JPH11261445A - Adaptive type spread spectrum receiver - Google Patents

Adaptive type spread spectrum receiver

Info

Publication number
JPH11261445A
JPH11261445A JP10059729A JP5972998A JPH11261445A JP H11261445 A JPH11261445 A JP H11261445A JP 10059729 A JP10059729 A JP 10059729A JP 5972998 A JP5972998 A JP 5972998A JP H11261445 A JPH11261445 A JP H11261445A
Authority
JP
Japan
Prior art keywords
signal
desired wave
filters
outputting
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10059729A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukawa
和彦 府川
Hiroshi Suzuki
博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10059729A priority Critical patent/JPH11261445A/en
Publication of JPH11261445A publication Critical patent/JPH11261445A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To allow a receiver to operate satisfactorily even when the timing cycle of a desired wave is incomplete or when there is a multi path element of a small delay time difference. SOLUTION: ADS-CDMA-receiver signal sampled at a constant interval of time is supplied to plural matching filter 22-1 and 22-2 and plural quadrature filters 23-1 and 23-2. The matching filters 22-1 and 22-2 determine a filter coefficient regarding the matching filter 22-1 so that the matching filter 22-2 matches the spreading code of a desired wave distorted only for a quarter tip cycle(TC). Also, the spreading code of the quadrature filters 23-1 and 23-2 is made orthogonal with the spreading code of the desired wave delayed by 0 and Tc/4. Outputs of these filters are multiplied to by a weight coefficient, added by an adder and the weight coefficient is set so that their average power becomes minimum under a restricting condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スペクトラム拡
散通信における直接拡散符号分割多元接続方式に用いら
れる受信機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiver used in a direct spread code division multiple access system in spread spectrum communication.

【0002】[0002]

【従来の技術】近年、ディジタル移動通信において周波
数の有効利用を図るため、様々なスペクトラム拡散方式
が検討されている(M.K.Simon,J.K.Om
ura,R.A.Scholtz and B.K.L
evitt著,“SpreadSpectrum Co
mmunication”,Computer Sci
ence Press 出版,1985)。特に、直接
拡散(DirectSequence:DS)方式を用
いたCDMA(Code DivisionMulti
ple Access)方式は比較的構成が簡単である
ことから実用化方式が検討されている。
2. Description of the Related Art In recent years, various spread spectrum systems have been studied for effective use of frequencies in digital mobile communication (MK Simon, JK Om).
ura, R .; A. Scholtz and B.S. K. L
Evitt, “SpreadSpectrum Co.
mmmunication ”, Computer Sci
ence Press, 1985). In particular, CDMA (Code Division Multi) using a direct sequence (Direct Sequence: DS) method.
Since the ple Access) method has a relatively simple configuration, a practical method has been studied.

【0003】このDS−CDMA方式では同一キャリヤ
周波数を複数のユーザー(利用者)が同時に使用する。
各ユーザーは互いに異なる拡散符号を用いているが、こ
れらの拡散符号の相互には相関があるため、希望波の拡
散符号で逆拡散を行っても他ユーザーの成分が逆拡散信
号に混入する。そのため、他ユーザーの数が多いと逆拡
散信号に混入する干渉波成分のレベルが増大し、伝送特
性が大幅に劣化する。この劣化は他ユーザーの受信レベ
ルが、希望波の受信レベルより大きくなるとますます問
題となる。そのため各ユーザーの送信電力制御を行い各
ユーザーの受信点におけるレベルを一定にすることが考
えられるが、この送信電力制御を完全に行うことは非常
に難しい。このように拡散符号間の相互相関に起因する
伝送特性の劣化は、受信機に干渉キャンセラを追加する
ことで解決できる。
In the DS-CDMA system, a plurality of users (users) use the same carrier frequency at the same time.
Each user uses a different spreading code, but since these spreading codes have a correlation with each other, components of other users are mixed into the despread signal even when the despreading is performed with the spreading code of the desired wave. Therefore, when the number of other users is large, the level of the interference wave component mixed into the despread signal increases, and the transmission characteristics deteriorate significantly. This deterioration becomes more and more problematic when the reception level of another user becomes higher than the reception level of the desired wave. Therefore, it is conceivable to control the transmission power of each user to make the level at the reception point of each user constant, but it is very difficult to completely perform this transmission power control. The deterioration of the transmission characteristics due to the cross-correlation between spreading codes can be solved by adding an interference canceller to the receiver.

