JPH11262143A - Insulation spacer and its manufacture - Google Patents

Insulation spacer and its manufacture

Info

Publication number
JPH11262143A
JPH11262143A JP7509198A JP7509198A JPH11262143A JP H11262143 A JPH11262143 A JP H11262143A JP 7509198 A JP7509198 A JP 7509198A JP 7509198 A JP7509198 A JP 7509198A JP H11262143 A JPH11262143 A JP H11262143A
Authority
JP
Japan
Prior art keywords
conductor
insulating
insulation
dielectric constant
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7509198A
Other languages
Japanese (ja)
Inventor
Ryota Ikeda
良太 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP7509198A priority Critical patent/JPH11262143A/en
Publication of JPH11262143A publication Critical patent/JPH11262143A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the electric-field strength of a triple junction, relaxing the concentration of an electric field to the triple junction, by forming an insulation support of the main body portion of an insulation spacer out of an insulation member, and by providing the insulation member through winding it around the conductor-connected electrode inside it, and further, by disposing in a higher-dielectric-constant insulation member having a directric constant higher than the insulation member. SOLUTION: In a sealed container 1 made of a grounded metal which is filled with an insulation gas, a conductor 9 with an applied high-voltage is supported by an insulation support 10 via an electrode 3 connected with the conductor 9. Also, an insulation spacer 20 comprises the electrode 3 connected with the conductor 9 and the insulation supporter 10 of its main body portion which has an insulation member 7 and a higher permittivity bearing high-dielectric member 6 than the insulation member 7. As a result, since from the side close to a high-voltage conductor 2 comprising the conductor 9 and the electrode 3 to the side of a low-voltage conductor the dielectric members having sequentially step-wise lower permittivity than preceding ones are disposed to provide the gradient of the permittivity, making small the differences between the voltages shared by the respective portions, the concentrations of the electric fields to their boundary portions are relaxed to reduce the electric-field strength of a triple junction 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、接地金属容器内に
導体を絶縁支持する絶縁スペーサに関する。
The present invention relates to an insulating spacer for insulating and supporting a conductor in a grounded metal container.

【0002】[0002]

