JPH11264064A - Production of superconductive material and superconductive material obtained therefrom - Google Patents

Production of superconductive material and superconductive material obtained therefrom

Info

Publication number
JPH11264064A
JPH11264064A JP8832098A JP8832098A JPH11264064A JP H11264064 A JPH11264064 A JP H11264064A JP 8832098 A JP8832098 A JP 8832098A JP 8832098 A JP8832098 A JP 8832098A JP H11264064 A JPH11264064 A JP H11264064A
Authority
JP
Japan
Prior art keywords
niobium
superconducting
oxygen
ppm
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8832098A
Other languages
Japanese (ja)
Inventor
Shozo Kanbara
正三 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8832098A priority Critical patent/JPH11264064A/en
Publication of JPH11264064A publication Critical patent/JPH11264064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a superconductive material having a high critical temp. and applicable to various applications. SOLUTION: A high purity niobium containing niobium and impure contents of, for example <10 ppm oxygen (O). <10 ppm nitrogen (N), <10 ppm carbon (C) is subjected to heat treatment at 450-1500 deg.C in an atmosphere containing at least one of oxygen, nitrogen and carbon or in the atmosphere. The obtained high purity niobium exhibits a superconductive phenomenon at about 30K. The superconducting material having a desired shape in accordance to object and application is obtained by processing previously the high purity niobium in a desired shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニオブを母材とし
た超電導材料の製造方法及びそれにより得られた超電導
材料に関し、更に詳細には、高純度のニオブ材を所定の
雰囲気下にて加熱処理することによる超電導材料の新規
な製造方法及びそれにより得られた超電導材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconducting material using niobium as a base material and a superconducting material obtained by the method, and more particularly, to heating a high-purity niobium material in a predetermined atmosphere. The present invention relates to a novel method for producing a superconducting material by processing and a superconducting material obtained thereby.

【0002】[0002]

【従来の技術】所定の温度にて物質の電気抵抗値がゼロ
になる、いわゆる、超電導現象が知られている。この超
電導現象を利用したものとして超電導物質から構成され
る線材をコイル状にした構造を有する超電導マグネット
があり、高エネルギー実験用の加速器や磁気浮上列車、
MRI−CT(磁気共鳴映像装置)などに利用されてい
る。超電導現象を示す物質としては、NbやPbなどの
金属元素超電導体、NbTiなどの合金超電導体、窒化
ニオブ(NbN)や炭化ニオブ(NbC)、Nb3
n、Nb3Alなどの化合物超電導体及びYBaCuO
系の酸化物超電導体などが知られている。上述の超電導
マグネットに使われる材料としては、超電導状態になる
温度(以下、臨界温度という)が高く、線材に加工し易
い超電導材料が望まれている。
2. Description of the Related Art There is known a so-called superconductivity phenomenon in which the electric resistance of a substance becomes zero at a predetermined temperature. There is a superconducting magnet having a structure in which a wire made of superconducting material is coiled as a device utilizing this superconducting phenomenon, such as an accelerator for high energy experiments, a magnetic levitation train,
It is used for MRI-CT (Magnetic Resonance Imaging Apparatus) and the like. Examples of the substance exhibiting superconductivity include metal element superconductors such as Nb and Pb, alloy superconductors such as NbTi, niobium nitride (NbN), niobium carbide (NbC), and Nb 3 S.
n, compound superconductors such as Nb 3 Al and YBaCuO
Oxide-based oxide superconductors are known. As a material used for the above-described superconducting magnet, a superconducting material which has a high temperature in a superconducting state (hereinafter referred to as a critical temperature) and is easily processed into a wire is desired.

【0003】[0003]

【発明が解決しようとする課題】上述した超電導物質の
中において加工性ではNiTiが優れているため、超電
導マグネット用の線材として広く用いられているが、臨
界温度が約9Kと低いものであった。これに対しNb3
SbやNb3Alは、臨界温度が共に約18Kと高いも
のの、硬くて脆く加工性が不十分であった。このため、
これらの材料を超電導マグネット用の線材として利用す
るには特殊加工が必要となり、歩止まりが悪く、製造コ
ストが高くなるという問題があった。また、製造された
線材も脆さについては不十分であった。一方、窒化ニオ
ブ(NbN)や炭化ニオブ(NbC)は、スパッタ法な
どを用いて膜状のものしか作ることができず、超電導線
材として用いるために線引きなどの加工処理することは
極めて困難であった。
Among the superconducting materials described above, NiTi is excellent in workability and is widely used as a wire for superconducting magnets, but its critical temperature is as low as about 9K. . On the other hand, Nb 3
Sb and Nb 3 Al both had high critical temperatures of about 18 K, but were hard and brittle and had insufficient workability. For this reason,
In order to use these materials as wires for superconducting magnets, special processing is required, resulting in poor yield and high manufacturing costs. In addition, the manufactured wires were insufficient in terms of brittleness. On the other hand, niobium nitride (NbN) and niobium carbide (NbC) can be formed only in a film form using a sputtering method or the like, and it is extremely difficult to perform a processing such as wire drawing for use as a superconducting wire. Was.

