JPH1125965A - Manufacture of positive electrode active material for alkaline storage battery - Google Patents

Manufacture of positive electrode active material for alkaline storage battery

Info

Publication number
JPH1125965A
JPH1125965A JP9197719A JP19771997A JPH1125965A JP H1125965 A JPH1125965 A JP H1125965A JP 9197719 A JP9197719 A JP 9197719A JP 19771997 A JP19771997 A JP 19771997A JP H1125965 A JPH1125965 A JP H1125965A
Authority
JP
Japan
Prior art keywords
aqueous solution
tank
supply line
reaction
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9197719A
Other languages
Japanese (ja)
Other versions
JP3567687B2 (en
Inventor
Hiroyuki Sakamoto
弘之 坂本
Hidekatsu Izumi
秀勝 泉
Hirokazu Kimiya
宏和 木宮
Yoichi Izumi
陽一 和泉
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19771997A priority Critical patent/JP3567687B2/en
Priority to CN98106185A priority patent/CN1129198C/en
Priority to EP07022225A priority patent/EP1890350A3/en
Priority to EP98101747A priority patent/EP0856899B1/en
Priority to US09/017,029 priority patent/US6129902A/en
Publication of JPH1125965A publication Critical patent/JPH1125965A/en
Priority to US09/560,296 priority patent/US6284215B1/en
Application granted granted Critical
Publication of JP3567687B2 publication Critical patent/JP3567687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously grow oxide particles of a plurality of metallic elements composed of a plurality of layers from a center part to a surface using Ni as a main metallic element by changing the composition or kind of metallic group salt for forming oxides in the layers of the adjacent stages of a reaction crystallization vessel. SOLUTION: In a reaction vessel 1, a nickel salt aqueous solution supply line 3, a different kind metallic salt aqueous solution supply line 4, a medium crystal material supply line 5 and an alkaline aqueous solution supply line 6 are introduced, and in a reaction vessel 2, a nickel aqueous solution supply line 7, a different kind metallic salt supply line 8 and an alkaline aqueous solution supply line 9 are introduced. The alkaline aqueous solution supply lines 6 and 9 maintains pH within a specified range by a pH state. By performing continuous supplying to a subsequent stage vessel at the same flow speed as that for starting material aqueous solution, a grown oxide made of a plurality of metal elements is taken out. Conditions in the vessel are maintained constant by stirring blades 16 and 17 connected to stirring devices 14 and 15 in the reaction vessels 1 and 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数金属元素の酸
化物を主材料とする高容量かつ高信頼性のアルカリ蓄電
池用正極活物質の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-capacity and high-reliability positive electrode active material for an alkaline storage battery using an oxide of a plurality of metal elements as a main material.

【0002】[0002]

【従来の技術】近年、ポータブル機器は小型化傾向を強
めており、必然的にその電源である小型二次電池の高エ
ネルギー密度化が望まれている。また、機器の用途が多
様化しつつあることから、広温度範囲、特に高温度で安
定した性能の電池が切望されている。
2. Description of the Related Art In recent years, portable devices have been increasingly miniaturized, and there is inevitably a demand for a high-density secondary battery, which is a power source thereof. In addition, since the applications of the devices are diversifying, batteries with stable performance in a wide temperature range, particularly at a high temperature, have been desired.

【0003】現在に至るまで、アルカリ蓄電池用正極の
主活物質はニッケル酸化物が用いられているが、電極基
体は従来の焼結基板を用いた焼結式電極に替えて、高多
孔度の3次元の発泡ニッケル多孔体にニッケル酸化物粉
末を高密度充填した電極が工業化され、飛躍的な高容量
化を達成している。上記のニッケル酸化物粉末の製造方
法は、従来、ニッケル塩水溶液に水酸化ナトリウムなど
のアルカリ水溶液中を作用させて沈澱させ、次いで熟成
して結晶成長したのち機械的に粉砕する方法が採用され
ていたが、製法が煩雑であるとともに粉末形状が不定形
であることから高い充填密度が得られにくい問題があっ
た。
To date, nickel oxide has been used as the main active material of the positive electrode for alkaline storage batteries, but the electrode base has been replaced with a sintered electrode using a conventional sintered substrate, and has a high porosity. 2. Description of the Related Art An electrode in which a three-dimensional porous nickel foam is filled with a nickel oxide powder at a high density has been industrialized, and a dramatic increase in capacity has been achieved. Conventionally, the above-mentioned method for producing a nickel oxide powder employs a method in which an aqueous nickel salt solution is allowed to act on an aqueous alkali solution such as sodium hydroxide to precipitate the precipitate, which is then matured, crystal-grown, and then mechanically ground. However, there is a problem that it is difficult to obtain a high packing density because the production method is complicated and the powder shape is irregular.

【0004】しかし、特公平4-80513号公報に示されて
いるように、他の製造法として、ニッケル塩水溶液にア
ンモニアを作用させてニッケルのアンモニウム錯体を形
成させ、アルカリ水溶液中で水酸化ニッケルを成長させ
る方法が提案され、低廉化が図れるとともに、粒子形状
が球状に近いことにより高密度充填が可能となった。し
かし、この進歩においては、数10μmまで成長した高密
度粒子を活物質として用いることにより、充電効率が低
下するという問題があった。これに対しては、Coやそ
の酸化物およびNi等を添加することで改善されること
が開示されている。(例えば特公昭61-37733号公報、電
気化学,Vol.54,No.2,p159(1986)、Power Sources,12,p2
03(1988)) さらに、上記で述べた近年の小型二次電池に対する高性
能化への高い要望により、正極特性のより一層の向上、
例えば、(a)高温雰囲気下での利用率の向上、(b)正極膨
潤の抑制、および(c)高エネルギー密度化等を目的とし
て活物質自体の改良も強く望まれてきた。
[0004] However, as disclosed in Japanese Patent Publication No. 4-80513, as another production method, an ammonia is acted on an aqueous nickel salt solution to form an ammonium complex of nickel, and nickel hydroxide is produced in an aqueous alkaline solution. A method for growing sapphire has been proposed, which has enabled a reduction in cost and a high density packing due to the nearly spherical particle shape. However, in this advance, there has been a problem that charging efficiency is reduced by using high-density particles grown to several tens of μm as an active material. It is disclosed that this can be improved by adding Co, its oxide, Ni and the like. (For example, JP-B-61-37733, Electrochemistry, Vol. 54, No. 2, p159 (1986), Power Sources, 12, p2
03 (1988)) Furthermore, with the recent demand for high performance of small secondary batteries described above, further improvement of the positive electrode characteristics,
For example, it has been strongly desired to improve the active material itself for the purpose of (a) improving the utilization factor under a high-temperature atmosphere, (b) suppressing the swelling of the positive electrode, and (c) increasing the energy density.

【0005】前記(a)および/または(b)の課題を解決す
るために、特公平3-26903号公報、特公平3-50384号公
報、電気化学,Vol.54,No.2,p164(1986),Power Sources
12,p203(1988)に示されているように、従来より活物質
の結晶内部にCd、Coを添加する方法が採用されてい
るが、環境面からの電池成分に対する意識の高まりか
ら、カドミウム・フリーの電池が要望され、カドミウム
に代わる金属元素の一例としてZnなどが提案された
り、更にCo,ZnおよびBaなどの3元素の固溶体も
提案されている(例えば米国特許5366831号)。
In order to solve the above problems (a) and / or (b), Japanese Patent Publication No. 3-26903, Japanese Patent Publication No. 3-50384, Electrochemistry, Vol. 54, No. 2, p. 1986), Power Sources
12, p 203 (1988), a method of adding Cd and Co to the inside of a crystal of an active material has conventionally been adopted, but cadmium and cobalt have been used due to increased awareness of battery components from an environmental standpoint. Free batteries have been demanded, and Zn and the like have been proposed as examples of metal elements in place of cadmium, and solid solutions of three elements such as Co, Zn and Ba have also been proposed (for example, US Pat. No. 5,536,831).

【0006】一方、前記(c)の高エネルギー密度化のた
めには、高反応次数の活物質が要求される。上記のよう
に、現在工業的に使用されるアルカリ蓄電池の正極活物
質はニッケル酸化物がほとんどであり、その反応は一電
子反応域といわれているが、ニッケル酸化物の結晶内部
に他の金属元素を添加することで高反応次数の活物質が
得られることが報告されている(例えば、J. Power Sour
ces, 35, 294 (1991)、Solid State Ionics, 32/33 p10
4(1989)、米国特許No.5348822号(1994)など)。しかし、
前記高反応次数の活物質は、充電状態において、層間が
広く、高密度充填には適さない材料であり、現在のとこ
ろ実用化には至っていない。
On the other hand, in order to increase the energy density in (c), an active material having a high reaction order is required. As described above, most of the positive electrode active materials of industrially used alkaline storage batteries are nickel oxide, and the reaction is said to be a one-electron reaction zone. It has been reported that the addition of an element provides an active material of a high reaction order (for example, J. Power Sour
ces, 35, 294 (1991), Solid State Ionics, 32/33 p10
4 (1989), U.S. Patent No. 5,348,822 (1994)). But,
The active material having a high reaction order has a wide interlayer in a charged state and is not suitable for high-density packing, and has not been put to practical use at present.

【0007】これに対して、我々は電極構成時に高密度
でかつ充電時に高次酸化物生成を促進するものがあるこ
とを新たに見出している(電気化学秋季大会 講演要旨
集,2L23 (1995))。なお、このような充放電特性の高効
率化を目的としたニッケル酸化物への固溶は焼結式電極
では古くになされた技術であり、Mg,Ca,Ba,T
i,Zn,Mn,Co,Fe,Cu,Sc,Y等から選
ばれた一種以上の固溶体を用いる(特開昭51-122737号公
報)などの改良例が挙げられる。
[0007] On the other hand, we have newly found that some materials have a high density at the time of electrode construction and promote the formation of high-order oxides at the time of charging (Abstracts of the Autumn Meeting of Electrochemical Science, 2L23 (1995) ). The solid solution in nickel oxide for the purpose of increasing the efficiency of the charge / discharge characteristics is a technique that has been used for sintered electrodes for a long time, and Mg, Ca, Ba, T
Examples of improvements include the use of one or more solid solutions selected from i, Zn, Mn, Co, Fe, Cu, Sc, Y, and the like (JP-A-51-122737).

【0008】以上のように、ニッケル酸化物結晶内部に
ニッケル以外の金属元素を添加した複数金属元素の酸化
物に対する関心が高まってきている。しかし、前記複数
金属元素の酸化物はその添加金属の種類、組成によって
は、酸素過電圧の低下による高温での充電効率の低下、
充放電電位の低下、および化学的または電気化学的安定
性の低下等の問題点を有していた。これらの課題を解決
するためには、活物質と電解液との界面の物性を改善す
る必要があることから、活物質の表面付近に、 高温での充電効率が高い、充放電電位が高い、化
学的・電気化学的安定性が高い等の特性を有す複数金属
元素の酸化物をコーティングした活物質が提案されてい
る(特願平08-249496号)。ここで述べた、前記〜の
特性を有する複数金属元素の酸化物は、置換元素の割合
を高めることによって効果が高まる反面、酸化還元反応
の担い手であるニッケル量の減少となるので、エネルギ
ー密度の向上という観点には必ずしも適していない。
As described above, interest in oxides of a plurality of metal elements in which a metal element other than nickel is added inside nickel oxide crystals has been increasing. However, the oxide of the plurality of metal elements, depending on the type and composition of the added metal, lowering of charging efficiency at high temperatures due to lowering of oxygen overvoltage,
There were problems such as a decrease in charge / discharge potential and a decrease in chemical or electrochemical stability. In order to solve these problems, it is necessary to improve the physical properties of the interface between the active material and the electrolyte, and therefore, near the surface of the active material, high charge efficiency at high temperature, high charge / discharge potential, An active material coated with an oxide of a plurality of metal elements having characteristics such as high chemical and electrochemical stability has been proposed (Japanese Patent Application No. 08-249496). The oxides of a plurality of metal elements having the above-mentioned characteristics are improved by increasing the ratio of the substitution element, but the amount of nickel, which is responsible for the oxidation-reduction reaction, is reduced. It is not always suitable for improvement.

【0009】しかし、表面付近のみにコーティングする
ことで、活物質の大部分を占める内部の酸化物の反応電
子数を下げることなく、かつ、前記特性を有す高信頼性
の活物質を得ることができる。前記表面コーティング材
料の製造法としては、特願平08-249496号、特開平8-203
517号公報等で見られるように、従来、まず内部の層の
酸化物を合成し、水洗、乾燥させた後、別の晶析槽にて
表面層の酸化物を成長させるといったバッチ式が提案さ
れている。但し、前記ニッケルを主とする酸化物とは異
なるが、水酸化コバルトを被覆した水酸化ニッケルの製
造方法に関しては、内部の水酸化ニッケルを成長させる
槽、水洗を行うための槽、水酸化コバルトを被覆する槽
をそれぞれ連結して、連続的に製造する方法が提案され
ている(特願平07-40853号)。但し、前記出願は、水酸化
コバルトの被覆が目的であるため前段の水酸化ニッケル
晶析槽と水酸化コバルト晶析槽との間に、水洗槽を有し
ており、本発明で考えられる設備構成とは異なる。
However, by coating only the vicinity of the surface, it is possible to obtain a highly reliable active material having the above-mentioned characteristics without reducing the number of reaction electrons of an internal oxide occupying most of the active material. Can be. As a method for producing the surface coating material, Japanese Patent Application No. 08-249496, JP-A-8-203
Conventionally, as seen in Japanese Patent Publication No. 517, etc., a batch method has been proposed in which an oxide of an inner layer is first synthesized, washed with water, dried, and then an oxide of a surface layer is grown in another crystallization tank. Have been. However, although different from the above-mentioned nickel-based oxide, a method for producing nickel hydroxide coated with cobalt hydroxide includes a tank for growing internal nickel hydroxide, a tank for washing with water, and a tank for cobalt hydroxide. (Japanese Patent Application No. 07-40853) has been proposed. However, since the application is intended for coating with cobalt hydroxide, a water washing tank is provided between the preceding nickel hydroxide crystallization tank and the cobalt hydroxide crystallization tank, and equipment considered in the present invention. Configuration is different.

【0010】[0010]

【発明が解決しようとする課題】表面層と内部の層で組
成、種類の異なるニッケルを主たる金属元素とする酸化
物の製造法においては、バッチ式であるため工程が複雑
であり、量産性の低さが問題である。本発明は、前記問
題を改善し、量産性に優れた高容量、高信頼性の複数金
属元素の酸化物の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In a method for producing an oxide containing nickel whose main metal element is different in composition and type between a surface layer and an inner layer, the process is complicated because of a batch system, and mass production is difficult. Lowness is a problem. An object of the present invention is to solve the above-mentioned problems and to provide a high-capacity, high-reliability method for producing an oxide of a plurality of metal elements which is excellent in mass productivity.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明では複数の連続する多段反応晶析槽を経て複
数金属元素の塩の水溶液とアルカリ水溶液を反応させて
複数金属元素の酸化物を連続的に成長させる工程におい
て、前記反応晶析槽の互いに隣接する段の槽における酸
化物を形成する金属元素群塩の組成または種類は、互い
に異なること特徴とする製造方法を提案している。
In order to solve the above-mentioned problems, in the present invention, an aqueous solution of a salt of a plurality of metal elements and an aqueous solution of an alkali are reacted through a plurality of continuous multi-stage reaction crystallization tanks to form oxides of the plurality of metal elements. In the step of continuously growing, the composition or type of the metal element group salt forming an oxide in the tanks adjacent to each other in the reaction crystallization tank is different from each other, a production method is proposed. .

【0012】これにより、それぞれの反応晶析槽にて、
組成および/または種類の異なる、ニッケルを主たる金
属元素とする酸化物を成長させることができ、前記酸化
物の複数の層から形成される正極活物質粒子を連続的に
製造することが可能となる。従って、従来のバッチ式と
比べ、工程の簡略化を図ることができ、量産性の向上を
図ることができる。
Thus, in each reaction crystallization tank,
Oxides of different composition and / or type, with nickel as the main metal element, can be grown, and it is possible to continuously produce positive electrode active material particles formed from a plurality of layers of the oxide. . Therefore, the process can be simplified as compared with the conventional batch type, and the mass productivity can be improved.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、正極活物質の粒子が中心部から表面に向かって複数
の層から形成され、各層はNiを主たる金属元素とする
複数金属元素の酸化物からなるアルカリ蓄電池用正極活
物質の製造方法であって、複数の連続する多段反応晶析
槽を経て複数金属元素の塩の水溶液とアルカリ水溶液を
反応させて前記酸化物を所望の粒子径に連続的に成長さ
せる工程において、前記反応晶析槽の互いに隣接する段
の槽における酸化物を形成するための金属群塩の組成お
よび/または種類は、互いに異なることを特徴としたも
のであり、複数の反応晶析槽を連結し、それぞれの槽に
て組成、種類の異なる金属元素の塩の水溶液とアルカリ
水溶液を反応させて前記金属酸化物を成長させること
で、初段の槽で成長した金属酸化物粒子の表面に、後段
の槽にて組成、種類の異なる金属酸化物の複数層を形成
することができる。また、従来のバッチ式に対して前記
酸化物を連続的に製造することが可能となり、工程の簡
略化を図ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that the particles of the positive electrode active material are formed of a plurality of layers from the center toward the surface, and each layer is composed of a plurality of metal elements mainly composed of Ni. A method for producing a positive electrode active material for an alkaline storage battery comprising an oxide of an element, wherein the oxide is reacted with an aqueous solution of a salt of a plurality of metal elements and an aqueous alkali solution through a plurality of continuous multi-stage reaction crystallization tanks to convert the oxide into a desired one. In the step of continuously growing to a particle diameter, the composition and / or type of metal salts for forming an oxide in tanks adjacent to each other in the reaction crystallization tank are different from each other. By connecting a plurality of reaction crystallization tanks, and by reacting an aqueous solution of a salt of a metal element of a different type with an aqueous alkali solution in each tank to grow the metal oxide, the first-stage tank is formed. Grow up The surface of the metal oxide particles, it is possible to form a plurality of layers of the composition at a subsequent stage of the tank, different metal oxides. Further, it becomes possible to continuously produce the oxide as compared with the conventional batch method, and the process can be simplified.

【0014】請求項2に記載の発明は、多段の反応晶析
槽のうち、最後段の槽の金属元素群塩は、Niのほか
に、Ca,Ti,Zn,Sr,Y,Ba,Cd,Co,
Cr,希土類金属,Biから選ばれた少なくとも一種の
金属元素塩を前段の槽より多く含むことを特徴としたも
のであり、酸素発生過電圧を向上させる(充電効率を向
上させる)などの特性を有す該金属元素の酸化物を表面
層に多く含む材料を連続的に製造することができ、工程
の簡略化を図ることができる。
According to a second aspect of the present invention, in the multistage reaction crystallization tank, the metal element group salt in the last tank is Ca, Ti, Zn, Sr, Y, Ba, Cd in addition to Ni. , Co,
It is characterized by containing at least one kind of metal element salt selected from Cr, rare earth metal and Bi in the former tank, and has characteristics such as improvement of oxygen generation overvoltage (improvement of charging efficiency). Thus, a material containing a large amount of the oxide of the metal element in the surface layer can be continuously manufactured, and the process can be simplified.

【0015】請求項3に記載の発明は、前記複数反応晶
析槽の最終槽の前段の槽の金属元素群塩は、Niのほか
に、少なくともAl,V,Cr,Mn,Fe,Cu,G
e,Zr,Nb,Mo,Ag,Sn,Wから選ばれた一
種以上の金属元素塩を最終槽より多く含むことを特徴と
したものであり、反応性の向上が期待される反面、電圧
低下を引き起こしたり化学的および/または電気化学的
安定性が低い等の特性を有する該金属元素の酸化物を内
部の層に多く含む材料を連続的に製造することができ、
工程の簡略化を図ることができる。
According to a third aspect of the present invention, the metal element group salt in the tank preceding the final tank of the multiple reaction crystallization tank is at least Al, V, Cr, Mn, Fe, Cu, G
e, Zr, Nb, Mo, Ag, Sn, W, characterized in that it contains more than one kind of metal element salt in the final tank. And a material containing a large amount of an oxide of the metal element in an inner layer having properties such as causing low chemical and / or electrochemical stability can be continuously produced,
The process can be simplified.

【0016】以下、本発明による実施の一形態につい
て、図1を用いて説明する。反応槽1には、ニッケル塩
水溶液供給ライン3と、異種金属塩水溶液供給ライン4
と、媒晶材供給ライン5と、アルカリ水溶液供給ライン
6が導入されており、反応槽2には、ニッケル塩水溶液
供給ライン7と、異種金属塩供給ライン8と、アルカリ
水溶液供給ライン9がそれぞれ導入されている。アルカ
リ水溶液供給ライン6、9にはpHスタットが備えられ
ており、アルカリ水溶液の供給をコントロールして、p
Hを所定範囲にしている。反応槽1、2にはそれぞれ恒
温槽10、11が備えられており、反応槽1、2には成
長した複数金属の酸化物粒子含有液を取り出すライン1
2、13がそれぞれ備えられており、出発原料の水溶液
の全供給流量と同じ流速で、後段の槽に連続的に供給
し、成長した複数金属の酸化物を取り出せるようになっ
ている。反応槽1、2の内部にはそれぞれ撹拌装置1
4、15に接続されている撹拌翼16、17がそれぞれ
備えられており、反応槽1、2内の諸条件を一定に保っ
ている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. A reaction tank 1 has a nickel salt aqueous solution supply line 3 and a different metal salt aqueous solution supply line 4.
, A habit crystal material supply line 5 and an alkaline aqueous solution supply line 6 are introduced, and a nickel salt aqueous solution supply line 7, a dissimilar metal salt supply line 8, and an alkaline aqueous solution supply line 9 are provided in the reaction tank 2. Has been introduced. The alkaline aqueous solution supply lines 6 and 9 are provided with pH stats to control the supply of the alkaline aqueous solution,
H is within a predetermined range. The reaction tanks 1 and 2 are provided with constant temperature baths 10 and 11, respectively. The reaction tanks 1 and 2 are provided with a line 1 for taking out a liquid containing oxide particles of a plurality of grown metals.
Nos. 2 and 13 are provided, and are continuously supplied to the subsequent tank at the same flow rate as the total supply flow rate of the aqueous solution of the starting material, so that oxides of a plurality of grown metals can be taken out. A stirring device 1 is provided inside each of the reaction tanks 1 and 2.
Stirring blades 16 and 17 connected to the reactors 4 and 15 are provided to keep various conditions in the reactors 1 and 2 constant.

【0017】ここでは、2段の反応晶析槽を経て粒子を
成長させる場合の構成を示したが、3段、または、それ
以上の段の反応槽でも同様な構成である。また、前記複
数金属の酸化物を成長させる反応晶析槽の他に、アンモ
ニウムイオンなどの媒晶剤を含む水溶液と反応させるた
めの槽、分級のための槽、水洗のための槽、導電材とし
てのCo酸化物をコーティングするための槽等を連結さ
せた構成としても良い。
Here, a configuration in which particles are grown through a two-stage reaction crystallization tank has been described. However, a similar configuration can be applied to a three-stage or more-stage reaction tank. Further, in addition to the reaction crystallization tank for growing the oxides of the plural metals, a tank for reacting with an aqueous solution containing a habit modifier such as ammonium ion, a tank for classification, a tank for washing, a conductive material It is good also as a structure which connected the tank etc. for coating Co oxide as the above.

【0018】[0018]

【実施例】次に、本発明の具体例について図面を参照し
ながら説明する。 (実施例1)まず、最後段の槽において、Ni以外の金
属塩を前段の槽より多く含むことで、複数の金属酸化物
層から形成される活物質粒子を得ることを目的とし、そ
の一例として、内部層が水酸化ニッケル、表面層がカル
シウム固溶水酸化ニッケルからなる構成の複数金属元素
の酸化物の製造法を具体的に示す。製造装置の構成は図
1に示す2段の連結した反応晶析槽1、2と同様の構成
であり、いずれも容積が3lのものを用いた。まず、2.
4mol/lの硫酸ニッケル水溶液、4.8mol/lのアンモニア水
溶液を準備した。そして、これらの溶液をそれぞれ平均
0.5ml/minの速度で反応槽1内に同時に供給し、槽内を5
0℃で一定に保った状態で素早く均一になるように攪拌
しながら、4.8mol/lの水酸化ナトリウム水溶液を平均0.
5ml/minで反応槽内のpH値が12.5±0.2の範囲内で保持す
るように添加した。反応槽内の状態が安定した後、平均
粒径12μmに成長した水酸化ニッケル粒子を含む懸濁液
を平均1.5ml/minの速度で反応槽2内に供給し、前記懸
濁液と同時に2.2mol/lの硝酸ニッケル水溶液および0.2m
ol/lの硝酸カルシウム水溶液をそれぞれ平均0.5ml/min
の速度で反応槽2内に供給し、槽内を50℃で一定に保っ
た状態で攪拌しながら、4.8mol/lの水酸化ナトリウム水
溶液を平均0.5ml/minで反応槽内のpH値が12±0.2の範囲
内で保持するように添加した。反応槽内の状態が安定し
た後、懸濁液を反応槽の上部よりオーバーフローさせて
連続的にサンプルを採取した。得られた懸濁液を遠心分
離して、上澄液をイオン交換水で置換し、流体中分級を
施すことによって、反応槽2内で生じたCaを粉末内部
にわたって含有する、Niを主とする酸化物の微結晶を
除去した後、水洗乾燥させたところ平均粒径12.5μmの
粉末を得た。
Next, a specific example of the present invention will be described with reference to the drawings. (Example 1) First, an object is to obtain active material particles formed from a plurality of metal oxide layers by including more metal salts than Ni in the last tank in the last tank. A method for producing an oxide of a plurality of metal elements in which the inner layer is composed of nickel hydroxide and the surface layer is composed of calcium-dissolved nickel hydroxide will be specifically described. The configuration of the production apparatus was the same as that of the two-stage connected reaction crystallization tanks 1 and 2 shown in FIG. 1, and each had a volume of 3 l. First, 2.
A 4 mol / l nickel sulfate aqueous solution and a 4.8 mol / l ammonia aqueous solution were prepared. And average these solutions
At the same time, feed into the reaction tank 1 at a rate of 0.5 ml / min.
While maintaining the temperature at 0 ° C. and stirring rapidly and uniformly, a 4.8 mol / l aqueous sodium hydroxide solution was added at an average of 0.1%.
It was added at 5 ml / min so that the pH value in the reaction tank was maintained within the range of 12.5 ± 0.2. After the condition in the reaction tank was stabilized, a suspension containing nickel hydroxide particles grown to an average particle size of 12 μm was supplied into the reaction tank 2 at an average rate of 1.5 ml / min, and simultaneously with the suspension, 2.2. mol / l nickel nitrate aqueous solution and 0.2m
ol / l calcium nitrate aqueous solution on average 0.5 ml / min each
4.8 mol / l sodium hydroxide aqueous solution at an average of 0.5 ml / min while the vessel is stirred at a constant temperature of 50 ° C. It was added to keep it within the range of 12 ± 0.2. After the condition in the reaction tank was stabilized, the suspension was allowed to overflow from the upper part of the reaction tank and samples were continuously collected. The obtained suspension was centrifuged, the supernatant was replaced with ion-exchanged water, and subjected to classification in a fluid, so that Ni generated mainly in the powder containing Ca generated in the reaction vessel 2 throughout the reaction tank 2 was mainly contained. After removing the oxide microcrystals, the powder was washed with water and dried to obtain a powder having an average particle size of 12.5 μm.

【0019】これに対して、比較例として従来のバッチ
式での製造方法の例を示す。製造装置の構成は図1に示
した反応槽1および2を独立に使用した。まず、前記と
同様にして反応槽1にて水酸化ニッケル粒子を平均粒径
12μmにまで成長させ、この懸濁液を反応槽の上部より
オーバーフローさせて連続的に取り出した。得られた懸
濁液に遠心分離を行い上澄液をイオン交換水で置換する
といった水洗の操作を数回繰り返した後、乾燥させた。
得られた乾燥粉末を反応槽2中に100g投入し、2.2mol/l
の硝酸ニッケル水溶液、0.2mol/lの硝酸カルシウム水溶
液、4.8mol/lのアンモニア水溶液をそれぞれ0.5mol/min
の速度で反応槽2内に同時に供給し、槽内を50℃で一定
に保った状態で撹拌しながら、4.8mol/lの水酸化ナトリ
ウム水溶液を平均0.5ml/minで反応槽内のpHが12±0.2の
範囲内で保持するように添加した。3時間経過後に反応
槽内の懸濁液を採取し、前記と同様にして流体中分級を
施すことによって、反応槽2内で生じたCaを粉末内部
にわたって含有する、Niを主とする酸化物の微結晶を
除去した後、水洗乾燥させたところ平均粒径12.5μmの
粉末を得た。
On the other hand, as a comparative example, an example of a conventional batch-type manufacturing method will be described. The configuration of the production apparatus used the reaction tanks 1 and 2 shown in FIG. 1 independently. First, in the same manner as described above, the nickel hydroxide particles
The suspension was grown to 12 μm, and this suspension was continuously taken out by overflowing from the upper part of the reaction tank. The obtained suspension was centrifuged, and the washing operation of replacing the supernatant with ion-exchanged water was repeated several times, and then dried.
100 g of the obtained dry powder is put into the reaction vessel 2 and 2.2 mol / l
Nickel nitrate aqueous solution, 0.2 mol / l calcium nitrate aqueous solution, 4.8 mol / l ammonia aqueous solution 0.5 mol / min each
At the same time and into the reaction tank 2 while stirring at a constant temperature of 50 ° C. while stirring the 4.8 mol / l aqueous sodium hydroxide solution at an average of 0.5 ml / min. It was added to keep it within the range of 12 ± 0.2. After a lapse of 3 hours, the suspension in the reaction tank is collected and subjected to classification in a fluid in the same manner as described above, so that an oxide mainly containing Ni containing Ca generated in the reaction tank 2 throughout the powder. After removing microcrystals, the product was washed with water and dried to obtain a powder having an average particle size of 12.5 μm.

【0020】前記本発明にて得られた複数金属元素の酸
化物粉末の断面のCaの特性X線像を図2に示す。図2
(a)は同粉末の断面のSEM像を示しており、図2(b)は
(a)と同位置にてCaの特性X線を検出した結果であ
り、白で示された部分にCaが存在していることを示し
ている。これより表面層と内部の層とで組成が異なって
おり、約0.5μmの表面層にCaが多く存在している様子
を観察することができた。また、バッチ式にて得られた
サンプルの特性X線像、組成分析の結果とほぼ一致して
いたことから、本発明においても従来のバッチ式と同様
なサンプルが得られることがわかった。さらに、両者の
電気化学的特性を評価した結果においても、ほぼ同様な
結果が得られた。
FIG. 2 shows a characteristic X-ray image of Ca of a cross section of the oxide powder of a plurality of metal elements obtained by the present invention. FIG.
(a) shows a SEM image of a cross section of the same powder, and FIG.
It is the result of detecting the characteristic X-ray of Ca at the same position as (a), and indicates that Ca is present in the portion shown in white. As a result, the composition was different between the surface layer and the inner layer, and it was possible to observe a state in which a large amount of Ca was present in the surface layer of about 0.5 μm. In addition, since the characteristic X-ray image and the result of the composition analysis of the sample obtained by the batch method almost coincided with each other, it was found that a sample similar to the conventional batch method was obtained in the present invention. Furthermore, in the results of evaluating the electrochemical characteristics of both, almost the same results were obtained.

【0021】なお、ここでは2段の反応晶析槽のうち、
最終段の槽において、Ca塩を前段の槽より多く含む場
合を示したが、Ti,Zn,Sr,Y,Ba,Cd,C
o,Cr,希土類金属,Biから選ばれた一種以上の金
属元素塩を前段より多く含む場合においても同様に、前
記金属元素を表面層に多く含むニッケルを主とする酸化
物粉末を連続的に得ることができた。
Here, of the two-stage reaction crystallization tank,
The case where the final stage contains more Ca salt than the previous stage is shown, but Ti, Zn, Sr, Y, Ba, Cd, C
Similarly, in the case where more than one metal element salt selected from the group consisting of o, Cr, rare earth metal, and Bi is contained in the former stage, the oxide powder mainly containing nickel whose surface layer contains a large amount of the metal element is continuously produced. I got it.

【0022】(実施例2)次に、最後段より前段の槽に
おいてNi以外の金属塩を次段の槽より多く含むこと
で、複数の金属酸化物層から形成される活物質粒子を得
ることを目的として、その一例として、内部層がマンガ
ン固溶水酸化ニッケル、表面層が水酸化ニッケルからな
る構成の複数金属元素の酸化物の製造法を具体的に示
す。製造装置の構成は図1に示す2段の連結した反応晶
析槽1、2と同様の構成であり、それぞれ容積が3lの
ものを用いた。まず、2.2mol/lの硫酸ニッケル水溶液、
0.2mol/lの硫酸マンガン水溶液、4.8mol/lのアンモニア
水溶液を準備した。そして、これらの溶液をそれぞれ平
均0.5ml/minの速度で反応槽1内に同時に供給し、槽内
を50℃で一定に保った状態で素早く均一になるように攪
拌しながら、4.8mol/lの水酸化ナトリウム水溶液を平均
0.5ml/minで反応槽内のpH値が12.0±0.2の範囲内で保持
するように添加した。反応槽内の状態が安定した後、平
均粒径12μmに成長したマンガン固溶水酸化ニッケル粒
子を含む懸濁液を平均2.0ml/minの速度で反応槽2内に
供給し、前記懸濁液と同時に2.4mol/lの硫酸ニッケル水
溶液を平均0.5ml/minの速度で反応槽2内に供給し、槽
内を50℃で一定に保った状態で攪拌しながら、4.8mol/l
の水酸化ナトリウム水溶液を平均0.5ml/minで反応槽内
のpH値が12.5±0.2の範囲内で保持するように添加し
た。反応槽内の状態が安定した後、懸濁液を反応槽の上
部よりオーバーフローさせて連続的にサンプルを採取し
た。得られた懸濁液に遠心分離を行い上澄液をイオン交
換水で置換し、流体中分級を施すことによって、反応槽
2内で生じたNiを主とする酸化物の微結晶を除去した
後、水洗乾燥させたところ平均粒径12.5μmの粉末を得
た。
(Example 2) Next, the active material particles formed of a plurality of metal oxide layers are obtained by containing more metal salts than Ni in the former tank than the last tank in the next tank. As an example, a method for producing an oxide of a plurality of metal elements in which the inner layer is composed of manganese solid solution nickel hydroxide and the surface layer is composed of nickel hydroxide will be specifically described. The configuration of the production apparatus was the same as that of the two-stage connected reaction crystallization tanks 1 and 2 shown in FIG. 1 and each had a volume of 3 l. First, a 2.2 mol / l nickel sulfate aqueous solution,
A 0.2 mol / l manganese sulfate aqueous solution and a 4.8 mol / l ammonia aqueous solution were prepared. Then, these solutions were simultaneously supplied into the reaction tank 1 at an average rate of 0.5 ml / min, and 4.8 mol / l while rapidly and uniformly stirring while keeping the inside of the tank constant at 50 ° C. Average sodium hydroxide solution
It was added at 0.5 ml / min so that the pH value in the reaction tank was maintained within the range of 12.0 ± 0.2. After the condition in the reaction tank was stabilized, a suspension containing manganese-dissolved nickel hydroxide particles grown to an average particle diameter of 12 μm was supplied into the reaction tank 2 at an average speed of 2.0 ml / min. At the same time, a 2.4 mol / l aqueous solution of nickel sulfate is supplied into the reaction tank 2 at an average rate of 0.5 ml / min, and while the inside of the tank is kept constant at 50 ° C., stirring is performed at 4.8 mol / l.
Of sodium hydroxide was added at an average of 0.5 ml / min so that the pH value in the reaction tank was maintained within the range of 12.5 ± 0.2. After the condition in the reaction tank was stabilized, the suspension was allowed to overflow from the upper part of the reaction tank and samples were continuously collected. The obtained suspension was subjected to centrifugation, the supernatant was replaced with ion-exchanged water, and classification was performed in a fluid to remove fine crystals of oxides mainly composed of Ni generated in the reaction tank 2. Thereafter, the resultant was washed with water and dried to obtain a powder having an average particle diameter of 12.5 μm.

【0023】これに対し、比較例として、従来のバッチ
式での製造方法の例を示す。製造装置の構成は図1に示
した反応槽1および2を独立に使用した。まず、前記と
同様にして反応槽1にてマンガン固溶水酸化ニッケル粒
子を平均粒径12μmにまで成長させ、この懸濁液を反応
槽の上部よりオーバーフローさせて連続的に取り出し
た。得られた懸濁液に遠心分離を行い上澄液をイオン交
換水で置換するといった水洗の操作を数回繰り返した
後、乾燥させた。得られた乾燥粉末を反応槽2中に100g
投入し、2.4mol/lの硫酸ニッケル水溶液、4.8mol/lのア
ンモニア水溶液をそれぞれ0.5mol/minの速度で反応槽2
内に同時に供給し、槽内を50℃で一定に保った状態で撹
拌しながら、4.8mol/lの水酸化ナトリウム水溶液を平均
0.5ml/minで反応槽内のpHが12.5±0.2の範囲内で保持す
るように添加した。3時間経過後に反応槽内の懸濁液を
採取し、前記と同様にして流体中分級を施すことによっ
て、反応槽2内で生じたNiを主とする酸化物の微結晶を
除去した後、水洗乾燥させたところ平均粒径12.5μmの
粉末を得た。
On the other hand, as a comparative example, an example of a conventional batch-type manufacturing method will be described. The configuration of the production apparatus used the reaction tanks 1 and 2 shown in FIG. 1 independently. First, manganese-dissolved nickel hydroxide particles were grown to an average particle size of 12 μm in the reaction tank 1 in the same manner as described above, and the suspension was continuously overflowed from the top of the reaction tank and taken out. The obtained suspension was centrifuged, and the washing operation of replacing the supernatant with ion-exchanged water was repeated several times, and then dried. 100 g of the obtained dry powder in the reaction tank 2
Then, a 2.4 mol / l nickel sulfate aqueous solution and a 4.8 mol / l ammonia aqueous solution were added at a rate of 0.5 mol / min to the reaction tank 2.
4.8 mol / l aqueous sodium hydroxide solution on average while stirring while keeping the inside of the tank constant at 50 ° C.
It was added at 0.5 ml / min so that the pH in the reaction tank was maintained within the range of 12.5 ± 0.2. After a lapse of 3 hours, the suspension in the reaction tank was collected and subjected to classification in a fluid in the same manner as described above to remove fine crystals of oxides mainly composed of Ni generated in the reaction tank 2. After washing and drying, a powder having an average particle size of 12.5 μm was obtained.

【0024】前記本発明と従来方法にて得られた複数金
属元素の酸化物粉末の断面の特性X線像を比較したとこ
ろ、両者とも表面層と内部の層とで組成が異なってお
り、約0.5μmの表面層においてはMnを含まない水酸化
ニッケルである様子を観察することができた。この結果
より、本発明においても従来のバッチ式と同様なサンプ
ルが得られることがわかった。さらに、両者の電気化学
的特性を評価した結果においても、ほぼ同様な結果が得
られた。
A comparison of the characteristic X-ray images of the cross-sections of the oxide powders of a plurality of metal elements obtained by the present invention and the conventional method shows that both have different compositions between the surface layer and the inner layer. In the surface layer of 0.5 μm, it was possible to observe a state of nickel hydroxide containing no Mn. From these results, it was found that a sample similar to the conventional batch type can be obtained in the present invention. Furthermore, in the results of evaluating the electrochemical characteristics of both, almost the same results were obtained.

【0025】なお、ここではMn塩を最終槽より多く含
む場合を示したが、Al,V,Cr,Fe,Cu,G
e,Zr,Nb,Mo,Ag,Sn,Wから選ばれた一
種以上の金属元素塩を前段より多く含む場合においても
同様に、前記金属元素を内部層に多く含むニッケルを主
とする酸化物粉末を得ることができた。 (実施例3)次に、隣接する段の槽において、Ni以外
の金属塩の種類を変えることで、複数の金属酸化物の層
から形成される活物質粒子を得ることを目的として、そ
の一例として、内部層がマンガン固溶水酸化ニッケル、
表面層がカルシウム固溶水酸化ニッケルからなる構成の
複数金属元素の酸化物の製造法を具体的に示す。製造装
置の構成は図1に示す2段の連結した反応晶析槽1、2
と同様の構成であり、それぞれ容積が3lのものを用い
た。 まず、2.2mol/lの硫酸ニッケル水溶液、0.2mol/l
の硫酸マンガン水溶液、4.8mol/lのアンモニア水溶液を
準備した。そして、これらの溶液をそれぞれ平均0.5ml/
minの速度で反応槽1内に同時に供給し、槽内を50℃で
一定に保った状態で素早く均一になるように攪拌しなが
ら、4.8mol/lの水酸化ナトリウム水溶液を平均0.5ml/mi
nで反応槽内のpH値が12.0±0.2の範囲内で保持するよう
に添加した。反応槽内の状態が安定した後、平均粒径12
μmに成長したマンガン固溶水酸化ニッケル粒子を含む
懸濁液を平均2.0ml/minの速度で反応槽2内に供給し、
それと同時に2.2mol/lの硝酸ニッケル水溶液、0.2mol/l
の硝酸カルシウム水溶液をそれぞれ平均0.5ml/minの速
度で反応槽2内に供給し、槽内を50℃で一定に保った状
態で攪拌しながら、4.8mol/lの水酸化ナトリウム水溶液
を平均0.5ml/minで反応槽内のpH値が12.0±0.2の範囲内
で保持するように添加した。反応槽内の状態が安定した
後、懸濁液を反応槽の上部よりオーバーフローさせて連
続的にサンプルを採取した。得られた懸濁液に遠心分離
を行い上澄液をイオン交換水で置換し、流体中分級を施
すことによって反応槽2内で生じたCaを粉末内部にわ
たって含有する、Niを主とする酸化物の微結晶を除去
した後、水洗乾燥させたところ平均粒径12.5μmの粉末
を得た。
Although the case where the Mn salt is contained more than the final tank is shown here, Al, V, Cr, Fe, Cu, G
Similarly, in the case where more than one kind of metal element salt selected from e, Zr, Nb, Mo, Ag, Sn, and W is contained in the former stage, similarly, an oxide mainly containing nickel containing more of the metal element in the inner layer A powder could be obtained. (Example 3) Next, in an adjacent tank, an example is given in which the type of metal salt other than Ni is changed to obtain active material particles formed from a plurality of metal oxide layers. The inner layer is manganese solid solution nickel hydroxide,
A method for producing an oxide of a plurality of metal elements in which the surface layer is composed of calcium-dissolved nickel hydroxide will be specifically described. The structure of the production apparatus is shown in FIG.
, Each having a volume of 3 l. First, 2.2 mol / l nickel sulfate aqueous solution, 0.2 mol / l
Manganese sulfate aqueous solution and 4.8 mol / l ammonia aqueous solution were prepared. Each of these solutions was averaged 0.5 ml /
At the same time, the solution was fed into the reaction tank 1 at a rate of 50 min.
It was added so that the pH value in the reaction tank was maintained within the range of 12.0 ± 0.2 with n. After the condition in the reactor is stabilized, the average particle size is 12
The suspension containing the manganese-dissolved nickel hydroxide particles grown to μm is supplied into the reaction vessel 2 at an average speed of 2.0 ml / min.
At the same time, 2.2mol / l nickel nitrate aqueous solution, 0.2mol / l
Is supplied into the reaction vessel 2 at an average rate of 0.5 ml / min. While stirring the vessel while keeping the inside of the vessel at 50 ° C., a 4.8 mol / l aqueous solution of sodium hydroxide is added on average to 0.5 ml / min. It was added at a rate of ml / min so that the pH value in the reaction tank was maintained within the range of 12.0 ± 0.2. After the condition in the reaction tank was stabilized, the suspension was allowed to overflow from the upper part of the reaction tank and samples were continuously collected. The obtained suspension is subjected to centrifugal separation, the supernatant is replaced with ion-exchanged water, and subjected to classification in a fluid. After removing fine crystals of the product, the product was washed with water and dried to obtain a powder having an average particle size of 12.5 μm.

【0026】これに対し、比較例として、従来のバッチ
式での製造方法の例を示す。製造装置の構成は図1に示
した反応槽1および2を独立に使用した。まず、前記と
同様にして反応槽1にてマンガン固溶水酸化ニッケル粒
子を平均粒径12μmにまで成長させ、この懸濁液を反応
槽の上部よりオーバーフローさせて連続的に取り出し
た。得られた懸濁液に遠心分離を行い上澄液をイオン交
換水で置換するといった水洗の操作を数回繰り返した
後、乾燥させた。得られた乾燥粉末を反応槽2中に100g
投入し、2.2mol/lの硝酸ニッケル水溶液、0.2mol/lの硝
酸カルシウム水溶液および4.8mol/lのアンモニア水溶液
をそれぞれ0.5mol/minの速度で反応槽2内に同時に供給
し、槽内を50℃で一定に保った状態で撹拌しながら、4.
8mol/lの水酸化ナトリウム水溶液を平均0.5ml/minで反
応槽内のpHが12.0±0.2の範囲内で保持するように添加
した。3時間経過後に反応槽内の懸濁液を採取し、前記
と同様にして流体中分級を施すことによって、反応槽2
内で生じたCaを粉末内部にわたって含有するNiを主
とする酸化物の微結晶を除去した後、水洗乾燥させたと
ころ平均粒径12.5μmの粉末を得た。
On the other hand, as a comparative example, an example of a conventional batch-type manufacturing method will be described. The configuration of the production apparatus used the reaction tanks 1 and 2 shown in FIG. 1 independently. First, manganese-dissolved nickel hydroxide particles were grown to an average particle size of 12 μm in the reaction tank 1 in the same manner as described above, and the suspension was continuously overflowed from the top of the reaction tank and taken out. The obtained suspension was centrifuged, and the washing operation of replacing the supernatant with ion-exchanged water was repeated several times, and then dried. 100 g of the obtained dry powder in the reaction tank 2
Then, a 2.2 mol / l aqueous solution of nickel nitrate, a 0.2 mol / l aqueous solution of calcium nitrate, and a 4.8 mol / l aqueous solution of ammonia were simultaneously supplied into the reaction vessel 2 at a rate of 0.5 mol / min. While stirring at a constant temperature of 4.degree.
An 8 mol / l sodium hydroxide aqueous solution was added at an average of 0.5 ml / min so that the pH in the reaction vessel was maintained within a range of 12.0 ± 0.2. After a lapse of 3 hours, the suspension in the reaction tank was sampled, and classified in a fluid in the same manner as described above.
After removing microcrystals of an oxide mainly containing Ni containing Ca generated inside the powder, the powder was washed with water and dried to obtain a powder having an average particle diameter of 12.5 μm.

【0027】前記本発明と従来方法にて得られた複数金
属元素の酸化物粉末の断面の特性X線像を比較したとこ
ろ、両者とも表面層と内部の層とで組成が異なってお
り、約0.5μmの表面層においてはCaを多く含み、内部
層においてはMnを多く含む様子を観察することができ
た。この結果より、本発明においても従来のバッチ式と
同様なサンプルが得られることがわかった。さらに、両
者の電気化学的特性を評価した結果においても、ほぼ同
様な結果が得られた。
Comparison of the characteristic X-ray images of the cross-sections of the oxide powders of a plurality of metal elements obtained by the present invention and the conventional method revealed that both had different compositions between the surface layer and the inner layer. It was observed that the surface layer of 0.5 μm contained a large amount of Ca and the internal layer contained a large amount of Mn. From these results, it was found that a sample similar to the conventional batch type can be obtained in the present invention. Furthermore, in the results of evaluating the electrochemical characteristics of both, almost the same results were obtained.

【0028】なお、ここでは最終段の槽においてはCa
塩を多く含み、最終段の前段の槽においてはMn塩を多
く含む場合を示したが、最終段の槽においてTi,Z
n,Sr,Y,Ba,Cd,Co,Cr,希土類金属,
Biから選ばれた一種以上の金属元素塩を前段より多く
含み、かつ、最終段の前段の槽においてAl,V,C
r,Fe,Cu,Ge,Zr,Nb,Mo,Ag,S
n,Wから選ばれた一種以上の金属元素塩を最終段より
多く含む場合においても同様に、表面層と内部層で組成
の異なるニッケルを主とする酸化物粉末を得ることがで
きた。
Here, in the final stage tank, Ca
Although the case where a large amount of salt is contained and a large amount of Mn salt is contained in the preceding stage of the final stage, the case where Ti, Z
n, Sr, Y, Ba, Cd, Co, Cr, rare earth metal,
Bi contains more than one kind of metal element salt selected from Bi, and Al, V, C
r, Fe, Cu, Ge, Zr, Nb, Mo, Ag, S
Similarly, in the case where more than one kind of metal element salt selected from n and W was contained in the final stage, an oxide powder mainly composed of nickel having different compositions in the surface layer and the inner layer could be obtained.

【0029】(実施例4)次に、3段以上の反応晶析槽
を用い、それぞれの段における金属塩の組成または種類
を変えることで、複数の金属酸化物層から形成される活
物質粒子を得ることを目的として、その一例として、内
部層がマンガン固溶水酸化ニッケル、その外側の層がア
ルミニウム固溶水酸化ニッケル、さらに外側の層(表面
層)がカルシウム固溶水酸化ニッケルからなる3層構造
の複数金属元素の酸化物の製造法を具体的に示す。製造
装置の構成は図3に示す3段の連結した反応晶析槽1
8、19、20と同様の構成であり、それぞれ容積が3
lのものを用いた。まず、2.2mol/lの硫酸ニッケル水溶
液、0.2mol/lの硫酸マンガン水溶液、4.8mol/lのアンモ
ニア水溶液を準備した。そして、これらの溶液をそれぞ
れ平均0.5ml/minの速度で反応槽18内に同時に供給
し、槽内を50℃で一定に保った状態で素早く均一になる
ように攪拌しながら、4.8mol/lの水酸化ナトリウム水溶
液を平均0.5ml/minで反応槽内のpH値が12.0±0.2の範囲
内で保持するように添加した。反応槽内の状態が安定し
た後、平均粒径12μmに成長したマンガン固溶水酸化ニ
ッケル粒子を含む懸濁液を平均2.0ml/minの速度で反応
槽19内に供給し、前記懸濁液と同時に2.2mol/lの硫酸
ニッケル水溶液、0.2mol/lの硫酸アルミニウム水溶液を
それぞれ平均0.5ml/minの速度で反応槽19内に供給
し、槽内を50℃で一定に保った状態で攪拌しながら、4.
8mol/lの水酸化ナトリウム水溶液を平均0.5ml/minで反
応槽内のpH値が12.5±0.2の範囲内で保持するように添
加した。反応槽内の状態が安定した後、平均粒径12.5μ
mに成長したアルミニウム固溶水酸化ニッケルを表面層
に有すマンガン固溶水酸化ニッケル粒子を懸濁液を平均
3.5ml/minの速度で反応槽20内に供給し、前記懸濁液
と同時に2.2mol/lの硝酸ニッケル水溶液、0.2mol/lの硝
酸カルシウム水溶液をそれぞれ平均0.5ml/minの速度で
反応槽20内に供給し、槽内を50℃で一定に保った状態
で撹拌しながら、4.8mol/lの水酸化ナトリウム水溶液を
平均0.5ml/minで反応槽内のpH値が12.0±0.2の範囲内で
保持するように添加した。反応槽内の状態が安定した
後、懸濁液を反応槽の上部よりオーバーフローさせて連
続的にサンプルを採取した。得られた懸濁液に遠心分離
を行い上澄液をイオン交換水で置換し、流体中分級を施
すことによって、反応槽20内で生じたCaを粉末内部
にわたって含有するNiを主とする酸化物の微結晶を除
去した後、水洗乾燥させたところ平均粒径12.7μmの粉
末を得た。
Example 4 Next, active material particles formed from a plurality of metal oxide layers by using three or more stages of reaction crystallization tanks and changing the composition or type of metal salt in each stage. For the purpose of obtaining, as an example, the inner layer is made of manganese solid solution nickel hydroxide, the outer layer is made of aluminum solid solution nickel hydroxide, and the outer layer (surface layer) is made of calcium solid solution nickel hydroxide. A method for producing an oxide of a plurality of metal elements having a three-layer structure will be specifically described. The structure of the manufacturing apparatus is a three-stage connected reaction crystallization tank 1 shown in FIG.
8, 19, and 20, each having a volume of 3
1 was used. First, a 2.2 mol / l nickel sulfate aqueous solution, a 0.2 mol / l manganese sulfate aqueous solution, and a 4.8 mol / l ammonia aqueous solution were prepared. Then, these solutions were simultaneously supplied into the reaction tank 18 at an average rate of 0.5 ml / min, respectively, and stirred at 4.8 mol / l while keeping the inside of the tank constant at 50 ° C. so as to quickly and uniformly. Sodium hydroxide aqueous solution was added at an average of 0.5 ml / min so that the pH value in the reaction tank was kept within a range of 12.0 ± 0.2. After the condition in the reaction tank was stabilized, a suspension containing manganese-dissolved nickel hydroxide particles grown to an average particle diameter of 12 μm was supplied into the reaction tank 19 at an average speed of 2.0 ml / min. At the same time, a 2.2 mol / l aqueous solution of nickel sulfate and a 0.2 mol / l aqueous solution of aluminum sulfate were respectively supplied into the reaction vessel 19 at an average rate of 0.5 ml / min, and the vessel was stirred at a constant temperature of 50 ° C. While 4.
An 8 mol / l sodium hydroxide aqueous solution was added at an average of 0.5 ml / min so that the pH value in the reaction vessel was maintained within a range of 12.5 ± 0.2. After the condition in the reactor is stabilized, the average particle size is 12.5μ
A suspension of manganese-dissolved nickel hydroxide particles with aluminum-dissolved nickel hydroxide grown on the surface layer
The solution was supplied into the reaction vessel 20 at a rate of 3.5 ml / min, and simultaneously with the suspension, a 2.2 mol / l aqueous solution of nickel nitrate and a 0.2 mol / l aqueous solution of calcium nitrate were each supplied at an average rate of 0.5 ml / min. The pH value in the reaction tank is in the range of 12.0 ± 0.2 at an average of 0.5 ml / min while stirring while maintaining the inside of the tank at 50 ° C. while keeping the inside of the tank constant at 50 ° C. It was added so as to keep within. After the condition in the reaction tank was stabilized, the suspension was allowed to overflow from the upper part of the reaction tank and samples were continuously collected. The obtained suspension is centrifuged, the supernatant is replaced with ion-exchanged water, and classification is performed in a fluid, so that oxidation generated mainly in Ni containing Ca generated in the reaction tank 20 throughout the inside of the powder is performed. After removing the fine crystals of the product, the product was washed with water and dried to obtain a powder having an average particle size of 12.7 μm.

【0030】これに対して、従来のバッチ式での製造方
法の例を示す。製造装置の構成は図3に示した反応槽1
8、19および20を独立に使用した。まず、前記と同
様にして反応槽18にてマンガン固溶水酸化ニッケル粒
子を平均粒径12μmにまで成長させ、この懸濁液を反応
槽の上部よりオーバーフローさせて連続的に取り出し
た。得られた懸濁液に遠心分離を行い上澄液をイオン交
換水で置換するといった水洗の操作を数回繰り返した
後、乾燥させた。得られた乾燥粉末を反応槽19中に10
0g投入し、2.2mol/lの硫酸ニッケル水溶液、0.2mol/lの
硫酸アルミニウム水溶液、4.8mol/lのアンモニア水溶液
をそれぞれ0.5mol/minの速度で反応槽19内に同時に供
給し、槽内を50℃で一定に保った状態で撹拌しながら、
4.8mol/lの水酸化ナトリウム水溶液を平均0.5ml/minで
反応槽内のpHが12.5±0.2の範囲内で保持するように添
加した。3時間経過後に反応槽内の懸濁液を採取した。
得られた懸濁液に遠心分離を行い上澄液をイオン交換水
で置換するといった水洗の操作を数回繰り返した後、乾
燥させた。得られた乾燥粉末を反応槽20中に100g投入
し、2.2mol/lの硝酸ニッケル水溶液、0.2mol/lの硝酸カ
ルシウム水溶液、4.8mol/lのアンモニア水溶液をそれぞ
れ0.5mol/minの速度で反応槽20内に同時に供給し、槽
内を50℃で一定に保った状態で撹拌しながら、4.8mol/l
の水酸化ナトリウム水溶液を平均0.5ml/minで反応槽内
のpHが12.5±0.2の範囲内で保持するように添加した。
3時間経過後に反応槽内の懸濁液を採取し、前記と同様
にして流体中分級を施すことによって、反応槽20内で
生じたCaを粉末内部にわたって含有する、Niを主と
する酸化物の微結晶を除去した後、水洗乾燥させたとこ
ろ平均粒径12.7μmの粉末を得た。
On the other hand, an example of a conventional batch-type manufacturing method will be described. The configuration of the manufacturing apparatus is the reaction tank 1 shown in FIG.
8, 19 and 20 were used independently. First, manganese-solid-dissolved nickel hydroxide particles were grown to an average particle size of 12 μm in the reaction tank 18 in the same manner as described above, and the suspension was continuously overflowed from the top of the reaction tank and taken out. The obtained suspension was centrifuged, and the washing operation of replacing the supernatant with ion-exchanged water was repeated several times, and then dried. The obtained dry powder is placed in a reaction vessel 19 for 10 minutes.
0 g, a 2.2 mol / l nickel sulfate aqueous solution, a 0.2 mol / l aluminum sulfate aqueous solution, and a 4.8 mol / l ammonia aqueous solution were simultaneously supplied to the reaction vessel 19 at a rate of 0.5 mol / min, respectively. While stirring at 50 ° C,
A 4.8 mol / l sodium hydroxide aqueous solution was added at an average of 0.5 ml / min so that the pH in the reaction vessel was maintained within a range of 12.5 ± 0.2. After a lapse of 3 hours, the suspension in the reaction tank was collected.
The obtained suspension was centrifuged, and the washing operation of replacing the supernatant with ion-exchanged water was repeated several times, and then dried. 100 g of the obtained dry powder is put into the reaction vessel 20, and a 2.2 mol / l aqueous nickel nitrate solution, a 0.2 mol / l aqueous calcium nitrate solution, and a 4.8 mol / l aqueous ammonia solution are reacted at a rate of 0.5 mol / min each. 4.8 mol / l while simultaneously feeding into the tank 20 and stirring while keeping the inside of the tank constant at 50 ° C.
Of sodium hydroxide was added at an average of 0.5 ml / min so that the pH in the reaction tank was maintained within the range of 12.5 ± 0.2.
After a lapse of 3 hours, the suspension in the reaction tank was collected and subjected to classification in a fluid in the same manner as described above, whereby an oxide mainly containing Ni containing Ca generated in the reaction tank 20 throughout the powder was obtained. After removing microcrystals, the powder was washed with water and dried to obtain a powder having an average particle size of 12.7 μm.

【0031】前記本発明と従来方法にて得られた複数金
属元素の酸化物粉末の断面の特性X線像を比較したとこ
ろ、両者とも3層構造を有しておりそれぞれの層で組成
が異なっており、約0.2μmの表面層においてはCaを多
く含む水酸化ニッケルであり、約0.5μmの中間層におい
てはAlを多く含む水酸化ニッケルであり、内部層におい
てはMnを多く含む水酸化ニッケルである様子を観察す
ることができた。この結果より、本発明においても従来
のバッチ式と同様なサンプルが得られることがわかっ
た。さらに、両者の電気化学的特性を評価した結果にお
いても、ほぼ同様な結果が得られた。
A comparison of the characteristic X-ray images of the cross-sections of the oxide powders of a plurality of metal elements obtained by the present invention and the conventional method shows that both have a three-layer structure, and each layer has a different composition. The surface layer of about 0.2 μm is nickel hydroxide containing a large amount of Ca, the intermediate layer of about 0.5 μm is nickel hydroxide containing a large amount of Al, and the internal layer is nickel hydroxide containing a large amount of Mn. Was observed. From these results, it was found that a sample similar to the conventional batch type can be obtained in the present invention. Furthermore, in the results of evaluating the electrochemical characteristics of both, almost the same results were obtained.

【0032】なお、ここでは最終段の槽においてはCa
塩を多く含み、前段の槽においてはAl塩、Mn塩を多
く含む場合を示したが、最終段の槽においてTi,Z
n,Sr,Y,Ba,Cd,Co,Cr,希土類金属,
Biから選ばれた一種以上の金属元素塩を前段より多く
含み、かつ、前段の槽においてV,Cr,Fe,Cu,
Ge,Zr,Nb,Mo,Ag,Sn,Wから選ばれた
一種以上の金属元素塩を最終段より多く含む場合におい
ても同様に、組成の異なる3層構造のニッケルを主とす
る酸化物粉末を得ることができた。
Here, in the final tank, Ca
Although the case where a large amount of salt is contained and the former tank contains a large amount of Al salt and Mn salt is shown, the final tank contains Ti, Z.
n, Sr, Y, Ba, Cd, Co, Cr, rare earth metal,
Bi contains more than one kind of metal element salt selected from Bi, and V, Cr, Fe, Cu,
Similarly, in the case where more than one kind of metal element salt selected from Ge, Zr, Nb, Mo, Ag, Sn, and W is contained in the final stage, similarly, an oxide powder mainly composed of nickel having a three-layer structure and different compositions. Could be obtained.

【0033】また、ここでは3段の反応晶析槽を経て粒
子を成長させる場合を例として挙げたが、それ以上の段
の反応晶析槽においても同様に内部と表面層の組成の異
なる多層構造のニッケルを主とする酸化物粉末を得るこ
とができた。以上の本発明の実施例より、多段の反応晶
析装置を用い、互いに隣接する段の槽における金属群塩
の組成または種類を変えることで、複数の金属酸化物の
層から形成される活物質粒子を製造することが可能とな
る。また、連続的に製造することができることから、従
来のバッチ式と比較して量産性の向上を図ることができ
る。
Also, the case where the particles are grown through a three-stage reaction crystallization tank has been described as an example here, but a multi-layer reaction crystallization tank of a further stage also has a different composition between the inner and surface layers. An oxide powder mainly composed of nickel was obtained. According to the above-described embodiments of the present invention, an active material formed from a plurality of metal oxide layers by using a multi-stage reaction crystallization apparatus and changing the composition or type of the metal group salt in the tanks adjacent to each other is used. Particles can be produced. In addition, since it can be manufactured continuously, mass productivity can be improved as compared with the conventional batch method.

【0034】[0034]

【発明の効果】以上のように本発明によれば、複数の連
続する多段反応晶析槽を用い、前記反応晶析槽の互いに
隣接する段の層における酸化物を形成するための金属群
塩の組成または種類を変えることで、中心部から表面に
向かって複数の層から形成されるNiを主たる金属元素
とする複数金属元素の酸化物粒子を連続的に成長させ、
従来のバッチ式と比較して工程を大幅に簡略化すること
ができ、量産性の向上を図ることができる。
As described above, according to the present invention, a plurality of continuous multi-stage reaction crystallization tanks are used, and a metal group salt for forming oxides in adjacent layers of the reaction crystallization tanks is used. By changing the composition or the type of, the oxide particles of a plurality of metal elements having Ni as a main metal element formed from a plurality of layers from the center toward the surface are continuously grown,
The process can be greatly simplified as compared with the conventional batch method, and mass productivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態(2つの反応晶析槽を連
結した形態)によるアルカリ蓄電池正極活物質の製造装
置を示すモデル図
FIG. 1 is a model diagram showing an apparatus for producing a positive electrode active material for an alkaline storage battery according to an embodiment of the present invention (an embodiment in which two reaction crystallization tanks are connected).