【従来の技術】従来のガス絶縁機器において、高電圧が
印加された導体は絶縁ガスが封入された密閉金属容器内
に導体接続電極を介して絶縁支持体によって支持されて
いる。(以下、導体接続電極と絶縁支持体で構成される
絶縁部品を絶縁スペーサと定義する。) 絶縁スペーサを構成する絶縁支持体は、一般に酸化アル
ミニウム(以下、アルミナと呼ぶ。)を充填剤として用
いエポキシ樹脂で注型されたモールド注形品であり、そ
の誘電率は6.0程度である。一方、一般的にガス絶縁
機器に用いられるSF6ガスは、遮断時に発生するアー
クやコロナ放電等による高エネルギーにより分解され、
さらに気中および絶縁物中の水分と反応してフッ酸を生
成する。絶縁支持物の絶縁材料として一般に用いられて
いるシリカ粉は、誘電率は低い(ε=4.5)がフッ酸に
腐食されやすい。これに対し、アルミナ粉は誘電率は高
い(ε=9.3)がフッ酸に対して化学反応性は低く腐食
されにくい。つまりシリカ粉を充填剤として使用するこ
とができず、アルミナ粉を充填剤として使用することに
なる。シリカ粉を充填剤として用いたエポキシ樹脂で注
形した絶縁支持体の誘電率は3.6〜3.8であるのに対
して、アルミナ粉を充填剤として用いたエポキシ樹脂で
注形された絶縁支持体の誘電率は6.0前後となってし
まう。一方、絶縁ガスの誘電率は約1であり絶縁支持体
の誘電率の数分の1である。ここで、図4に絶縁支持体
4の構成材料として、アルミナ粉を充填したエポキシモ
ールド材を用いた場合の、等電位線群8を示す。(絶縁
スペーサを構成する導体接続電極は図示せず。)導体2
と絶縁支持体4の接合部分の端部はトリプルジャンクシ
ョン5と称され、導体2と絶縁支持体4と絶縁ガス(図
示せず。)という3つの物質の界面であり、誘電率の大
きさの差により鋭角部に電界が集中し、図4に示すよう
に、トリプルジャンクション5部において等電位線8の
屈曲はかなり大きなものとなってしまう。つまり、単位
距離当たりの電界強度の変化が局部的に大きくなり、耐
電圧性が著しく低下する。この例は、絶縁支持体4が円
錐状に形成されていて、接合部の角は鋭角になっている
場合であるが、その他の、鋭角部がないような絶縁支持
体4の形状においても、トリプルジャンクション5部に
おいては、加工誤差または材質の特性などの差により微
小なギャップが生じやすく、そのギャップに絶縁支持体
4と絶縁ガスの誘電率の差によって電界が集中し、耐電
圧性が著しく低下する。
2. Description of the Related Art In a conventional gas insulating apparatus, a conductor to which a high voltage is applied is supported by an insulating support via a conductor connecting electrode in a closed metal container in which an insulating gas is sealed. (Hereinafter, an insulating component composed of a conductor connection electrode and an insulating support is defined as an insulating spacer.) The insulating support forming the insulating spacer generally uses aluminum oxide (hereinafter, referred to as alumina) as a filler. It is a molded product cast with an epoxy resin and has a dielectric constant of about 6.0. On the other hand, SF6 gas generally used for gas insulation equipment is decomposed by high energy due to arc or corona discharge generated at the time of interruption,
Further, it reacts with moisture in the air and the insulator to generate hydrofluoric acid. Silica powder, which is generally used as an insulating material of an insulating support, has a low dielectric constant (ε = 4.5) but is easily corroded by hydrofluoric acid. In contrast, alumina powder has a high dielectric constant (ε = 9.3), but has low chemical reactivity with hydrofluoric acid and is hardly corroded. That is, silica powder cannot be used as a filler, and alumina powder is used as a filler. The dielectric constant of an insulating support cast with an epoxy resin using silica powder as a filler is 3.6 to 3.8, whereas the dielectric support is cast with an epoxy resin using alumina powder as a filler. The dielectric constant of the insulating support is about 6.0. On the other hand, the dielectric constant of the insulating gas is about 1, which is a fraction of the dielectric constant of the insulating support. Here, FIG. 4 shows a group 8 of equipotential lines when an epoxy mold material filled with alumina powder is used as a constituent material of the insulating support 4. (The conductor connection electrode constituting the insulating spacer is not shown.) Conductor 2
The end of the junction between the substrate and the insulating support 4 is called a triple junction 5 and is an interface between three substances, namely, the conductor 2, the insulating support 4 and the insulating gas (not shown). Due to the difference, the electric field is concentrated at the acute angle portion, and as shown in FIG. 4, the bending of the equipotential line 8 at the triple junction 5 becomes considerably large. That is, the change in the electric field strength per unit distance locally increases, and the withstand voltage decreases significantly. This example is a case where the insulating support 4 is formed in a conical shape and the corners of the joints are acute. However, in other shapes of the insulating support 4 where there is no acute angle, In the triple junction 5 part, a minute gap is apt to be generated due to a processing error or a difference in material properties, etc., and an electric field is concentrated in the gap due to a difference in dielectric constant between the insulating support 4 and the insulating gas. descend.

【0003】このような現象を防ぐために、絶縁支持物
を形成する絶縁材を低誘電率化することにより電界の集
中を緩和することが従来より考えられている。機器に印
加された電圧は誘電率の逆数に比例した電圧で各々の絶
縁物に分担される。つまり、比誘電率の低い絶縁物に高
い電圧が分担されるが、隣接する2つの物質の誘電率の
差が大きい場合、分担される電圧の差も大きくなる。し
たがって、隣接する2つの物質の界面に鋭角部または微
小ギャップ等があった場合、その部分で電界の集中が起
こりやすい。実際の機器においては、前記のようにトリ
プルジャンクション等に高い電界が集中することにな
る。そこで、絶縁支持物を形成する絶縁材を低誘電率化
して、絶縁ガスの誘電率(ε=1)との差を少なくする
ことができれば、電界の集中が緩和されることになる。
例えば、特開平4-130126においては、充填剤としてア
ルミナとドロマイト(炭酸マグネシウム・カルシウム)
の混合系を用いることにより低誘電率化を図り、また特
開平7-15843においては、絶縁ガスを気泡として含む発
泡絶縁物とすることにより、また特開平5-198208におい
ては、充填剤として中空絶縁物を用いることにより、見
かけ上の実効誘電率を低くすることを目論んでいる。誘
電率を4.0程度まで低くした絶縁材料を用いて作成し
た絶縁支持体4を、上記の例に適用した場合を図5に示
す。図4と図5を比較することにより、図5において等
電位線群8の屈曲がかなり小さくなっているのがわか
る。
In order to prevent such a phenomenon, it has been conventionally considered to reduce the concentration of the electric field by lowering the dielectric constant of the insulating material forming the insulating support. The voltage applied to the device is distributed to each insulator at a voltage proportional to the reciprocal of the dielectric constant. In other words, a high voltage is shared between insulators having a low relative dielectric constant, but if the difference between the dielectric constants of two adjacent substances is large, the difference between the shared voltages is also large. Therefore, when there is an acute angle portion, a minute gap, or the like at the interface between two adjacent substances, the electric field is likely to be concentrated at that portion. In an actual device, a high electric field is concentrated on a triple junction or the like as described above. Therefore, if the dielectric constant of the insulating material forming the insulating support can be reduced to reduce the difference from the dielectric constant (ε = 1) of the insulating gas, the concentration of the electric field is reduced.
For example, in Japanese Patent Laid-Open No. 4-130126, alumina and dolomite (magnesium calcium carbonate) are used as fillers.
The use of a mixed system of low dielectric constant is attempted, and in Japanese Patent Application Laid-Open No. H7-15843, a foamed insulator containing an insulating gas as bubbles is used, and in Japanese Patent Application Laid-Open No. 5-198208, a hollow filler is used. The use of an insulator is intended to lower the apparent effective permittivity. FIG. 5 shows a case where the insulating support 4 made of an insulating material whose dielectric constant is lowered to about 4.0 is applied to the above example. By comparing FIG. 4 with FIG. 5, it can be seen that the bending of the equipotential line group 8 is considerably reduced in FIG.

【0004】[0004]

【発明が解決しようとする課題】上述のように、絶縁支
持物の比誘電率を低くすることにより、ある程度、電界
の集中を緩和することが可能であるが、実際に、上述の
方法を用いて低誘電率の絶縁物を作成する際において、
以下のような課題が生じる。まず充填剤の種類を変えて
誘電率を低くする方法においては、上述した通り、SF
6分解ガスに対し耐久性を向上させるため、SF6分解
ガスに対して化学反応性が低いアルミナ粉またはドロマ
イト、フッ化アルミ等を、SF6分解ガスに対して化学
反応性が高いシリカ粉の代わりに用いる必要があるが、
アルミナ、ドロマイト、フッ化アルミ等の各々の混合系
において、生成された樹脂が有する誘電率と機械的特性
には相反する関係(トレードオフ)にあり、その点につ
いても考慮する必要がある。すなわち、アルミナの比誘
電率が高い(ε=9.3)ため、比誘電率の低いドロマイ
ト(ε=8.1)、フッ化アルミニウム(ε=5.0)等
を混合すると、線膨張係数が大きいため、曲げ強さ、耐
クラック性といった機械的特性が低下する。よって、線
膨張係数と比誘電率のバランスや作業性の点から充填剤
の混合比と樹脂に対する含有率を最適化することが試み
られているが、内部絶縁耐力、耐ヒートサイクル性、耐
SF6分解ガス性、機械的強度等、ガス絶縁機器として
要求される諸特性を完全に満足させるには至っていない
のが現状である。
As described above, it is possible to alleviate the electric field concentration to some extent by lowering the relative permittivity of the insulating support. When creating low dielectric constant insulators,
The following problems arise. First, in the method of changing the type of filler to lower the dielectric constant, as described above, SF
6 To improve the durability against decomposition gas, use alumina powder or dolomite, aluminum fluoride, etc., which have low chemical reactivity with SF6 decomposition gas, instead of silica powder, which has high chemical reactivity with SF6 decomposition gas. Must be used,
In each mixed system of alumina, dolomite, aluminum fluoride, and the like, there is a trade-off between the dielectric constant and the mechanical properties of the produced resin, and it is necessary to consider this point. That is, since alumina has a high relative dielectric constant (ε = 9.3), if dolomite (ε = 8.1), aluminum fluoride (ε = 5.0) or the like having a low relative dielectric constant is mixed, the coefficient of linear expansion is large. Therefore, mechanical properties such as bending strength and crack resistance are reduced. Therefore, attempts have been made to optimize the mixing ratio of the filler and the content of the filler from the viewpoint of the balance between the linear expansion coefficient and the relative dielectric constant and the workability, but the internal dielectric strength, heat cycle resistance, and SF6 resistance have been attempted. At present, it has not yet been possible to completely satisfy various characteristics required for gas-insulated equipment, such as decomposition gas properties and mechanical strength.

【0005】次に、絶縁ガスを気泡として含む発泡絶縁
体とする方法においては、この様な発泡絶縁体を作成す
るためには、液状のプラスチックを絶縁ガスの気体中で
撹拌しつつ固化させる方法が用いられるが、気泡の大き
さおよび位置を制御するのが極めて困難であり、絶縁支
持物の形状がごく単純で絶縁階級が低次の場合を除い
て、実際の作成は困難である。また、充填剤として中空
絶縁物を用いる方法においては、例えばエポキシ樹脂中
に非収縮性の微小な中空絶縁物、つまりガラス、シリ
カ、セラミック等の微小な中空絶縁物に空洞を内胞した
ものを充填剤として分散混入させる方法が用いられる
が、樹脂と中空絶縁物の境界層を起点としてクラックが
発生しやすく、製品の耐クラック性が低下する。
[0005] Next, in the method of forming a foamed insulator containing bubbles as an insulating gas, in order to produce such a foamed insulator, a method of solidifying a liquid plastic while stirring it in a gas of the insulating gas is used. However, it is extremely difficult to control the size and the position of the bubbles, and it is difficult to actually produce them except in the case where the shape of the insulating support is very simple and the insulating class is low. In the method of using a hollow insulator as a filler, for example, a non-shrinkable minute hollow insulator in an epoxy resin, that is, a hollow hollow insulator such as glass, silica, ceramic, etc. Although a method of dispersing and mixing as a filler is used, cracks tend to occur starting from the boundary layer between the resin and the hollow insulator, and the crack resistance of the product is reduced.

【0006】本発明は、上記のような絶縁スペーサにお
いて、絶縁部材よりなる絶縁支持体の内部に高誘電部材
を設けることにより、電界の集中を緩和し、トリプルジ
ャンクションにおける電界強度の低減を図った絶縁スペ
ーサを得ることを目的とするものである。
According to the present invention, in the insulating spacer as described above, by providing a high dielectric member inside an insulating support made of an insulating member, the concentration of an electric field is reduced, and the electric field strength at a triple junction is reduced. The purpose is to obtain an insulating spacer.

【0007】[0007]

【課題を解決するための手段】本発明は、絶縁ガスを封
入した接地金属容器内に収納され、高電圧が印加される
導体接続電極とその導体接続電極を支持する絶縁支持体
とを有する絶縁スペーサにおいて、前記絶縁支持体の本
体部を構成する絶縁部材と、前記絶縁部材内の前記導体
接続電極の円周上に巻き付けて設けられた前記絶縁部材
より高い誘電率を持った高誘電部材とを備えたことを特
徴とする。また、絶縁スペーサの製造方法は、導体接続
電極の円周上に絶縁部材より高い誘電率を持った樹脂含
浸テープを導体接続電極の円周上に巻き付けて高誘電部
材を形成し、それを絶縁スペーサを成形する金型内に位
置決め配置し、絶縁部材を用いて高誘電部材を真空注型
することにより得られる。本発明によれば、トリプルジ
ャンクション等の電界が集中しやすい場所において、誘
電率の差による等電位線の屈曲を緩和し、その結果とし
て電界の集中を低減することができる。
According to the present invention, there is provided an insulating member which is housed in a grounded metal container filled with an insulating gas and has a conductor connecting electrode to which a high voltage is applied and an insulating support for supporting the conductor connecting electrode. In the spacer, an insulating member constituting a main body of the insulating support, and a high dielectric member having a higher dielectric constant than the insulating member provided by being wound on the circumference of the conductor connection electrode in the insulating member. It is characterized by having. Also, a method of manufacturing an insulating spacer is to form a high dielectric member by wrapping a resin impregnated tape having a higher dielectric constant than the insulating member on the circumference of the conductor connection electrode around the circumference of the conductor connection electrode. It is obtained by positioning and disposing in a mold for molding a spacer, and vacuum-casting a high dielectric member using an insulating member. ADVANTAGE OF THE INVENTION According to this invention, in the place where an electric field tends to concentrate, such as a triple junction, bending of the equipotential line due to a difference in dielectric constant can be reduced, and as a result, the concentration of the electric field can be reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図1にも
とづいて説明する。図1において、絶縁ガスが封入され
て密閉された接地金属容器1内には高電圧が印加される
導体9が導体接続電極3を介して絶縁支持体10により
支持されている。従来、絶縁スペーサの絶縁支持体4
は、図4に示すように円錐状の形状に形成されている。
絶縁支持体4をこのような形状にすると、トリプルジャ
ンクション5において絶縁支持体4と導体2との接合部
の角は鋭角となり、前述したように、隣接する誘電率の
差が大きい2つの物質の界面に鋭角部が存在し、電界集
中が生じやすい。そのため、本発明の絶縁スペーサは本
体部を構成する絶縁部材7と絶縁部材7より高い誘電率
を持った高誘電部材6を有する絶縁支持体10と導体接
続電極3とで構成されている。また、高誘電部材6は絶
縁部材7より高い誘電率をもった樹脂含浸テープを導体
接続電極3の円周上に巻き付けることにより形成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, a conductor 9 to which a high voltage is applied is supported by an insulating support 10 via a conductor connection electrode 3 in a hermetically sealed grounded metal container 1 in which an insulating gas is sealed. Conventionally, insulating support 4 of insulating spacer
Is formed in a conical shape as shown in FIG.
When the insulating support 4 is formed in such a shape, the angle of the junction between the insulating support 4 and the conductor 2 at the triple junction 5 becomes acute, and as described above, the two substances having a large difference between adjacent dielectric constants are formed. An acute angle portion exists at the interface, and electric field concentration tends to occur. Therefore, the insulating spacer of the present invention includes an insulating support member 10 having an insulating member 7 constituting a main body, a high dielectric member 6 having a higher dielectric constant than the insulating member 7, and the conductor connection electrode 3. The high dielectric member 6 is formed by winding a resin impregnated tape having a higher dielectric constant than the insulating member 7 around the circumference of the conductor connection electrode 3.

【0009】ここで、絶縁部材7と高誘電部材6の材料
について説明する。絶縁部材7の低い誘電率の樹脂16
は、例えば比誘電率ε=5.0程度の充填材としてアル
ミナおよびドロマイトの混合系を用いたエポキシ樹脂等
を用いればよく、内部絶縁耐力、耐ヒートサイクル性、
耐SF6分解ガス性、機械的強度等、ガス絶縁機器とし
て要求される諸特性を犠牲にすることのない配合が可能
である。また、絶縁部材7より高い誘電率を持った高誘
電部材6には、例えば、エポキシ、不飽和ポリエステル
などの樹脂16をガラス、カーボン、アラミドなどの強
化繊維17に含浸させた樹脂含浸テープ18を用いると
よい。
Here, the materials of the insulating member 7 and the high dielectric member 6 will be described. Low dielectric constant resin 16 of insulating member 7
For example, an epoxy resin or the like using a mixed system of alumina and dolomite may be used as a filler having a relative dielectric constant ε of about 5.0, and an internal dielectric strength, heat cycle resistance,
It is possible to mix without sacrificing various characteristics required for gas insulation equipment, such as SF6 decomposition gas resistance and mechanical strength. For the high dielectric member 6 having a higher dielectric constant than the insulating member 7, for example, a resin impregnated tape 18 obtained by impregnating a resin 16 such as epoxy or unsaturated polyester into a reinforcing fiber 17 such as glass, carbon, or aramid is used. Good to use.

【0010】本実施例の形状については、シミュレーシ
ョンによる検討を行った。その結果、絶縁支持体4の約
半分の高さおよび幅を有する、高誘電部材6(比誘電率
ε=9程度)を円錐状に設け、かつ絶縁部材7の比誘電
率をε=5.0程度にすることにより、最も有効に電界
を緩和できることが分かった。その電界分布のシミュレ
ーション図を図2に示す。図2から明らかなように、高
圧の導体2に近い側より、順次段階的に低圧側に低い誘
電部材を配置して、誘電率の勾配を設けているので、各
部が分担する電圧の差が小さくなり、境界部における電
界の集中が緩和され、トリプルジャンクション5におけ
る電界強度が低減されている。
The shape of the present embodiment was examined by simulation. As a result, a high dielectric member 6 (having a relative dielectric constant of about ε = 9) having a height and a width approximately half that of the insulating support 4 is provided in a conical shape, and the relative dielectric constant of the insulating member 7 is set to ε = 5. It has been found that the electric field can be most effectively reduced by setting the value to about 0. FIG. 2 shows a simulation diagram of the electric field distribution. As is clear from FIG. 2, since a low dielectric member is sequentially arranged on the low voltage side from the side close to the high voltage conductor 2 to provide a gradient of the dielectric constant, the difference in the voltage shared by each part is reduced. As a result, the concentration of the electric field at the boundary is reduced, and the electric field intensity at the triple junction 5 is reduced.