【0004】本発明は上記従来技術の問題を解決するた
めになされたものであり、その目的は、臨界温度が高
く、加工性に優れた超電導材料の製造方法(難加工性の
超電導材料の製造方法)を提供することにある。また、
本発明の別の目的は、臨界温度が高く、加工性に優れた
超電導材料を提供することにある。
The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a method of manufacturing a superconducting material having a high critical temperature and excellent workability (manufacturing of a superconducting material having difficulty in processing) Method). Also,
Another object of the present invention is to provide a superconducting material having a high critical temperature and excellent workability.

【0005】[0005]

【課題を解決するための手段】本発明に従えば、ニオブ
を母材とする超電導材料を製造する方法において、上記
ニオブを、酸素、窒素及び炭素の少なくとも一つを含む
雰囲気中または大気中にて、加熱温度450℃〜150
0℃で加熱処理することを特徴とする超電導材料の製造
方法が提供される。
According to the present invention, there is provided a method for producing a superconducting material comprising niobium as a base material, wherein the niobium is placed in an atmosphere containing at least one of oxygen, nitrogen and carbon or in the atmosphere. And heating temperature 450 ° C ~ 150
There is provided a method for producing a superconducting material, characterized by performing a heat treatment at 0 ° C.

【0006】本発明の超電導材料の製造方法では、ニオ
ブを出発原料として用い、このニオブを、酸素、窒素及
び炭素の少なくとも一つを含む雰囲気中または大気中
で、温度450℃〜1500℃で加熱処理する。加熱処
理されたニオブの表面上には酸化ニオブ、窒化ニオブ及
び炭化ニオブの少なくとも一つが形成され、この加熱処
理されたニオブは30K付近で超電導状態となる。この
ように、本発明では、ニオブの所定雰囲気下での加熱処
理という簡単な処理により、高い臨界温度を示す超電導
材料を製造することができる。
In the method for producing a superconducting material according to the present invention, niobium is used as a starting material, and the niobium is heated at a temperature of 450 ° C. to 1500 ° C. in an atmosphere or atmosphere containing at least one of oxygen, nitrogen and carbon. To process. At least one of niobium oxide, niobium nitride and niobium carbide is formed on the surface of the heat-treated niobium, and the heat-treated niobium becomes superconductive at about 30K. As described above, according to the present invention, a superconducting material exhibiting a high critical temperature can be manufactured by a simple process of heat treatment of niobium in a predetermined atmosphere.

【0007】本発明において、加熱温度は、ニオブの酸
化物、窒化物及び炭化物の合成が可能であるという理由
から450℃〜1500℃が好ましく、更に好ましく
は、化合物の合成速度を早くするという理由から700
℃〜1500℃である。加熱温度が450℃よりも低い
と化合物の合成速度が遅く長時間必要となり、加熱温度
が1500℃よりも高いと酸化ニオブの形態で昇華率が
大きく材料損となってしまう。
In the present invention, the heating temperature is preferably from 450 ° C. to 1500 ° C., because it is possible to synthesize niobium oxides, nitrides, and carbides, and more preferably, the reason for increasing the rate of compound synthesis. From 700
C. to 1500C. When the heating temperature is lower than 450 ° C., the synthesis rate of the compound is slow and requires a long time. When the heating temperature is higher than 1500 ° C., the sublimation rate is large in the form of niobium oxide, resulting in material loss.

【0008】また、本発明の超電導材料の製造方法で
は、さらに、加熱処理したニオブ材を圧延加工してもよ
い。この場合、圧延方向に沿って測定した電気抵抗値
が、圧延方向と垂直な方向で測定した電気抵抗値よりも
高い温度でゼロになることから圧延加工したニオブ材は
圧延方向に沿って切り出すことが好ましい。これによ
り、圧延方向に沿って切り出したニオブ材は、圧延方向
と垂直な方向で切り出したニオブ材よりも高い温度で超
電導状態になる。
In the method for producing a superconducting material according to the present invention, the heat-treated niobium material may be rolled. In this case, since the electrical resistance measured along the rolling direction becomes zero at a higher temperature than the electrical resistance measured in the direction perpendicular to the rolling direction, the rolled niobium material is cut out along the rolling direction. Is preferred. As a result, the niobium material cut out along the rolling direction enters a superconducting state at a higher temperature than the niobium material cut out in a direction perpendicular to the rolling direction.

【0009】本発明において、加熱処理をする雰囲気と
しては、酸素、窒素及び炭素の少なくとも一つを含む雰
囲気または大気中が好ましく、例えば、O2、N2、C
O、CO2などの一成分ガス雰囲気、またはN2/O2
2/Ar、O2/Ar、(N2+O2)/Arなどの混合
ガス雰囲気が好ましい。ガス雰囲気中の酸素、窒素及び
/または炭素の濃度(分圧)は高い方が好ましい。
In the present invention, the atmosphere for the heat treatment is preferably an atmosphere containing at least one of oxygen, nitrogen and carbon, or the atmosphere. For example, O 2 , N 2 , C 2
A one-component gas atmosphere such as O or CO 2 , or N 2 / O 2 ,
A mixed gas atmosphere such as N 2 / Ar, O 2 / Ar, (N 2 + O 2 ) / Ar is preferable. It is preferable that the concentration (partial pressure) of oxygen, nitrogen and / or carbon in the gas atmosphere is higher.