【0004】従来の干渉キャンセラ(K.Fukaw
a,and H.Suzuki,“Orthogona
lizing Matched Filter(OM
F)detection for DS−CDMA m
obile radio systems”,IEEE
Globecom 1994,pp.385−38
9,Nov.1994.)の基本構成を図2に示す。こ
の受信機は以下のように動作する。受信波の同相成分振
幅と直交成分振幅から成る受信信号は入力端子11から
入力される。サンプル手段12では、受信信号を一定時
間ごとに標本化して標本化信号を端子13に出力する。
信号抽出手段14では、標本化信号を入力とし逆拡散と
線形合成の操作を行い合成信号を端子15へ出力する。
復調手段16では、合成信号を復調して判定信号を端子
17へ出力する。タイミング制御手段18では、各手段
の動作タイミングを制御する。
A conventional interference canceller (K. Fukaw)
a, and H .; Suzuki, "Orthogona
licensing Matched Filter (OM
F) detection for DS-CDMA m
obile radio systems ”, IEEE
Globecom 1994, pp. 139-143. 385-38
9, Nov. 1994. 2) shows the basic configuration of FIG. This receiver operates as follows. A received signal composed of the in-phase component amplitude and the quadrature component amplitude of the received wave is input from the input terminal 11. The sampler 12 samples the received signal at regular intervals and outputs the sampled signal to the terminal 13.
The signal extracting means 14 receives the sampled signal, performs despreading and linear combination operations, and outputs the combined signal to the terminal 15.
The demodulation means 16 demodulates the synthesized signal and outputs a determination signal to the terminal 17. The timing control means 18 controls the operation timing of each means.

【0005】次に、信号抽出手段14として、逆拡散手
段と線形合成手段の縦続接続とする構成例を図3に示
す。同図では、説明を簡単にするために拡散率は4と
し、同一周波数を使用するユーザー数は4とした。ま
ず、入力端子13から標本化信号が入力される。逆拡散
手段21は整合フィルタ22と3つの直交フィルタ23
−1〜23−3で構成される。整合フィルタ22には希
望波の拡散符号を用い、直交フィルタ23−1〜23−
3は希望波の拡散符号に直交しかつ互いに直交する拡散
符号を用いる。整合フィルタ22及び直交フィルタ23
−1〜23−3では標本化信号と拡散符号との相関演算
を行ない、逆拡散信号x1(i)〜x4(i)を出力する。
Next, FIG. 3 shows a configuration example in which the signal extracting means 14 is a cascade connection of despreading means and linear combining means. In the figure, the spreading factor is set to 4 and the number of users using the same frequency is set to 4 to simplify the explanation. First, a sampling signal is input from the input terminal 13. The despreading means 21 includes a matched filter 22 and three orthogonal filters 23
-1 to 23-3. The matched filter 22 uses a spread code of a desired wave, and the orthogonal filters 23-1 to 23-
Reference numeral 3 uses a spreading code orthogonal to the spreading code of the desired wave and orthogonal to each other. Matched filter 22 and orthogonal filter 23
Sampled signal in -1~23-3 and performs a correlation operation between the spread code and outputs the despread signal x 1 (i) ~x 4 ( i).

【0006】線形合成手段25は、乗算器26−1〜2
6−4および加算器27で構成され、複数の逆拡散信号
1(i)〜x4(i)にそれぞれ重み付け係数W1 〜W4 を乗
算し、これらを加算して合成信号を生成し、出力端子1
5から出力する。係数制御手段28は、複数の逆拡散信
号x1(i)〜x4(i)と合成信号を入力として、重み付け係
数の拘束条件のもとで合成信号の平均電力を最小にする
アルゴリズムで求められた重み付け係数W1 〜W4 を出
力する。整合フィルタ22と直交フィルタ23−1〜2
3−3は相関器に置き換えることも可能であり、以下で
述べる整合フィルタと直交フィルタについても同様であ
る。
The linear synthesizing means 25 includes multipliers 26-1 and 26-2.
6-4 and an adder 27. The despread signals x 1 (i) to x 4 (i) are multiplied by weighting coefficients W 1 to W 4 , respectively, and added to generate a composite signal. , Output terminal 1
Output from 5 The coefficient control unit 28 receives a plurality of despread signals x 1 (i) to x 4 (i) and the combined signal as inputs, and obtains by an algorithm that minimizes the average power of the combined signal under the constraint of the weighting coefficient. The weighted coefficients W 1 to W 4 are output. Matching filter 22 and orthogonal filters 23-1 and 23-2
3-3 can be replaced with a correlator, and the same applies to a matched filter and a quadrature filter described below.

