et al. Improvement of the resolution of TSI's 3071 DMA via redesigned sheath air and aerosol inlets
KR200378620Y1 (en) A real-time monitor for particulate matter suspended in the air
JP3503931B2 (en) Differential mobility analyzer and particle processing device
JPS6243540A (en) Superfine particle measuring apparatus
JP3466416B2 (en) Differential electric mobility meter
KR101460311B1 (en) Apparatus for classifying particle
JPH07323240A (en) Electric mobility selector
Myojo et al. Size measurement of polystyrene latex particles larger than 1 micrometer using a long differential mobility analyzer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030924

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees