JPH11260403A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH11260403A
JPH11260403A JP10059308A JP5930898A JPH11260403A JP H11260403 A JPH11260403 A JP H11260403A JP 10059308 A JP10059308 A JP 10059308A JP 5930898 A JP5930898 A JP 5930898A JP H11260403 A JPH11260403 A JP H11260403A
Authority
JP
Japan
Prior art keywords
casing
positive electrode
negative electrode
separator
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10059308A
Other languages
Japanese (ja)
Inventor
Hitoshi Miyamoto
均 宮本
Yasumasa Koshiro
育昌 小城
Ryuichi Matsubara
龍一 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10059308A priority Critical patent/JPH11260403A/en
Publication of JPH11260403A publication Critical patent/JPH11260403A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost secondary battery almost producing no environmental sanitation problem even if the size is enlarged. SOLUTION: This secondary battery has a casing 1; a positive electrode 2 using a sodium-based composite oxide (such as NaFeO2 ) as an active material housed in the casing 1; a negative electrode 3 using a carbon material (such as LiC) as an active material housed in the casing 1; a separator 4 made of a permeable film which shuts out cations and permeates anions housed in the casing 1 so as to separate the positive electrode 2 from the negative electrode 3; a positive electrode side electrolyte 5a prepared by dissolving Na-based strong electrolyte (such as NaX, X is ClO4 <-> , PF6 <-> , PF4 <-> , etc.) in a carbonate-based organic solvent, filled on the positive electrode 2 side of the separator 4 within the casing 1; and a negative electrode side electrolyte 5b prepared by dissolving a Li-based strong electrolyte (such as LiX, X is ClO4 <-> , PF6 <-> , PF4 <-> , etc.) in a carbonate-based organic solvent, filled on the negative electrode 3 side of the separator 4 within the casing 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関し、
特に、電力貯蔵用や電気自動車用など大型のバッテリに
適用すると有効なものである。
The present invention relates to a secondary battery,
In particular, it is effective when applied to a large-sized battery such as for power storage or for an electric vehicle.

【0002】[0002]

【従来の技術】従来のリチウムイオン型の二次電池の概
略構成を図2に示す。図2に示すように、ケーシング1
1の内部には、電解質液15が充填されている。ケーシ
ング11の内部には、正極12(例えばLiCoO
2 等)と負極13(例えばLiC等)とが互いに対面す
るように配設されている。ケーシング11の内部の正極
12と負極13との間には、イオンや電解質を透過させ
る透過膜からなるセパレータ14が配設されている。
2. Description of the Related Art FIG. 2 shows a schematic configuration of a conventional lithium ion type secondary battery. As shown in FIG.
The inside of 1 is filled with an electrolyte solution 15. Inside the casing 11, a positive electrode 12 (for example, LiCoO
2 ) and a negative electrode 13 (for example, LiC) are disposed so as to face each other. Between the positive electrode 12 and the negative electrode 13 inside the casing 11, a separator 14 made of a permeable membrane that allows ions and electrolyte to pass is provided.

【0003】このような二次電池の正極12および負極
13では、充電時および放電時に以下のような反応が起
こる。
In the positive electrode 12 and the negative electrode 13 of such a secondary battery, the following reactions occur during charging and discharging.

【0004】[0004]

【化1】 [充電時] LiCoO2 →Lix +Li(1-x) CoO2 (正極) Lix +C →Lix C (負極) [放電時] Lix +Li(1-x) CoO2 →LiCoO2 (正極) Lix C →Lix +C (負極)Embedded image [At the time of charging] LiCoO 2 → Li x + Li (1-x) CoO 2 (positive electrode) Li x + C → Li x C (negative electrode) [At the time of discharging] Li x + Li (1-x) CoO 2 → LiCoO 2 (Positive electrode) Li x C → Li x + C (negative electrode)

【0005】つまり、充電時には、正極12からLiが
脱離し、負極13にLiが挿入される一方、放電時に
は、負極13からLiが脱離し、正極12にLiが挿入
されるのである。
That is, during charging, Li is desorbed from the positive electrode 12 and Li is inserted into the negative electrode 13, while during discharging, Li is desorbed from the negative electrode 13 and Li is inserted into the positive electrode 12.

【0006】このように、リチウムイオン二次電池で
は、正極12および負極13の両者共に充放電のいずれ
の場合でもリチウムイオンが移動カチオンとなる。な
お、セパレータ14は、アニオンおよびカチオンの両者
を共に透過させながらも正極12と負極13との短絡を
防止している。
As described above, in the lithium ion secondary battery, both the positive electrode 12 and the negative electrode 13 have lithium ions as mobile cations in both cases of charging and discharging. The separator 14 prevents short-circuit between the positive electrode 12 and the negative electrode 13 while allowing both anions and cations to pass through.

【0007】[0007]

【発明が解決しようとする課題】前述したような二次電
池は、高エネルギ密度を有すると共に軽量であるので、
小型電子機器のバッテリとして広く利用されている。特
に、リチウムイオン二次電池は、上記特徴を生かして、
電気自動車用や電力貯蔵用などの大型のバッテリに適用
してもメリットが高いものである。
The secondary battery as described above has a high energy density and is light in weight.
It is widely used as a battery for small electronic devices. In particular, lithium ion secondary batteries, taking advantage of the above characteristics,
Even if it is applied to a large-sized battery for an electric vehicle or for electric power storage, the advantages are high.

【0008】しかしながら、リチウムイオン二次電池
は、前述したように、正極12にLiCoO2 などのよ
うなCo系材料を用いているため、大型化してしまう
と、コストが高くなってしまうだけでなく、環境衛生的
に問題を生じやすくなってしまう。そこで、Co系に代
わる材料として、Mn系やNi系などの材料を正極に適
用することが各種検討されているものの、充放電による
劣化が激しかったり、製造コストが高いなどの問題があ
るため、実用化に至っていない。
However, since the lithium ion secondary battery uses a Co-based material such as LiCoO 2 for the positive electrode 12 as described above, if the size is increased, not only the cost is increased but also the cost is increased. This tends to cause environmental health problems. Therefore, although various studies have been made to apply a Mn-based or Ni-based material to the positive electrode as a material instead of the Co-based material, there are problems such as severe deterioration due to charge / discharge and a high manufacturing cost. It has not been put to practical use.

【0009】このようなことから、本発明は、大型化し
ても、環境衛生的に問題をほとんど生じることのない低
コストな二次電池を提供することを目的とした。
In view of the above, an object of the present invention is to provide a low-cost secondary battery that hardly causes environmental health problems even if it is enlarged.

【0010】[0010]

【課題を解決するための手段】前述した課題を解決する
ための、本発明による二次電池は、ケーシングと、前記
ケーシング内に配設され、Na系複合酸化物を活物質と
した正極と、前記ケーシング内に配設され、炭素材料を
活物質とした負極と、前記正極と前記負極との間を仕切
るように前記ケーシング内に配設され、カチオンを遮断
しアニオンを透過させるセパレータと、前記ケーシング
内の前記セパレータの前記正極側に充填され、Na系強
電解質を含んだ正極側電解質液と、前記ケーシング内の
前記セパレータの前記負極側に充填され、Li系強電解
質を含んだ負極側電解質液とを備えてなることを特徴と
する。
Means for Solving the Problems To solve the above-mentioned problems, a secondary battery according to the present invention comprises: a casing; a positive electrode provided in the casing and using an Na-based composite oxide as an active material; A separator disposed in the casing, a negative electrode using a carbon material as an active material, and disposed in the casing so as to partition between the positive electrode and the negative electrode, and a separator that blocks cations and allows anions to pass therethrough, A positive-electrode-side electrolyte solution filled on the positive-electrode side of the separator in the casing and containing a Na-based strong electrolyte, and a negative-electrode-side electrolyte filled on the negative electrode side of the separator in the casing and containing a Li-based strong electrolyte And a liquid.

【0011】[0011]

【発明の実施の形態】本発明による二次電池の実施の形
態を図1を用いて説明する。なお、図1は、その概略構
成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a secondary battery according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram.

【0012】図1に示すように、ケーシング1の内部に
は、Na系複合酸化物を活物質とした正極2(例えばN
aFeO2 等)と炭素系材料を活物質とした負極3(例
えばLiC等)とが互いに対面するように配設されてい
る。ケーシング1の内部の正極2と負極3との間には、
カチオンを遮断しアニオンを透過させる透過膜からなる
セパレータ4が当該正極2と負極3との間を仕切るよう
にして配設されている。ケーシング1内のセパレータ4
の正極2側には、エチレンカーボネートやプロピレンカ
ーボネートなどのような炭酸エステル系の有機溶媒にN
aX(X=ClO4 - ,PF6 - ,PF4 - 等)のよう
なNa系強電解質を用いた正極側電解質液5aが充填さ
れている。一方、ケーシング1内のセパレータ4の負極
3側には、上述と同様な炭酸エステル系の有機溶媒にL
iX(X=ClO4 - ,PF6 -,PF4 - 等)のよう
なLi系強電解質を用いた負極側電解質液5bが充填さ
れている。
As shown in FIG. 1, inside a casing 1, a positive electrode 2 (for example, N
aFeO 2 ) and a negative electrode 3 (for example, LiC) using a carbon-based material as an active material are disposed so as to face each other. Between the positive electrode 2 and the negative electrode 3 inside the casing 1,
A separator 4 made of a permeable membrane that blocks cations and allows anions to permeate is provided so as to partition between the positive electrode 2 and the negative electrode 3. Separator 4 in casing 1
On the positive electrode 2 side of a carbonic acid ester organic solvent such as ethylene carbonate or propylene carbonate.
The positive electrode side electrolyte solution 5a using a Na-based strong electrolyte such as aX (X = ClO 4 , PF 6 , PF 4 etc.) is filled. On the other hand, on the negative electrode 3 side of the separator 4 in the casing 1, L
The negative electrode side electrolyte solution 5b using a Li-based strong electrolyte such as iX (X = ClO 4 , PF 6 , PF 4 etc.) is filled.

【0013】このような二次電池の正極2および負極3
では、充電時に以下のような反応が起こる。
The positive electrode 2 and the negative electrode 3 of such a secondary battery
Then, the following reaction occurs during charging.

【0014】[0014]

【化2】 NaFeO2 →Nax +Na(1-x) FeO2 (正極) Lix +C →Lix C (負極)Embedded image NaFeO 2 → Na x + Na (1-x) FeO 2 (positive electrode) Li x + C → Li x C (negative electrode)

【0015】つまり、正極2は、正極側電解質液5a中
にNaを放出し、放出されたNaは、セパレータ4の上
述した作用により、負極側電解質液5b中に移行せずに
正極側電解質液5aにイオンとして存在するため、負極
3は、負極側電解質液5b中からLiを取り込むのであ
る。ここで、NaとLiとは同じ1価のカチオンである
ので、正極2上および負極3上では、同じ電気等量(イ
オン量)のNaとLiとが挿入脱離するようになる。よ
って、正極側電解質液5a中のイオン種はNa + および
- となり、負極側電解質液5b中のイオン種はLi+
およびX- となる。
That is, the positive electrode 2 is formed in the positive electrode side electrolyte solution 5a.
Na is released to the surface of the separator 4
By the above-mentioned action, without moving into the negative electrode side electrolyte solution 5b,
Since it exists as an ion in the electrolyte solution 5a on the positive electrode side, the negative electrode
No. 3 takes in Li from the negative electrode side electrolyte solution 5b.
You. Here, Na and Li are the same monovalent cation.
Therefore, on the positive electrode 2 and the negative electrode 3, the same electric equivalent (a
(Amount) Na and Li are inserted and desorbed. Yo
Thus, the ionic species in the electrolyte solution 5a on the positive electrode side is Na +and
X-And the ionic species in the negative electrode electrolyte solution 5b is Li+
And X-Becomes

【0016】このとき、上記電解質液5a,5b中で
は、電荷バランスをとるため、セパレータ4を介してア
ニオンのみが移動する。すなわち、正極側電解質液5a
中ではアニオンの移動をXが担当すると共にカチオンの
移動をNaが担当し、負極側電解質液5b中ではアニオ
ンの移動をXが担当すると共にカチオンの移動をLiが
担当するのである。したがって、当該二次電池は電気を
蓄えることができる。
At this time, in the electrolyte solutions 5a and 5b, only anions move through the separator 4 in order to balance charges. That is, the positive electrode side electrolyte solution 5a
In the inside, X is responsible for the transfer of anions and Na is responsible for the transfer of cations, and in the negative electrode electrolyte 5b, X is responsible for the transfer of anions and Li is responsible for the transfer of cations. Therefore, the secondary battery can store electricity.

【0017】一方、放電時には、正極2および負極3で
以下のような反応が起こる。
On the other hand, at the time of discharging, the following reactions occur in the positive electrode 2 and the negative electrode 3.

【0018】[0018]

【化3】 Nax +Na(1-x) FeO2 →NaFeO2 (正極) Lix C →Lix +C (負極)Embedded image Na x + Na (1-x) FeO 2 → NaFeO 2 (positive electrode) Li x C → Li x + C (negative electrode)

【0019】つまり、充電時と逆の反応を生じ、負極3
は、負極側電解質液5b中にLiを放出し、放出された
Liは、セパレータ4の上述した作用により、正極側電
解質液5a中に移行することなく負極側電解質液5b中
にイオンとして存在するため、正極2は、正極側電解質
液5a中からNaを取り込むのである。
That is, a reaction reverse to that at the time of charging occurs, and the negative electrode 3
Releases Li into the anode-side electrolyte solution 5b, and the released Li exists as an ion in the anode-side electrolyte solution 5b without migrating into the cathode-side electrolyte solution 5a by the above-described action of the separator 4. Therefore, the cathode 2 takes in Na from the electrolyte solution 5a on the cathode side.

【0020】すなわち、正極2側ではNaがカチオンと
して機能し、負極3側ではLiがカチオンとして機能す
るのである。
That is, Na functions as a cation on the positive electrode 2 side, and Li functions as a cation on the negative electrode 3 side.

【0021】このように、アニオンのみを選択的に透過
させる透過膜をセパレータ4に用いることにより、従来
の二次電池で実用性を実証されてLiの挿入脱離の可能
な層状構造を有する炭素系材料を負極3へ活物質として
適用しながらも、資源的に豊富で低コストであると共に
環境衛生的にも問題をほとんど生じず且つNaの充放電
に安定な層状構造をなすと共に簡単に製造できるNa系
複合酸化物を正極2に活物質として適用することができ
た。
As described above, by using a permeable membrane for selectively permeating only anions as the separator 4, carbonaceous material having a layered structure capable of intercalating and deintercalating Li which has been proved to be practicable in a conventional secondary battery. While applying the base material as an active material to the negative electrode 3, it is abundant in resources, low in cost, hardly causes problems in environmental hygiene, and has a layered structure that is stable to charging and discharging of Na and is easily manufactured. The resulting Na-based composite oxide could be applied to the positive electrode 2 as an active material.

【0022】ここで、Liは、地球上に存在する金属元
素のなかで最も卑な酸化還元電位をとり、Naは、Li
に次ぐ卑な酸化還元電位をとるので、上述した正極2お
よび負極3を有する二次電池は、高い起電力をとること
ができ、低コストで高性能とすることができる。
Here, Li takes the lowest oxidation-reduction potential among metal elements existing on the earth, and Na takes Li
Since the secondary oxidation battery has the second lowest oxidation-reduction potential, the secondary battery having the above-described positive electrode 2 and negative electrode 3 can have high electromotive force, and can have high performance at low cost.

【0023】したがって、このような二次電池によれ
ば、大型化しても環境衛生的に問題をほとんど生じずに
低コストで得ることができるので、電気自動車用や電力
貯蔵用などの大型のバッテリに適用することができる。
Accordingly, such a secondary battery can be obtained at a low cost with little environmental health problem even if the secondary battery is enlarged, so that a large battery for an electric vehicle or for storing electric power can be obtained. Can be applied to

【0024】[0024]

【発明の効果】本発明による二次電池は、ケーシング
と、前記ケーシング内に配設され、Na系複合酸化物を
活物質とした正極と、前記ケーシング内に配設され、炭
素材料を活物質とした負極と、前記正極と前記負極との
間を仕切るように前記ケーシング内に配設され、カチオ
ンを遮断しアニオンを透過させるセパレータと、前記ケ
ーシング内の前記セパレータの前記正極側に充填され、
Na系強電解質を含んだ正極側電解質液と、前記ケーシ
ング内の前記セパレータの前記負極側に充填され、Li
系強電解質を含んだ負極側電解質液とを備えてなること
から、充電時には、正極が正極側電解質液中にNaを放
出し、放出されたNaがセパレータの上記作用により負
極側電解質液中に移行せずに正極側電解質液にイオンと
して残留し、負極が負極側電解質液中からLiを取り込
む一方、放電時には、充電時と逆の反応を生じ、負極が
負極側電解質液中にLiを放出し、放出されたLiがセ
パレータの上記作用により正極側電解質液中に移行する
ことなく負極側電解質液中にイオンとして存在し、正極
が正極側電解質液中からNaを取り込むので、大型化し
ても環境衛生的に問題をほとんど生じずに低コストで得
ることができる。
According to the present invention, there is provided a secondary battery comprising: a casing; a positive electrode disposed in the casing and having an Na-based composite oxide as an active material; and a positive electrode disposed in the casing and comprising a carbon material as an active material. A negative electrode, disposed in the casing so as to partition between the positive electrode and the negative electrode, a separator that blocks cations and allows anions to permeate, and is filled on the positive electrode side of the separator in the casing,
A cathode-side electrolyte solution containing a strong Na-based electrolyte, and filled in the anode side of the separator in the casing;
Since it is provided with a negative electrode electrolyte solution containing a strong electrolyte, during charging, the positive electrode releases Na into the positive electrode electrolyte solution, and the released Na enters the negative electrode electrolyte solution by the above-described action of the separator. The ions remain in the electrolyte solution on the positive electrode side without migrating, and the negative electrode takes in Li from the electrolyte solution on the negative electrode side, while discharging causes a reaction opposite to that during charging, and the negative electrode releases Li into the electrolyte solution on the negative electrode side Then, the released Li is present as an ion in the negative electrode electrolyte solution without migrating into the positive electrode electrolyte solution by the above-described action of the separator, and the positive electrode takes in Na from the positive electrode electrolyte solution, so that even if the size is increased, It can be obtained at low cost with almost no environmental health problems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による二次電池の実施の形態の概略構成
図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a secondary battery according to the present invention.

【図2】従来の二次電池の概略構成図である。FIG. 2 is a schematic configuration diagram of a conventional secondary battery.

【符号の説明】 1 ケーシング 2 正極 3 負極 4 セパレータ 5a 正極側電解質液 5b 負極側電解質液[Description of Signs] 1 Casing 2 Positive electrode 3 Negative electrode 4 Separator 5a Positive electrolyte solution 5b Negative electrolyte solution

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ケーシングと、 前記ケーシング内に配設され、Na系複合酸化物を活物
質とした正極と、 前記ケーシング内に配設され、炭素系材料を活物質とし
た負極と、 前記正極と前記負極との間を仕切るように前記ケーシン
グ内に配設され、カチオンを遮断しアニオンを透過させ
るセパレータと、 前記ケーシング内の前記セパレータの前記正極側に充填
され、Na系強電解質を含んだ正極側電解質液と、 前記ケーシング内の前記セパレータの前記負極側に充填
され、Li系強電解質を含んだ負極側電解質液とを備え
てなることを特徴とする二次電池。
A positive electrode disposed in the casing and using a Na-based composite oxide as an active material; a negative electrode disposed in the casing and using a carbon-based material as an active material; A separator disposed in the casing so as to partition between the anode and the negative electrode and blocking cations and allowing anions to pass therethrough; the separator in the casing being filled on the positive electrode side and containing a Na-based strong electrolyte. A secondary battery comprising: a cathode-side electrolyte solution; and a cathode-side electrolyte solution filled in the separator on the anode side of the separator and containing a Li-based strong electrolyte.
JP10059308A 1998-03-11 1998-03-11 Secondary battery Withdrawn JPH11260403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059308A JPH11260403A (en) 1998-03-11 1998-03-11 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059308A JPH11260403A (en) 1998-03-11 1998-03-11 Secondary battery

Publications (1)

Publication Number Publication Date
JPH11260403A true JPH11260403A (en) 1999-09-24

Family

ID=13109625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059308A Withdrawn JPH11260403A (en) 1998-03-11 1998-03-11 Secondary battery

Country Status (1)

Country Link
JP (1) JPH11260403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
US5512389A (en) Rechargeable non-aqueous thin film lithium battery
US4194062A (en) Rechargeable dichalcogenide cell
US6025093A (en) Lithium ion cell
KR20010082181A (en) Lithium secondary cell and device
JPH11260416A (en) Lithium secondary battery
JPH11238528A (en) Lithium secondary battery
KR101695913B1 (en) The sodium rechargeable battery
CN101154750A (en) High power gel polymer lithium ion power cell and method of producing the same
US20160268622A1 (en) Alkali/Oxidant Battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
US20240154113A1 (en) Ampere-hour-scale sodium-ion pouch cell
JP2008091248A (en) Large-capacity secondary battery
JP4449214B2 (en) Non-aqueous electrolyte battery
JP2010062299A (en) Electricity storage device
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
JPH11224699A (en) Energy storage element
JP2001118578A (en) Lithium secondary cell and method for manufacturing the same
CN111213259A (en) Method for improving life of lithium secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH11260403A (en) Secondary battery
JPH06188030A (en) Nonaqueous electrolyte battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP2000260469A (en) Lithium secondary battery
KR101894385B1 (en) Manufacturing Method of Anode for Secondary Battery and Anode for Secondary Battery Manufactured thereby
JPH1197062A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607