【0007】このときの4次元の重み付け係数ベクトル
の最適値をWo=[Wo1 Wo2 Wo3 Wo4 T とす
ると Wo=αR-1T (1) となる。ただし、αはあるスカラ値、Rは4×4の逆拡
散信号の相関行列、Tは4次元のステアリング・ベクト
ルである。Rは逆拡散信号X(i) =[x1(i) x2(i) x
3(i) x4(i) ]T を用いて R=<X(i) XH (i) > (2) のようになる。ここで、iはシンボル周期Tを単位にし
た時刻、Woj はWj の最適値(j=1,2,3,
4)、xj (i) は逆拡散手段のj番目のフィルタ(整合
フィルタ又は直交フィルタ)における時刻iの逆拡散信
号、 Tは転置行列、 Hは複素共役転置行列、<>は集合
平均を表す、このRは以下のように近似することができ
る。
If the optimum value of the four-dimensional weighting coefficient vector at this time is Wo = [Wo 1 Wo 2 Wo 3 Wo 4 ] T , then Wo = αR −1 T (1). Here, α is a certain scalar value, R is a correlation matrix of a 4 × 4 despread signal, and T is a four-dimensional steering vector. R is a despread signal X (i) = [x 1 (i) x 2 (i) x
3 (i) with x 4 (i)] T R = <X (i) X H (i)> to become like (2). Here, i is the time in units of the symbol period T, and Wo j is the optimum value of W j (j = 1, 2, 3,
4), x j (i) is the despread signal at time i in the j-th filter (matched filter or orthogonal filter) of the despreading means, T is the transposed matrix, H is the complex conjugate transposed matrix, and <> is the set average. This R can be approximated as follows:

【0008】 R=[X(1) XH (1) +X(2) XH (2) +…+X(Nt ) XH (Nt ) ]/Nt (3) ただし、Nt は非常に大きい自然数である。ステアリン
グ・ベクトルTはこの場合 T=[1 0 0 0]T (4) のようにする。
R = [X (1) X H (1) + X (2) X H (2) +... + X (N t ) X H (N t )] / N t (3) where N t is extremely large Is a large natural number. The steering vector T is in this case T = [1 0 0 0] T (4).

【0009】重み付け係数の制御は、合成信号に含まれ
る希望波の信号レベルを一定に保つように行う。直交フ
ィルタ23−1〜23−3の拡散符号は希望波の拡散符
号に直交しているので、x2(i)〜x4(i)には希望波の信
号成分が含まれない。このことを考慮すると、上記の重
み付き係数の拘束条件は WH T=1 (5) で表される。上記のαはWoがこの拘束条件を満足する
ように定める。
The control of the weighting coefficient is performed so that the signal level of the desired wave included in the composite signal is kept constant. Since the spreading code of the quadrature filter 23-1~23-3 is orthogonal to spreading codes of the desired wave, x 2 (i) ~x to 4 (i) is not included signal component of a desired wave. Taking this into consideration, the above constraint condition of the weighted coefficient is expressed by W H T = 1 (5). The above α is determined so that Wo satisfies this constraint.

【0010】この重み付け係数ベクトルの最適値Woを
求めるアルゴリズムは種々考えられるが、簡易な方法と
しては拘束条件付きのLMSであるFrostの方法
(Frost,O.L.,“An algorithm
for linearlyconstrained
adaptive array processin
g”,Proc.IEEE,vol.60,No.8,
PP.926−935,August 1972)が知
られている。
Various algorithms for obtaining the optimum value Wo of the weighting coefficient vector can be considered. As a simple method, the method of Frost, which is an LMS with constraint conditions (Frost, OL, "Analysis")
for linearly constrained
adaptive array processin
g ", Proc. IEEE, vol. 60, No. 8,
PP. 926-935, August 1972).