【0010】本発明の超電導材料の製造方法において、
出発原料として用いるニオブは、高純度であることによ
り耐環境性を増し、内部への拡散を防ぐという理由から
酸素(O)<10ppm、窒素(N)<10ppm、炭
素(C)<10ppmの不純物含有量を有する高純度ニ
オブが好ましい。
In the method for producing a superconducting material according to the present invention,
Niobium used as a starting material is an impurity of oxygen (O) <10 ppm, nitrogen (N) <10 ppm, and carbon (C) <10 ppm because high purity increases environmental resistance and prevents diffusion into the inside. High purity niobium having a content is preferred.

【0011】本発明に従えば、目的や用途に合わせてニ
オブ材を所定の形状に予め加工しておき、酸素、窒素及
び炭素の少なくとも一つを含む雰囲気中または大気中に
て、450℃〜1500℃の温度で加熱処理することに
より、所定の形状の超電導材料を製造することができ
る。例えば、出発原料のニオブを、所望の太さの線状ま
たは所望の厚さの板状に加工しておき、酸素、窒素及び
炭素の少なくとも一つを含む雰囲気中または大気中に
て、450℃〜1500℃の温度で加熱処理すれば、加
熱処理前と同様の寸法の線状または板状の超電導材料を
得ることができる。したがって、本発明の超電導材料の
製造方法は、従来技術における超電導材料の加工性の問
題を解決することができる。
According to the present invention, the niobium material is preliminarily processed into a predetermined shape in accordance with the purpose and application, and is heated to 450 ° C. in an atmosphere containing at least one of oxygen, nitrogen and carbon or in the atmosphere. By performing the heat treatment at a temperature of 1500 ° C., a superconducting material having a predetermined shape can be manufactured. For example, niobium as a starting material is processed into a linear shape having a desired thickness or a plate shape having a desired thickness, and is heated at 450 ° C. in an atmosphere or atmosphere containing at least one of oxygen, nitrogen, and carbon. When the heat treatment is performed at a temperature of about 1500 ° C., a linear or plate-shaped superconducting material having the same dimensions as before the heat treatment can be obtained. Therefore, the method for manufacturing a superconducting material of the present invention can solve the problem of workability of the superconducting material in the prior art.

【0012】本発明の製造方法は、原材料のニオブを所
望の形状に加工することにより、加熱処理を介して、所
望の形状の超電導材料を得ることができる。得られた超
電導材料は、例えば、高磁界用超電導マグネットなどの
用途に利用することができ、特に超電導マグネット用の
線材やシールド用泊材、更に超電導以外の用途として高
温耐食材などに好適である。
According to the manufacturing method of the present invention, a superconducting material having a desired shape can be obtained through a heat treatment by processing niobium as a raw material into a desired shape. The obtained superconducting material can be used, for example, for applications such as superconducting magnets for high magnetic fields, and is particularly suitable for wires and shielding materials for superconducting magnets, as well as high-temperature corrosion-resistant materials for applications other than superconductivity. .

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例について図
面を用いて具体的に説明するが、本発明はこれに限定さ
れるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings, but the present invention is not limited thereto.

【0014】実施例1−1 最初に出発原料として、直径100mm、長さ350m
mの高純度ニオブインゴットを用意した。このニオブイ
ンゴットは本発明者による特開平8−165528号の
方法を用いて作製したものである。この高純度ニオブイ
ンゴットの不純物含有量は、酸素(O)<10ppm、
窒素(N)<10ppm、炭素(C)<10ppmであ
った。この高純度ニオブインゴットを、寸法が約2mm
×2mm×22mmの柱状になるように精密切断機を用
いて切り出した。切り出された直後の試料の表面は金属
ニオブ色を示す銀白色を呈していた。この柱状に切り出
された試料を、大気雰囲気下、450℃で1800秒加
熱処理した。加熱処理した後の試料の表面は白黄色の粉
末状であった。表面の白黄色の粉末を除去した後の試料
の表面は淡黄色を呈していた。粉末を除去した後の試料
について不純物含有量の分析を行った結果、酸素(O)
<10ppm、窒素(N)<10ppm、炭素(C)<
10ppmであった。
Example 1-1 First, a starting material was 100 mm in diameter and 350 m in length.
m high-purity niobium ingot was prepared. This niobium ingot was manufactured by the method of Japanese Patent Application Laid-Open No. 8-165528 by the present inventor. The impurity content of this high-purity niobium ingot is oxygen (O) <10 ppm,
Nitrogen (N) <10 ppm and carbon (C) <10 ppm. This high-purity niobium ingot is about 2 mm in size.
It cut out using the precision cutting machine so that it might become a 2x22mm column shape. The surface of the sample immediately after being cut out had a silver-white color showing a niobium metal color. The sample cut into a column shape was subjected to heat treatment at 450 ° C. for 1800 seconds in an air atmosphere. The surface of the sample after the heat treatment was a white-yellow powder. The surface of the sample after removing the white-yellow powder on the surface had a pale yellow color. As a result of analyzing the content of impurities in the sample after removing the powder, oxygen (O)
<10 ppm, nitrogen (N) <10 ppm, carbon (C) <
It was 10 ppm.