【0011】次に、本発明の絶縁スペーサの製造方法に
ついて述べる。最初に定義した通り絶縁スペーサ20は
導体接続電極3と絶縁支持体4により構成される。まず
図6に示すように、導体接続電極3を回転治具11に取
り付け、樹脂16を強化繊維17に含浸させ、含浸させ
た樹脂含浸テープ18を導体接続電極3に巻き付けるこ
とにより高誘電率部材6を形成する。具体的にはガラ
ス、カーボン、アラミドなどの強化繊維17を、エポキ
シ樹脂、不飽和ポリエステル樹脂などの樹脂16に浸漬
した後、1〜10rpm程度の回転数で回転治具11を
回転させ、樹脂含浸テープ18を導体接続電極3に巻き
付けていくものである。この際、高誘電部材6の比誘電
率を9.0程度にするために、例えば、比誘電率の高い
アルミナ粉(ε=9.3)を充填剤として樹脂16に含有
させる。この工程により、図7に示すように、導体接続
電極3の円周上に円錐状に高誘電部材6が巻き付けられ
る。次に、図8に示すように、導体接続電極3および高
誘電部材6を金型12および13に位置決め配置し、高
誘電部材6より低い誘電率の樹脂16を用いて真空注型
することにより本発明の構造が得られる。真空注形は通
常用いられる方法でよい。この際、低い誘電率の樹脂1
6とは、例えば、従来の技術で述べた、充填剤としてア
ルミナとドロマイトの混合系を用いたエポキシ樹脂でよ
い。この際、前述の通り、絶縁部材7の比誘電率を4.
0前後まで低くする必要はなく、ガス絶縁機器として要
求される他の特性を低下させることのない比誘電率5.
0前後の配合を用いる。この時、高誘電部材6と絶縁部
材7の層間で剥離が生じないように、樹脂の種類は同一
のものを用い、また高誘電部材6の硬化反応が進行しな
いうちに、真空注形の工程を行うことが必要である。金
型12および13の金型合わせ面14より、金型を左右
に離型した場合の製品断面を図9に示す。最後に、樹脂
を注ぎ込む際の湯口15をサンドペーパ等で除去するこ
とにより、絶縁スペーサ20が得られる。
Next, a method for manufacturing the insulating spacer of the present invention will be described. As defined first, the insulating spacer 20 is constituted by the conductor connection electrode 3 and the insulating support 4. First, as shown in FIG. 6, the conductor connection electrode 3 is attached to the rotating jig 11, the resin 16 is impregnated in the reinforcing fiber 17, and the impregnated resin impregnated tape 18 is wound around the conductor connection electrode 3 to thereby obtain a high dielectric constant member. 6 is formed. Specifically, a reinforcing fiber 17 such as glass, carbon, or aramid is immersed in a resin 16 such as an epoxy resin or an unsaturated polyester resin, and then the rotating jig 11 is rotated at a rotation speed of about 1 to 10 rpm to impregnate the resin. The tape 18 is wound around the conductor connection electrode 3. At this time, in order to make the relative dielectric constant of the high dielectric member 6 approximately 9.0, for example, alumina powder (ε = 9.3) having a high relative dielectric constant is contained in the resin 16 as a filler. In this step, as shown in FIG. 7, the high dielectric member 6 is wound around the conductor connection electrode 3 in a conical shape. Next, as shown in FIG. 8, the conductor connection electrode 3 and the high dielectric member 6 are positioned and arranged on the dies 12 and 13, and are vacuum-cast using a resin 16 having a lower dielectric constant than the high dielectric member 6. The structure according to the invention is obtained. Vacuum casting may be a commonly used method. At this time, resin 1 having a low dielectric constant is used.
The epoxy resin 6 may be, for example, an epoxy resin using a mixed system of alumina and dolomite as a filler as described in the related art. At this time, as described above, the relative dielectric constant of the insulating member 7 is set to 4.
It is not necessary to lower the dielectric constant to around 0, and the relative dielectric constant without lowering other characteristics required for gas-insulated equipment 5.
A blend of around 0 is used. At this time, the same kind of resin is used so that separation between the layers of the high dielectric member 6 and the insulating member 7 does not occur. It is necessary to do. FIG. 9 shows a cross section of the product when the mold is separated from the mold mating surfaces 14 of the molds 12 and 13 to the left and right. Finally, the gate 15 at the time of pouring the resin is removed with sandpaper or the like, so that the insulating spacer 20 is obtained.

【0012】[0012]

【発明の効果】本発明によれば、ガス絶縁電気機器に用
いる絶縁スペーサにおいて、低誘電率材よりなる絶縁支
持体の内部に高誘電部材を設けることにより、電界の集
中を緩和し、トリプルジャンクションにおける電界強度
の低減を図って機器の小型化が図ることができる。
According to the present invention, in an insulating spacer used for a gas-insulated electric device, a high dielectric member is provided inside an insulating support made of a low dielectric constant material, so that concentration of an electric field is reduced and triple junction is achieved. , The size of the device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of an embodiment of the present invention.

【図2】本発明の絶縁スペーサの電界分布のシミュレー
ション図である。
FIG. 2 is a simulation diagram of an electric field distribution of an insulating spacer of the present invention.

【図3】本発明の絶縁スペーサにおける電界分布を示す
図である。
FIG. 3 is a diagram showing an electric field distribution in the insulating spacer of the present invention.

【図4】従来の絶縁スペーサにおける電界分布を示す図
である。
FIG. 4 is a diagram showing an electric field distribution in a conventional insulating spacer.

【図5】従来の絶縁スペーサにおける電界分布を示す図
である。
FIG. 5 is a diagram showing an electric field distribution in a conventional insulating spacer.

【図6】本発明の製造方法を示す図である。FIG. 6 is a view showing a manufacturing method of the present invention.

【図7】本発明の製造方法を示す図である。FIG. 7 is a view showing a manufacturing method of the present invention.

【図8】本発明の製造方法を示す図である。FIG. 8 is a diagram showing a manufacturing method of the present invention.

【図9】本発明の製造方法を示す図である。FIG. 9 is a diagram showing a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 接地金属容器 2,9 導体 3 導体接続電極 4 絶縁支持体 5 トリプルジャンクション 6 高誘電部材 7 絶縁部材 8 等電位線群 10 絶縁支持体(絶縁部材7+高誘電部材6) 11 回転治具 12,13 金型 14 金型合わせ面 15 湯口 16 樹脂 17 強化繊維 18 樹脂含浸テープ 20 絶縁スペーサ DESCRIPTION OF SYMBOLS 1 Ground metal container 2,9 Conductor 3 Conductor connection electrode 4 Insulating support 5 Triple junction 6 High dielectric member 7 Insulating member 8 Equipotential line group 10 Insulating support (insulating member 7 + high dielectric member 6) 11 Rotating jig 12, 13 mold 14 mold mating surface 15 gate 16 resin 17 reinforcing fiber 18 resin impregnated tape 20 insulating spacer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁ガスを封入した接地金属容器内に収納
され、高電圧が印加される導体に接続される導体接続電
極と、その導体接続電極を介して前記導体を支持する絶
縁支持体とを有する絶縁スペーサにおいて、前記絶縁支
持体の本体部を構成する絶縁部材と、その絶縁部材内の
前記導体接続電極の円周上に巻き付けて設けられた前記
絶縁部材より高い誘電率を持った高誘電部材とを備えた
ことを特徴とする絶縁スペーサ。
1. A conductor connecting electrode housed in a grounded metal container filled with an insulating gas and connected to a conductor to which a high voltage is applied, and an insulating support for supporting the conductor via the conductor connecting electrode. Insulating spacer having a body having a higher dielectric constant than the insulating member which is provided on the circumference of the conductor connection electrode in the insulating member and which forms the main body of the insulating support. An insulating spacer comprising a dielectric member.
【請求項2】絶縁ガスを封入した接地金属容器内に収納
され、高電圧が印加される導体に接続される導体接続電
極と、その導体接続電極を介して前記導体を支持する絶
縁支持体とを有する絶縁スペーサの製造方法において、
前記絶縁部材内の導体接続電極の円周上に巻き付けて前
記高誘電部材を形成し、その高誘電部材を前記絶縁スペ
ーサを成形する金型内に位置決め配置し、前記絶縁部材
で真空注型することを特徴とする絶縁スペーサの製造方
法。
2. A conductor connecting electrode housed in a grounded metal container filled with an insulating gas and connected to a conductor to which a high voltage is applied, and an insulating support for supporting the conductor via the conductor connecting electrode. In the method for manufacturing an insulating spacer having
The high dielectric member is formed by being wound around the circumference of the conductor connection electrode in the insulating member, and the high dielectric member is positioned and arranged in a mold for molding the insulating spacer, and vacuum-cast with the insulating member. A method for manufacturing an insulating spacer, comprising:
JP7509198A 1998-03-10 1998-03-10 Insulation spacer and its manufacture Pending JPH11262143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7509198A JPH11262143A (en) 1998-03-10 1998-03-10 Insulation spacer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7509198A JPH11262143A (en) 1998-03-10 1998-03-10 Insulation spacer and its manufacture

Publications (1)

Publication Number Publication Date
JPH11262143A true JPH11262143A (en) 1999-09-24

Family

ID=13566162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7509198A Pending JPH11262143A (en) 1998-03-10 1998-03-10 Insulation spacer and its manufacture

Country Status (1)

Country Link
JP (1) JPH11262143A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327580A (en) * 2004-05-14 2005-11-24 Hitachi Ltd Insulating spacer and gas-insulation equipment
JP2016031845A (en) * 2014-07-29 2016-03-07 株式会社東芝 Insulation spacer for gas insulation switchgear
CN108717888A (en) * 2018-05-29 2018-10-30 南方电网科学研究院有限责任公司 A kind of insulator and preparation method thereof with high dielectric constant film
US10910799B2 (en) * 2016-03-24 2021-02-02 Mitsubishi Electric Corporation Connecting device with conical interface and flexible insulator
JP2021086957A (en) * 2019-11-28 2021-06-03 東京エレクトロン株式会社 Piping and processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327580A (en) * 2004-05-14 2005-11-24 Hitachi Ltd Insulating spacer and gas-insulation equipment
JP2016031845A (en) * 2014-07-29 2016-03-07 株式会社東芝 Insulation spacer for gas insulation switchgear
US10910799B2 (en) * 2016-03-24 2021-02-02 Mitsubishi Electric Corporation Connecting device with conical interface and flexible insulator
CN108717888A (en) * 2018-05-29 2018-10-30 南方电网科学研究院有限责任公司 A kind of insulator and preparation method thereof with high dielectric constant film
JP2021086957A (en) * 2019-11-28 2021-06-03 東京エレクトロン株式会社 Piping and processing device

Similar Documents

Publication Publication Date Title
EP2982721A1 (en) Coating material for electrical equipment, method for manufacturing coating material for electrical equipment, and encapsulated type insulating device
CA2633580A1 (en) High voltage bushing and high voltage device comprising such bushing
KR20070102664A (en) Electric bushing and a method of manufacturing an electric bushing
US3852516A (en) Moisture proof splice enclosure for electrical application
JPH11262143A (en) Insulation spacer and its manufacture
US4333900A (en) Process for manufacture of high voltage transformers and the like
KR920005818B1 (en) Resin bonded magnet
JPH11262120A (en) Electric field relaxing apparatus and electric apparatus
JP2005327580A (en) Insulating spacer and gas-insulation equipment
JPH07161250A (en) Insulating member and sf6 gas insulation breaker
JPH05198208A (en) Insulating supporter and molded electrical equipment
JP3108544B2 (en) Resin mold equipment and manufacturing method thereof
US4454375A (en) Power cable joint structure having sheath isolation member containing electrode spheres
JPH0715843A (en) Gas insulated electric machine
JPS63228606A (en) Resin molded coil
JPS6221205A (en) Resin-molded coil
CN1125921A (en) Process for the manufacture of substantially hollow-cylindrical castings, and a substantially hollow-cylindrical casting
KR102471505B1 (en) Miniature Insulated Spacer for Gas Insulated Switchgear with Additive Manufacturing Processes
JPH01293509A (en) Molded coil
JP2004273394A (en) Method of manufacturing insulating material
JPS6111928Y2 (en)
JP3241194B2 (en) Resin mold coil
JP2002025372A (en) Switching device
JPS5927601Y2 (en) resin embedded coil
JPH05266763A (en) Circuit breaker insulated by sulfur hexafluoride gas