【0011】[0011]

【発明が解決しようとする課題】さて、希望波のタイミ
ング同期が不完全であったり、遅延時間差の小さい希望
波のマルチパス成分があると、上記の直交フィルタ23
−1〜23−3の出力信号x2(i)〜x4(i)に希望波の信
号成分が漏れ込む。この漏れ込んだ希望波信号成分は、
整合フィルタ22の出力信号x1(i)に含まれる希望波信
号成分と相関がある。従って、式(5)で表される拘束
条件で合成信号の平均電力を最小にするように重み付け
係数を制御すると、x1(i)に含まれる希望波信号成分が
2(i)〜x 4(i)に漏れ込んだ希望波信号成分で打ち消さ
れ、合成信号に含まれる希望波信号成分の平均電力が減
少してしまい、誤り率特性が大幅に劣化する。
[Problems to be solved by the invention]
Incomplete synchronization or small delay time difference
If there is a multipath component of the wave, the above orthogonal filter 23
Output signals x of -1 to 23-3Two(i) -xFour(i)
No. component leaks. This leaked desired signal component is
Output signal x of matched filter 221Hope signal included in (i)
There is a correlation with the number component. Therefore, the constraint expressed by equation (5)
Weighted to minimize the average power of the synthesized signal under conditions
By controlling the coefficient, x1The desired signal component included in (i)
xTwo(i) -x FourCanceled by the desired signal component leaked into (i)
The average power of the desired signal component contained in the composite signal is reduced.
The error rate characteristic is greatly degraded.

【0012】この劣化を抑える為には、直交フィルタ群
の出力信号に希望波の信号成分が漏れ込むことを抑える
必要がある。この発明の課題は、希望波のタイミング同
期が不完全であったり、遅延時間差の小さい希望波のマ
ルチパス成分がある場合でも良好に動作する適応形スペ
クトラム拡散受信機を提供することにある。
In order to suppress this deterioration, it is necessary to suppress the signal component of the desired wave from leaking into the output signal of the orthogonal filter group. SUMMARY OF THE INVENTION It is an object of the present invention to provide an adaptive spread spectrum receiver that operates well even when the timing synchronization of a desired wave is incomplete or there is a multipath component of the desired wave having a small delay time difference.

【0013】[0013]

【課題を解決するための手段】適応形スペクトラム拡散
受信機は、(1)受信信号を一定時間ごとに標本化して
標本化信号を出力するサンプル手段、(2)標本化信号
を入力とし逆拡散と線形合成の操作を行い合成信号を出
力する信号抽出手段、(3)合成信号を復調して判定信
号を出力する復調手段、(4)各手段の動作タイミング
を制御するタイミング制御手段、の各手段から成り、こ
の発明では特に、これらの手段の中心部分である信号抽
出手段は、(5)標本化信号を、複数の遅延シフトした
希望波の拡散符号とこれらに直交する複数の符号を用い
て逆拡散を行い逆拡散信号を生成する逆拡散手段、
(6)逆拡散信号に重み付け係数を乗算し合成すること
で合成信号を生成する線形合成手段、(7)逆拡散信号
と合成信号を入力として、拘束条件のもとで合成信号の
平均電力を最小にするアルゴリズムで求めた重み付け係
数を出力する係数制御手段とから構成されている。作用 この発明における基本的な作用は次のようなものであ
る。(1)サンプル手段では、受信信号を一定時間ごと
に標本化して標本化信号を出力し、(2)信号抽出手段
では、標本化信号を入力とし逆拡散と線形合成の操作を
行い合成信号を出力し、(3)復調手段では、合成信号
を復調して判定信号を出力し、(4)タイミング制御手
段では、各手段の動作タイミングを制御し、さらに、信
号抽出手段における逆拡散手段、線形合成手段および係
数制御手段は、特に次のように動作する。(5)逆拡散
手段は、標本化信号を、複数の遅延シフトした希望波の
拡散符号と、これらに直交する複数の符号を用いて逆拡
散を行い逆拡散信号を出力し、(6)線形合成手段は、
逆拡散信号に重み付け係数を乗算し合成することで合成
信号を生成し出力し、(7)係数制御手段は、逆拡散信
号と合成信号を入力として、拘束条件のもとで合成信号
の平均電力を最小にするアルゴリズムで求めた重み付け
係数を推定し出力する。
The adaptive spread spectrum receiver comprises: (1) sampling means for sampling a received signal at regular intervals to output a sampled signal; and (2) despreading with the sampled signal as input. And (3) demodulation means for demodulating the synthesized signal and outputting a judgment signal, and (4) timing control means for controlling the operation timing of each means. In particular, in the present invention, the signal extracting means, which is a central part of these means, uses (5) a spread signal of a plurality of delay-shifted desired waves and a plurality of codes orthogonal to the sampled signal. Despreading means for despreading and generating a despread signal;
(6) a linear combining means for generating a combined signal by multiplying and combining the despread signal by a weighting coefficient, and (7) taking the despread signal and the combined signal as inputs, and obtaining an average power of the combined signal under a constraint condition. And a coefficient control means for outputting a weighting coefficient obtained by an algorithm for minimizing. Operation The basic operation of the present invention is as follows. (1) The sampling means samples the received signal at regular time intervals and outputs a sampled signal. (2) The signal extraction means takes the sampled signal as input, performs despreading and linear synthesis operations, and converts the synthesized signal. (3) The demodulation means demodulates the synthesized signal to output a decision signal. (4) The timing control means controls the operation timing of each means. The synthesizing means and the coefficient control means particularly operate as follows. (5) The despreading means despreads the sampled signal by using a plurality of delay-shifted desired-wave spreading codes and a plurality of codes orthogonal thereto, and outputs a despread signal, and The synthesis means is
The despread signal is multiplied by a weighting coefficient and synthesized to generate and output a synthesized signal. (7) The coefficient control means receives the despread signal and the synthesized signal as inputs, and obtains an average power of the synthesized signal under constraint. Estimate and output the weighting coefficient obtained by the algorithm for minimizing.

【0014】従来技術とは、逆拡散手段において、複数
の遅延シフトした希望波の拡散符号を用いて逆拡散を行
う点が異なる。
The difference from the prior art is that the despreading means performs despreading using a plurality of spread codes of the delay-shifted desired wave.

【0015】[0015]

【発明の実施の形態】この発明の実施例において特に特
徴をなす部分は信号抽出手段であり、その構成を図1に
図3と対応する部分に同一符号を付けて示す。図3に示
した従来の構成とは、逆拡散手段21において希望波の
拡散符号を用いる整合フィルタが複数(図中では2)あ
る点にある。同図で整合フィルタ22−1と22−2に
は遅延シフトした希望波の拡散符号を用いるが、例え
ば、0からTc/4(Tcは拡散符号のチップ周期)ま
でのタイミングオフセット及び遅延時間に対処するため
には、整合フィルタ22−1と22−2にはそれぞれ0
及びTc/4遅延シフトした希望波の拡散符号を用い
る。Tc/4のようにTcより小さい値の遅延シフトし
た希望波の拡散符号を生成するには、Tcごとの拡散符
号をコサインロールオフ等のフィルタでフィルタリング
を行い、各サンプル間の補間値を得る。遅延シフト値と
対応する補間値を、整合フィルタのタップ係数とすれば
よい。0からTc/4まで遅延した希望波は、0とTc
/4遅延シフトした希望波拡散符号の線形結合として近
似できる。従って、直交フィルタ23−1〜23−2の
拡散符号を0とTc/4遅延シフトした希望波拡散符号
に直交するように設定すると、希望波の信号成分が直交
フィルタ群の出力信号に漏れ込まなくなる。この結果、
整合フィルタ22−1と22−2に含まれる希望波信号
成分が打ち消されなくなり、誤り率特性の劣化を抑える
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention, a particularly characteristic part is a signal extracting means. In FIG. 1, the components corresponding to those in FIG. The difference from the conventional configuration shown in FIG. 3 is that there are a plurality (two in the figure) of matched filters that use the spreading code of the desired wave in the despreading means 21. In this figure, the matched filters 22-1 and 22-2 use spread codes of the delay-shifted desired waves. For example, the timing filters and delay times from 0 to Tc / 4 (Tc is the chip period of the spread code) are used. In order to deal with this, 0 is set for each of the matched filters 22-1 and 22-2.
And the spreading code of the desired wave delayed and shifted by Tc / 4. In order to generate a spread code of a desired wave delayed and shifted to a value smaller than Tc such as Tc / 4, a spread code for each Tc is filtered by a filter such as a cosine roll-off to obtain an interpolated value between samples. . The interpolation value corresponding to the delay shift value may be used as the tap coefficient of the matched filter. The desired wave delayed from 0 to Tc / 4 is 0 and Tc
It can be approximated as a linear combination of the desired wave spreading code shifted by / 4 delay. Therefore, if the spreading codes of the orthogonal filters 23-1 to 23-2 are set to be orthogonal to 0 and the desired wave spreading code shifted by Tc / 4 delay, the signal component of the desired wave leaks into the output signal of the orthogonal filter group. Disappears. As a result,
The desired wave signal components included in the matched filters 22-1 and 22-2 are not canceled out, and the deterioration of the error rate characteristic can be suppressed.

【0016】なお、この構成では、重み付け係数の制御
に関して従来技術とは異なる拘束条件を課さなくてはな
らない。整合フィルタ22−1と22−2には希望波の
信号成分が含まれ、直交フィルタ23−1と23−2に
は含まれない。このことを考慮すると、上記の重み付き
係数の拘束条件は WH 1 =1 (6) WH 2 =1 (7) となり、ステアリング・ベクトルT1 とT2 はそれぞれ T1 =[1 0 0 0]T (8) T2 =[0 1 0 0]T (9) となる。式(6)及び(7)の拘束条件は、整合フィル
タ22−1と22−2の出力信号に対する重み付け係数
1 とW2 を1に固定することと等価である。
In this configuration, a constraint different from that of the prior art must be imposed on the control of the weighting coefficient. The matched filters 22-1 and 22-2 include the signal component of the desired wave, and are not included in the orthogonal filters 23-1 and 23-2. In view of this, constraint weighting factor mentioned above W H T 1 = 1 (6 ) W H T 2 = 1 (7) , and the respective steering vector T 1 and T 2 are T 1 = [1 0 0 0] T (8) T 2 = [0 1 0 0] T (9) Constraint equation (6) and (7) is equivalent to fixing the weighting coefficients W 1 and W 2 with respect to the output signal of the matched filter 22-1 and 22-2 to 1.

【0017】この構成では、逆拡散手段の整合フィルタ
の数は2としたが3以上に拡張することも可能である。
また、ダイバーシチ受信及びRAKE受信に拡張するこ
とも容易に考えられる。上述では逆拡散をフィルタを用
いて行ったが、入力信号に対し、逆拡散符号との相関を
とり、その逆拡散符号を入力信号に同期させるスライデ
ィング相関器を用いてもよい。
In this configuration, the number of matched filters of the despreading means is two, but can be extended to three or more.
Further, it is easily conceivable to extend to diversity reception and RAKE reception. In the above description, despreading is performed using a filter. However, a sliding correlator may be used that correlates an input signal with a despread code and synchronizes the despread code with the input signal.

【0018】[0018]

【発明の効果】以上説明したようにこの発明では、希望
波のタイミング同期が不完全であったり、遅延時間差の
小さい希望波のマルチパス成分がある場合でも良好に動
作する。同一キャリヤ周波数を多数のユーザーが共用す
る無線システムに利用すると効果的である。移動通信で
はユーザーの呼が時系列的に変化するのでこれらの情報
を受信波から自動的に抽出し、変化に対して適応的な受
信機には特に効果的である。
As described above, the present invention operates satisfactorily even when the timing synchronization of the desired wave is incomplete or when there is a multipath component of the desired wave having a small delay time difference. It is effective to use the same carrier frequency in a wireless system shared by many users. In a mobile communication, since a user's call changes in a time series, such information is automatically extracted from a received wave, and it is particularly effective for a receiver adaptive to the change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例における信号抽出手段の機能
的構成例を示す図。
FIG. 1 is a diagram showing an example of a functional configuration of a signal extracting unit according to an embodiment of the present invention.

【図2】適応形スペクトラム拡散受信機の一般的機能構
成を示すブロック図。
FIG. 2 is a block diagram showing a general functional configuration of an adaptive spread spectrum receiver.

【図3】図2中の従来の信号抽出手段の機能的構成を示
すブロック図。
FIG. 3 is a block diagram showing a functional configuration of a conventional signal extracting unit in FIG. 2;

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 受信信号を一定時間ごとに標本化して標
本化信号を出力するサンプル手段と、 前記標本化信号を入力とし逆拡散と線形合成の操作を行
い合成信号を出力する信号抽出手段と、 前記合成信号を復調して判定信号を出力する復調手段
と、 前記信号抽出手段と前記復調手段の動作タイミングを制
御するタイミング制御手段とから構成される適応形スペ
クトラム拡散受信機において、 前記信号抽出手段は、 前記標本化信号を、複数の互いに1チップ以下の遅延シ
フトした希望波の拡散符号と、これらに直交する複数の
符号を用いてそれぞれ逆拡散を行い複数の逆拡散信号を
生成する逆拡散手段と、 複数の前記逆拡散信号に重み付け係数を乗算し合成する
ことにより前記合成信号を生成し出力する線形合成手段
と、 前記逆拡散信号と前記合成信号を入力として拘束条件の
もとで前記合成信号の平均電力を最小にするアルゴリズ
ムで求められた前記重み付け係数を出力する係数制御手
段とから構成されることを特徴とする適応形スペクトラ
ム拡散受信機。
1. Sampling means for sampling a received signal at regular time intervals and outputting a sampled signal, and signal extracting means for receiving the sampled signal as input, performing despreading and linear synthesizing operations, and outputting a synthesized signal. An adaptive spread spectrum receiver comprising: a demodulation means for demodulating the synthesized signal to output a determination signal; and a timing control means for controlling operation timing of the signal extraction means and the demodulation means. Means for despreading the sampled signal by using a plurality of spread codes of a desired wave delayed and shifted by one chip or less and a plurality of codes orthogonal thereto, respectively, to generate a plurality of despread signals; A spreading means, a linear synthesis means for generating and outputting the synthesized signal by multiplying and synthesizing a plurality of the despread signals by a weighting coefficient, and And a coefficient control means for outputting the weighting coefficient obtained by an algorithm for minimizing the average power of the synthesized signal under a constraint condition with the synthesized signal as an input. Receiving machine.
JP10059729A 1998-03-11 1998-03-11 Adaptive type spread spectrum receiver Pending JPH11261445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059729A JPH11261445A (en) 1998-03-11 1998-03-11 Adaptive type spread spectrum receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059729A JPH11261445A (en) 1998-03-11 1998-03-11 Adaptive type spread spectrum receiver

Publications (1)

Publication Number Publication Date
JPH11261445A true JPH11261445A (en) 1999-09-24

Family

ID=13121588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059729A Pending JPH11261445A (en) 1998-03-11 1998-03-11 Adaptive type spread spectrum receiver

Country Status (1)

Country Link
JP (1) JPH11261445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100305771B1 (en) * 1999-11-18 2001-10-18 서평원 Synchronous Signal Receiving Unit for WLL
SG104931A1 (en) * 2000-11-10 2004-07-30 Sony Electronics Singapore Pte Multiple-user cdma wireless communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100305771B1 (en) * 1999-11-18 2001-10-18 서평원 Synchronous Signal Receiving Unit for WLL
SG104931A1 (en) * 2000-11-10 2004-07-30 Sony Electronics Singapore Pte Multiple-user cdma wireless communication system

Similar Documents

Publication Publication Date Title
US5648983A (en) CDMA rake receiver with sub-chip resolution
CN101036311B (en) CDMA wireless system using adaptive filters and employing pilot signals
US5790537A (en) Interference suppression in DS-CDMA systems
US5719899A (en) Multiple access digital transmission system and a radio base station and a receiver for use in such a system
US5627855A (en) Programmable two-part matched filter for spread spectrum
KR0158092B1 (en) Adaptive spectrum spreading receiver
US6459883B2 (en) Generic finger architecture for spread spectrum applications
US6363106B1 (en) Method and apparatus for despreading OQPSK spread signals
JP2001069122A (en) Base station system and cancellation processor
EP0749215A2 (en) Multipath diversity reception in a spread spectrum communication system
CA2123735A1 (en) All digital maximum likelihood based spread spectrum receiver
JP3386738B2 (en) Frame synchronization circuit and frame timing extraction method
US7756196B1 (en) Efficient adaptive filters for CDMA wireless systems
Lingwood et al. ASIC implementation of a direct-sequence spread-spectrum RAKE-receiver
EP0988706A1 (en) Reception method and receiver
US6263012B1 (en) Receiver apparatus for CDMA communication system
JPH11261445A (en) Adaptive type spread spectrum receiver
JP3420700B2 (en) Code synchronization acquisition circuit for spread spectrum signal
KR100383670B1 (en) Space-time Array Receive System having Finger and Persumption Method of Fading Channel
JP2911105B2 (en) Adaptive spread spectrum receiver
JP3030230B2 (en) Receiver for spread communication system
JP3926366B2 (en) Spread spectrum rake receiver
US7756191B2 (en) Deconvolution searcher for wireless communication system
JPH09200178A (en) Spread spectrum communication equipment and spread spectrum communication method
JPH1013299A (en) Adaptive spread spectrum receiver