【0015】加熱処理した試料の表面のSEM像を図1
(a)及び(b)に示す。図1(a)は、試料の表面を
観察したときに最も酸化していた部分のSEM像であ
り、図1(b)は、酸化の度合いが最も少ない部分のS
EM像である。これらの図から、高純度ニオブ材の低温
酸化の場合、結晶表面部の酸化部分の厚さは10μm〜
30μm程度であり、酸化部分が非常に薄いことが判っ
た。なお、図1(b)中、縦線は各々EPMA観察を行
ったときのライン分析跡を示しており、酸化部分の厚さ
は、ニオブ及び酸素のライン分析並びにSEM像から評
価した。
FIG. 1 shows an SEM image of the surface of the heat-treated sample.
(A) and (b). FIG. 1A is an SEM image of the most oxidized portion when observing the surface of the sample, and FIG. 1B is the SEM image of the least oxidized portion.
It is an EM image. From these figures, it can be seen that in the case of low-temperature oxidation of high-purity niobium material, the thickness of the oxidized portion on the crystal surface is 10 μm or more.
It was about 30 μm, indicating that the oxidized portion was very thin. In FIG. 1 (b), each vertical line indicates a trace of a line analysis when EPMA observation was performed, and the thickness of the oxidized portion was evaluated from a line analysis of niobium and oxygen and an SEM image.

【0016】図2(a)に同試料の結晶粒界部のSEM
像を、図2(b)に結晶粒界部の中央部分を拡大したS
EM像を示す。結晶粒界部を観察すると、表面から粒界
に沿って内部に三角州状にニオブが酸化しており、この
粒界部が酸素拡散のパイプ役を果たしていると考えられ
る。この酸素拡散の深さはニオブの表面部分から更に約
20μm程度進入していた。なお、この酸化した部分は
EPMA線分析及びマッピングにより酸化物層であるこ
とを確認した。したがって、超高純度ニオブの低温酸化
において、酸素が内部に拡散するには、粒界部による影
響が大きいと思われる。
FIG. 2A shows an SEM of a grain boundary of the same sample.
FIG. 2 (b) shows an enlarged image of the central part of the crystal grain boundary.
3 shows an EM image. When observing the grain boundary, it is considered that niobium is oxidized in a triangular shape from the surface to the inside along the grain boundary, and this grain boundary is considered to play a role of a pipe for oxygen diffusion. The oxygen diffusion depth was about 20 μm further from the surface portion of niobium. The oxidized portion was confirmed to be an oxide layer by EPMA line analysis and mapping. Therefore, in low-temperature oxidation of ultrahigh-purity niobium, diffusion of oxygen into the interior is considered to be largely affected by the grain boundary.

【0017】電気抵抗測定 つぎに、加熱処理した上記試料について電気抵抗を測定
した。以下に、電気抵抗の測定方法及び測定条件を示
す。電気抵抗の測定方法は通常の4端子法を用い、測定
回路及び大気により誘起される誘導起電力を低減して精
度を向上させるために極性反転式の直流電流を用いた。
なお、端子には直径1mmの銅製エナメル線を用い、ジ
ュール熱の発生の影響を極力少なくするために電流値は
100mA〜150mAとした。更に、電気抵抗測定中
にジュール熱が発生しないように、測定の5秒前に電流
を通電しておいてから測定を開始した。また、熱起電力
を相殺するために、ある点での電気抵抗測定からつぎの
点の電気抵抗測定までの間に25秒間の時間間隔を空け
たのち、極性を反転し5秒間通電するという処理を行っ
た。測定した温度範囲は室温〜約10Kの範囲であっ
た。図3に、以上の条件のもとで測定した電気抵抗の測
定結果を白丸印で示した。なお、同図には比較として、
加熱処理をしていない高純度ニオブ材の電気抵抗を白十
字印で示した。図3において、横軸は絶対温度を示し、
縦軸は各温度で測定した抵抗値を室温で測定した抵抗値
で割り規格化した値を示している。同図から分かるよう
に、本実施例の加熱処理を行った試料では、30K付近
で電気抵抗値が急激に減少している。これは約30K近
傍からこの試料が超電導状態になり始めたことを示唆し
ているものと思われる。
Next, the electric resistance of the heat-treated sample was measured. The method and conditions for measuring the electric resistance are described below. A normal four-terminal method was used to measure the electric resistance, and a polarity-reversal DC current was used to reduce the induced electromotive force induced by the measurement circuit and the atmosphere and improve the accuracy.
Note that a copper enamel wire having a diameter of 1 mm was used for the terminal, and the current value was set to 100 mA to 150 mA in order to minimize the influence of Joule heat. Further, in order to prevent Joule heat from being generated during the measurement of the electric resistance, the measurement was started after applying a current 5 seconds before the measurement. Further, in order to cancel the thermoelectromotive force, a process is performed in which a time interval of 25 seconds is provided between the measurement of the electric resistance at one point and the measurement of the electric resistance at the next point, and then the polarity is reversed and the current is supplied for 5 seconds. Was done. The temperature range measured was from room temperature to about 10K. FIG. 3 shows the results of the measurement of the electric resistance measured under the above conditions by white circles. In the figure, for comparison,
The electric resistance of the high-purity niobium material not subjected to the heat treatment is indicated by a white cross mark. In FIG. 3, the horizontal axis indicates the absolute temperature,
The vertical axis shows the resistance value measured at each temperature divided by the resistance value measured at room temperature and normalized. As can be seen from the figure, in the sample subjected to the heat treatment of this example, the electric resistance value sharply decreases around 30K. This seems to indicate that the sample started to be in a superconducting state from around 30K.

【0018】熱処理時間に対する酸化量及び酸化速度の
変化の観測 実施例1−1と同様の方法で作製した試料を13個用意
し、これら13個の試料を実施例1−1と同じ雰囲気及
び加熱温度にて加熱処理した。加熱処理を始めて30分
経過したのち5分毎に試料を一個取り出し、取り出した
それぞれの試料について酸素量を測定し酸化速度を算出
した。図4に酸化時間に対する酸素量(図中、黒丸印)
及び酸化速度(図中、黒四角印)の結果を示す。同図に
おいて、横軸は時間を示しており、左縦軸は酸素量を、
右縦軸は酸化速度をそれぞれ示している。同図から分か
るように、高純度ニオブ材の酸化速度は初期段階で大き
く、約40分経過した段階で酸化速度は低下し殆ど飽和
することが分かる。これは、高純度ニオブ材の表面部に
おいて酸化が進行し、表面全体が酸化膜で覆われて安定
酸化層が形成されるに従い、酸素の内部供給(=拡散律
速)が遅くなると理解することができる。このことか
ら、高純度ニオブ材の酸化は、酸素が酸化層を経由し
て”酸化膜−ニオブ”境界面へ供給されることにより進
展していると推定され、高純度ニオブ材の表面に形成さ
れる酸化層の厚みには限界があることを示唆している。
Observation of Changes in Oxidation Amount and Oxidation Rate with Heat Treatment Time Thirteen samples prepared by the same method as in Example 1-1 were prepared, and these thirteen samples were subjected to the same atmosphere and heating as in Example 1-1. Heat treatment was performed at the temperature. After a lapse of 30 minutes from the start of the heat treatment, one sample was taken out every 5 minutes, the amount of oxygen was measured for each sample taken out, and the oxidation rate was calculated. FIG. 4 shows the amount of oxygen with respect to the oxidation time (black circles in the figure).
And the results of the oxidation rate (black squares in the figure). In the figure, the horizontal axis represents time, the left vertical axis represents oxygen content,
The right vertical axis indicates the oxidation rate, respectively. As can be seen from the figure, the oxidation rate of the high-purity niobium material is high in the initial stage, and the oxidation rate decreases and becomes almost saturated after about 40 minutes. It can be understood that as the oxidation proceeds on the surface of the high-purity niobium material and the entire surface is covered with an oxide film to form a stable oxide layer, the internal supply of oxygen (= diffusion-controlled) becomes slower. it can. From this, it is presumed that the oxidation of the high-purity niobium material is progressing by supplying oxygen to the “oxide-niobium” interface through the oxide layer, and the oxidation of the high-purity niobium material is formed on the surface of the high-purity niobium material. This implies that there is a limit to the thickness of the oxide layer to be formed.

【0019】実施例1−2 加熱処理の時間を5400秒にした以外は、実施例1−
1と同様に試料を作成し、得られた試料について実施例
1−1と同様の条件で電気抵抗を測定した。測定結果を
図5に白十字印で示した。なお、図5には、実施例1−
1の試料の測定結果を白四角印で併せて示してある。図
5からわかるように、本実施例の試料も実施例1−1の
試料と同様に30K付近で電気抵抗が急激に減少してお
り、約30K近傍で超電導状態になり始めたことを示唆
しているものと思われる。
Example 1-2 Example 1 was repeated except that the heat treatment time was changed to 5400 seconds.
A sample was prepared in the same manner as in Example 1, and the obtained sample was measured for electrical resistance under the same conditions as in Example 1-1. The measurement result is shown by a white cross mark in FIG. FIG. 5 shows Example 1-
The measurement results of the sample No. 1 are also shown by white squares. As can be seen from FIG. 5, similarly to the sample of Example 1-1, the electrical resistance of the sample of the present example sharply decreased at around 30 K, and it was suggested that the sample began to become superconductive at about 30 K. It seems to be.

【0020】実施例1−3 加熱温度を450℃にした以外は、実施例1−1と同様
にして試料を作成し加熱処理を行った。そして、この試
料の電気抵抗を実施例1−1と同じ方法で測定した結
果、この試料においても実施例1−1と同様に30K付
近で電気抵抗の急激な減少が確認され、この試料が約3
0K近傍から超電導状態になり始めたことを示唆してい
るものと思われる。
Example 1-3 A sample was prepared and heat-treated in the same manner as in Example 1-1 except that the heating temperature was changed to 450 ° C. Then, the electrical resistance of this sample was measured by the same method as in Example 1-1. As a result, also in this sample, a sharp decrease in the electrical resistance was observed at about 30 K, as in Example 1-1. 3
It seems that this suggests that the superconducting state has started from around 0K.

【0021】実施例1−4 加熱温度を700℃にした以外は、実施例1−1と同様
にして試料を作成し加熱処理を行った。そして、この試
料の電気抵抗を実施例1−1と同じ方法で測定した結
果、この試料においても実施例1−1と同様に30K付
近で電気抵抗の急激な減少が確認され、この試料が約3
0K近傍から超電導状態になり始めたことを示唆してい
るものと思われる。
Example 1-4 A sample was prepared and heat-treated in the same manner as in Example 1-1 except that the heating temperature was 700 ° C. Then, the electrical resistance of this sample was measured by the same method as in Example 1-1. As a result, also in this sample, a sharp decrease in the electrical resistance was observed at about 30 K, as in Example 1-1. 3
It seems that this suggests that the superconducting state has started from around 0K.

【0022】実施例2−1 実施例1−1と同様に、出発原料として高純度ニオブイ
ンゴットを用意した。この高純度ニオブインゴットを、
温間鍛造に先立ち800℃、1時間、10-5 mbarの条
件で熱処理を施し、その直後、大気中にて36mm×2
00mm×290mmの板状に温間プレスした。次い
で、この板状の高純度ニオブインゴットを2.5mm×
400mm×2100mmになるまで圧延加工した。更
に、圧延加工したこの板材を所定の寸法2.5mm×4
00mm×400mmに切り出して、800℃、1時
間、10-5 mbarの条件で熱処理した。そして、得られ
た板材について、圧延した方向に垂直な方向の電気抵抗
と平行な方向の電気抵抗を実施例1−1と同様の方法で
測定した。測定結果を図6に示す。図6中、白四角印は
圧延方向に垂直な方向の測定結果であり、白丸印は圧延
方向に平行な方向の測定結果である。図6からわかるよ
うに、圧延方向と平行な方向で測定した電気抵抗値は、
実施例1−1と同様に30K付近で急激に減少してお
り、約30K近傍から超電導状態になり始めたことを示
唆しているものと思われる。一方、圧延方向と垂直な方
向で測定した電気抵抗値は、30K付近になっても急激
な減少は見られず、約30K近傍では、まだ超電導状態
にはなっていないものと思われる。
Example 2-1 A high-purity niobium ingot was prepared as a starting material in the same manner as in Example 1-1. This high-purity niobium ingot,
Prior to warm forging, heat treatment was performed at 800 ° C. for 1 hour at 10 −5 mbar, and immediately thereafter, 36 mm × 2 in air.
The sheet was warm-pressed into a 00 mm × 290 mm plate. Then, the plate-like high-purity niobium ingot was placed in a 2.5 mm ×
It was rolled until it became 400 mm x 2100 mm. Further, the rolled plate material is set to a predetermined size of 2.5 mm × 4.
It was cut out to a size of 00 mm × 400 mm and heat-treated at 800 ° C. for 1 hour at 10 −5 mbar. And about the obtained board | plate material, the electric resistance of the direction parallel to the direction perpendicular to the rolling direction and the direction parallel to the direction were measured by the same method as Example 1-1. FIG. 6 shows the measurement results. In FIG. 6, a white square mark indicates a measurement result in a direction perpendicular to the rolling direction, and a white circle mark indicates a measurement result in a direction parallel to the rolling direction. As can be seen from FIG. 6, the electrical resistance measured in a direction parallel to the rolling direction is:
As in the case of Example 1-1, the value rapidly decreased at around 30K, which seems to indicate that the superconducting state started at around 30K. On the other hand, the electric resistance measured in the direction perpendicular to the rolling direction does not show a sharp decrease even at around 30K, and it seems that the superconducting state has not yet been reached at around 30K.

【0023】[0023]

【発明の効果】本発明では、ニオブ、例えば、酸素
(O)<10ppm、窒素(N)<10ppm、炭素
(C)<10ppmの不純物含有量を有する高純度ニオ
ブを、酸素、窒素及び炭素の少なくとも一つを含む雰囲
気中または大気中にて、温度450℃〜1500℃で加
熱処理することにより臨界温度の高い超電導材料を製造
することができる。特に、本発明の方法では、高純度ニ
オブを予め所定の形状に加工しておき、上述の加熱処理
をするだけで、所定の形状の超電導ニオブを得ることが
できるため、種々の用途に応じた超電導素材または製品
の製造に極めて有用である。
According to the present invention, niobium, for example, high purity niobium having an impurity content of oxygen (O) <10 ppm, nitrogen (N) <10 ppm, and carbon (C) <10 ppm, is used to convert oxygen, nitrogen and carbon to high purity. A superconducting material having a high critical temperature can be manufactured by performing heat treatment at a temperature of 450 ° C. to 1500 ° C. in an atmosphere containing at least one of them or in the air. In particular, in the method of the present invention, high-purity niobium is previously processed into a predetermined shape, and only by performing the above-described heat treatment, a superconducting niobium having a predetermined shape can be obtained. Very useful for the production of superconducting materials or products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、加熱処理したニオブの表面のSEM像
を示し、図1(a)は表面観察時に最も酸化していた部
分のSEM像であり、図1(b)は酸化の度合いが最も
少ない部分のSEM像である。
FIG. 1 shows an SEM image of a surface of niobium subjected to a heat treatment, FIG. 1 (a) is an SEM image of a portion most oxidized during surface observation, and FIG. 1 (b) is a degree of oxidation. Is the SEM image of the least part.

【図2】図2は、加熱処理したニオブの結晶粒界部の酸
化状況を示すSEM像であり、図2(a)は結晶粒界部
のSEM像を、図2(b)は結晶粒界部の中央部分を拡
大したSEM像を示す。
FIG. 2 is an SEM image showing an oxidation state of a crystal grain boundary portion of the heat-treated niobium. FIG. 2 (a) is an SEM image of the crystal grain boundary portion, and FIG. 2 (b) is a crystal grain. 5 shows an SEM image in which a central portion of the boundary is enlarged.

【図3】図3は、実施例1−1において加熱処理したニ
オブの電気抵抗の測定結果を示すグラフである。
FIG. 3 is a graph showing measurement results of electric resistance of niobium subjected to heat treatment in Example 1-1.

【図4】図4は、ニオブの酸化時間に対する酸素量及び
酸化速度の結果を示すグラフである。
FIG. 4 is a graph showing the results of the amount of oxygen and the oxidation rate with respect to the oxidation time of niobium.

【図5】図5は、実施例1−2において加熱処理したニ
オブの電気抵抗の測定結果を示すグラフである。
FIG. 5 is a graph showing the measurement results of electric resistance of niobium subjected to heat treatment in Example 1-2.

【図6】図6は、実施例2−1において圧延処理したニ
オブの圧延方向に垂直な方向の電気抵抗と平行な方向の
電気抵抗の測定結果を示すグラフである。
FIG. 6 is a graph showing measurement results of electric resistance of a niobium rolled in Example 2-1 in a direction parallel to a direction perpendicular to the rolling direction and a direction parallel to the rolling direction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 661 C22F 1/00 661A 682 682 691 691Z 1/02 1/02 C23C 8/20 C23C 8/20 8/24 8/24 8/28 8/28 30/00 30/00 C C23F 17/00 C23F 17/00 H01B 13/00 561 H01B 13/00 561Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 661 C22F 1/00 661A 682 682 691 691Z 1/02 1/02 C23C 8/20 C23C 8/20 8/24 8 / 24 8/28 8/28 30/00 30/00 C C23F 17/00 C23F 17/00 H01B 13/00 561 H01B 13/00 561Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ニオブを母材とする超電導材料を製造す
る方法において、 上記ニオブを、酸素、窒素及び炭素の少なくとも一つを
含む雰囲気中または大気中にて、加熱温度450℃〜1
500℃で加熱処理することを特徴とする超電導材料の
製造方法。
1. A method for producing a superconducting material containing niobium as a base material, comprising: heating the niobium in an atmosphere containing at least one of oxygen, nitrogen and carbon or in an atmosphere at a heating temperature of 450 ° C. to 1 ° C.
A method for producing a superconducting material, comprising performing heat treatment at 500 ° C.
【請求項2】 上記ニオブが、酸素<10ppm、窒素
<10ppm、炭素<10ppmの不純物含有量を有す
る高純度ニオブであることを特徴とする請求項1に記載
の超電導材料の製造方法。
2. The method according to claim 1, wherein the niobium is a high-purity niobium having an impurity content of oxygen <10 ppm, nitrogen <10 ppm, and carbon <10 ppm.
【請求項3】 上記加熱温度が、700℃〜1500℃
であることを特徴とする請求項1または2に記載の超電
導材料の製造方法。
3. The heating temperature is 700 ° C. to 1500 ° C.
The method for producing a superconducting material according to claim 1, wherein:
【請求項4】 さらに、加熱処理した上記ニオブ材を圧
延加工し、圧延加工したニオブ材を圧延した方向に沿っ
て切り出すことを含むことを特徴とする請求項1〜3の
いずれか一項に記載の超電導材料の製造方法。
4. The method according to claim 1, further comprising rolling the heat-treated niobium material, and cutting out the rolled niobium material in a rolling direction. A method for producing the superconducting material according to the above.
【請求項5】 請求項1〜4のいずれか一項に記載の方
法により製造された超電導材料。
5. A superconducting material produced by the method according to claim 1.
【請求項6】酸化ニオブ、窒化ニオブ及び炭化ニオブの
少なくとも一つが表面に形成されていることを特徴とす
る請求項5に記載の超電導材料。
6. The superconducting material according to claim 5, wherein at least one of niobium oxide, niobium nitride and niobium carbide is formed on a surface.
JP8832098A 1998-03-18 1998-03-18 Production of superconductive material and superconductive material obtained therefrom Pending JPH11264064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8832098A JPH11264064A (en) 1998-03-18 1998-03-18 Production of superconductive material and superconductive material obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8832098A JPH11264064A (en) 1998-03-18 1998-03-18 Production of superconductive material and superconductive material obtained therefrom

Publications (1)

Publication Number Publication Date
JPH11264064A true JPH11264064A (en) 1999-09-28

Family

ID=13939637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8832098A Pending JPH11264064A (en) 1998-03-18 1998-03-18 Production of superconductive material and superconductive material obtained therefrom

Country Status (1)

Country Link
JP (1) JPH11264064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247299A (en) * 2003-02-05 2004-09-02 Wc Heraeus Gmbh Niobium wire rod, its manufacturing method, and its use
JP2010165602A (en) * 2009-01-17 2010-07-29 Daido Steel Co Ltd Method of manufacturing electrode material for cold cathode discharge tube
US8349248B2 (en) 2003-10-17 2013-01-08 Heraeus Precious Metals Gmbh & Co. Kg Metallic material and methods of making and using same
EP3346017A1 (en) * 2017-01-10 2018-07-11 Heraeus Deutschland GmbH & Co. KG Method for cutting refractory metals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247299A (en) * 2003-02-05 2004-09-02 Wc Heraeus Gmbh Niobium wire rod, its manufacturing method, and its use
JP4638675B2 (en) * 2003-02-05 2011-02-23 ヴェー ツェー ヘレーウス ゲゼルシャフト ミット ベシュレンクテル ハフツング Niobium wire, production method thereof and use of niobium wire
US8262813B2 (en) 2003-02-05 2012-09-11 Heraeus Materials Technology Gmbh & Co. Kg Oxygen-enriched niobium wire
US8349248B2 (en) 2003-10-17 2013-01-08 Heraeus Precious Metals Gmbh & Co. Kg Metallic material and methods of making and using same
JP2010165602A (en) * 2009-01-17 2010-07-29 Daido Steel Co Ltd Method of manufacturing electrode material for cold cathode discharge tube
EP3346017A1 (en) * 2017-01-10 2018-07-11 Heraeus Deutschland GmbH & Co. KG Method for cutting refractory metals
WO2018130327A1 (en) * 2017-01-10 2018-07-19 Heraeus Deutschland GmbH & Co. KG Method for cutting refractory metals
US11602816B2 (en) 2017-01-10 2023-03-14 Heraeus Deutschland GmbH & Co. KG Method for cutting refractory metals

Similar Documents

Publication Publication Date Title
Berman et al. Normal and Superconducting Heat Capacities of Lanthanum
JPS63206462A (en) Production of thin conductive or superconductive film
Safa et al. Advances in the purification of niobium by solid state gettering with titanium
JPH11264064A (en) Production of superconductive material and superconductive material obtained therefrom
Enstrom et al. Compounds and Alloys for Superconducting Applications
Tsuei Ductile superconducting Cu-rich alloys containing A-15 filaments
Wenk et al. Texture analysis of Bi-2212 and 2223 tapes and wires by neutron diffraction
Schartman et al. Supersolidus Phase Investigation of the Bi‐Sr‐Ca‐Cu Oxide System in Silver Tape
US20090048114A1 (en) Alloy superconductor and methods of making the same
Neijmeijer et al. Characteristics of a production route for filamentary Nb3Sn superconductors based on a reaction between niobium and Nb6Sn5
JPH01119579A (en) Heat treatment of superconducting ceramics of composite oxide system
JPS63225413A (en) Manufacture of compound superconductive wire
JP2670362B2 (en) Method for manufacturing conductor for current lead
JPH01189813A (en) Oxide superconductive wire material
US3761254A (en) Alloy for superconductive magnet
KR20000000707A (en) Different sort metal material bound having cube structure and manufacturing method thereof
Ko et al. Influence of Cu addition on microstructure and transport properties in MgB/sub 2/tapes
Morgan et al. Continuous melt processing of Bi-2212/Ag dip coated tapes
JP2010185852A (en) Pressure sensor
JPS63313416A (en) Superconductive wire rod and its manufacture
JPH03247708A (en) Metal-oxide superconducting combined material and manufacture thereof
Higo et al. Rapidly Annealed Bi (Pb) SrCaCuO Thin Films Prepared by a 2223 Stoichiometric Target Sputtering
JPH0227612A (en) Oxide superconducting wire rod
JPS6120158B2 (en)
JPH0661682A (en) Supperconducting magnetic shield

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040209

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A7423