【図2】本発明の製造方法によって得られた表面層がC
a固溶水酸化ニッケルで内部の層が水酸化ニッケルから
なる複数金属元素の酸化物粉末の断面形状を示す電子顕
微鏡写真と、これに対応して特性X線によりCaの分布
状態を観察した写真
FIG. 2 shows that the surface layer obtained by the production method of the present invention is C
(a) An electron micrograph showing the cross-sectional shape of the oxide powder of a plurality of metal elements in which the inner layer is made of solid-solution nickel hydroxide and consisting of nickel hydroxide, and a corresponding X-ray photograph showing the distribution of Ca by characteristic X-rays

【図3】本発明の一実施の形態(3つの反応晶析槽を連
結した形態)によるアルカリ蓄電池用正極活物質の製造
装置を示すモデル図
FIG. 3 is a model diagram showing an apparatus for manufacturing a positive electrode active material for an alkaline storage battery according to an embodiment of the present invention (an embodiment in which three reaction crystallization tanks are connected).

【符号の説明】[Explanation of symbols]

1.反応槽 2.反応槽 3.ニッケル塩水溶液供給ライン 4.異種金属塩水溶液供給ライン 5.媒晶材供給ライン 6.アルカリ水溶液供給ライン 7.ニッケル塩水溶液供給ライン 8.異種金属塩水溶液供給ライン 9.アルカリ水溶液供給ライン 10.恒温槽 11.恒温槽 12.スラリーオーバーフローライン 13.スラリー出口ライン 14.撹拌装置 15.撹拌装置 16.撹拌翼 17.撹拌翼 18.反応槽 19.反応槽 20.反応槽 21.ニッケル塩水溶液供給ライン 22.異種金属塩水溶液供給ライン 23.媒晶剤供給ライン 24.アルカリ水溶液供給ライン 25.ニッケル塩水溶液供給ライン 26.異種金属塩水溶液供給ライン 27.アルカリ水溶液供給ライン 28.ニッケル塩水溶液供給ライン 29.異種金属塩水溶液供給ライン 30.アルカリ水溶液供給ライン 31.スラリーオーバーフローライン 32.スラリーオーバーフローライン 33.スラリー出口ライン 34.恒温槽 35.恒温槽 36.恒温槽 37.撹拌装置 38.撹拌装置 39.撹拌装置 40.撹拌翼 41.撹拌翼 42.撹拌翼 1. Reaction tank 2. Reaction tank 3. Nickel salt aqueous solution supply line 4. Dissimilar metal salt aqueous solution supply line 5. Habit crystal material supply line 6. Alkaline aqueous solution supply line 7. Nickel salt aqueous solution supply line 8. Foreign metal salt aqueous supply Line 9. Alkaline aqueous solution supply line 10. Constant temperature bath 11. Constant temperature bath 12. Slurry overflow line 13. Slurry outlet line 14. Stirrer 15. Stirrer 16. Stirrer blade 17. Stirrer blade 18. Reaction tank 19. Reaction tank 20 Reaction tank 21. Nickel salt aqueous solution supply line 22. Dissimilar metal salt aqueous solution supply line 23. Medium crystal agent supply line 24. Alkaline aqueous solution supply line 25. Nickel salt aqueous solution supply line 26. Foreign metal salt aqueous solution supply line 27. Alkaline aqueous solution Supply line 28. Nickel salt aqueous solution supply line 29. Dissimilar metal salt aqueous solution supply line 30. Alkaline aqueous solution supply line 31. Slurry overflow line 32. Slurry overflow line 33. Slurry outlet line 34. Constant temperature bath 35. Constant temperature bath 36. Constant temperature bath 37. Stirrer 38. Stirrer 39. Stirrer 40. Stirrer blade 41. Stirrer blade 42. Stirring blade

フロントページの続き (72)発明者 和泉 陽一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuing on the front page (72) Inventor Yoichi Izumi 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質の粒子が中心部から表面に向
かって複数の層から形成され、各層はNiを主たる金属
元素とする複数金属元素の酸化物からなるアルカリ蓄電
池用正極活物質の製造方法であって、複数の連続する多
段反応晶析槽を経て複数金属元素の塩の水溶液とアルカ
リ水溶液を反応させて前記酸化物を所望の粒子径に連続
的に成長させる工程において、 前記反応晶析槽の互いに隣接する段の槽における酸化物
を形成するための金属群塩の組成または種類は、互いに
異なることを特徴とするアルカリ蓄電池用正極活物質の
製造方法。
1. Production of a positive electrode active material for an alkaline storage battery, wherein particles of the positive electrode active material are formed from a plurality of layers from the center to the surface, each layer comprising an oxide of a plurality of metal elements having Ni as a main metal element. A step of reacting an aqueous solution of a salt of a plurality of metal elements with an aqueous alkali solution through a plurality of continuous multi-stage reaction crystallization tanks to continuously grow the oxide to a desired particle size. A method for producing a positive electrode active material for an alkaline storage battery, wherein compositions or types of metal group salts for forming an oxide in tanks adjacent to each other in a deposition tank are different from each other.
【請求項2】 多段の反応晶析槽のうち、最後段の槽の
金属元素群塩は、Niのほかに、Ca,Ti,Zn,S
r,Y,Ba,Cd,Co,Cr,希土類金属,Biか
ら選ばれた少なくとも一種の金属元素塩を前段の槽より
多く含むことを特徴とする請求項1記載のアルカリ蓄電
池用正極活物質の製造方法。
2. The metal element group salt in the last tank of the multi-stage reaction crystallization tank is Ca, Ti, Zn, S in addition to Ni.
2. A positive electrode active material for an alkaline storage battery according to claim 1, wherein said positive electrode active material contains at least one metal element salt selected from the group consisting of r, Y, Ba, Cd, Co, Cr, a rare earth metal, and Bi in the former tank. Production method.
【請求項3】 多段の反応晶析槽のうち、最後段より前
段の槽の金属元素群塩はNiのほかに、Al,V,C
r,Mn,Fe,Cu,Ge,Zr,Nb,Mo,A
g,Sn,Wから選ばれた少なくとも一種の金属元素塩
を次段の槽より多く含むことを特徴とする請求項1記載
のアルカリ蓄電池用正極活物質の製造方法。
3. The multi-stage reaction crystallization tank, wherein the metal element salt in the tank preceding the last one is not only Ni but also Al, V, C
r, Mn, Fe, Cu, Ge, Zr, Nb, Mo, A
The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein at least one kind of metal element salt selected from g, Sn, and W is contained in the next-stage tank.
JP19771997A 1997-02-03 1997-07-07 Method for producing positive electrode active material for alkaline storage battery Expired - Fee Related JP3567687B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19771997A JP3567687B2 (en) 1997-07-07 1997-07-07 Method for producing positive electrode active material for alkaline storage battery
CN98106185A CN1129198C (en) 1997-02-03 1998-01-26 Manufacturing method of active materials for positive electrode in alkaline storage batteries
EP07022225A EP1890350A3 (en) 1997-02-03 1998-02-02 The manufacturing method of active materials for the positive electrode in alkaline storage batteries
EP98101747A EP0856899B1 (en) 1997-02-03 1998-02-02 The manufacturing method of active materials for the positive electrode in alkaline storage batteries
US09/017,029 US6129902A (en) 1997-02-03 1998-02-02 Manufacturing method of active materials for the positive electrode in alkaline storage batteries
US09/560,296 US6284215B1 (en) 1997-02-03 2000-04-27 Manufacturing method of active materials for the positive electrode in alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19771997A JP3567687B2 (en) 1997-07-07 1997-07-07 Method for producing positive electrode active material for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH1125965A true JPH1125965A (en) 1999-01-29
JP3567687B2 JP3567687B2 (en) 2004-09-22

Family

ID=16379222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19771997A Expired - Fee Related JP3567687B2 (en) 1997-02-03 1997-07-07 Method for producing positive electrode active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3567687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480958B2 (en) 2002-07-26 2009-01-27 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, robot cleaning system and method of controlling same
KR101526882B1 (en) * 2013-02-28 2015-06-09 주식회사 제이오 Continuous mass-production apparatus for precursor of secondary battery by co-precipitation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480958B2 (en) 2002-07-26 2009-01-27 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, robot cleaning system and method of controlling same
KR101526882B1 (en) * 2013-02-28 2015-06-09 주식회사 제이오 Continuous mass-production apparatus for precursor of secondary battery by co-precipitation method

Also Published As

Publication number Publication date
JP3567687B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
KR100327056B1 (en) Enhanced nickel hydroxide positive electrode materials for alkaline rechargeable electrochemical cells
US6007946A (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
EP2626330B1 (en) Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
EP0856899B1 (en) The manufacturing method of active materials for the positive electrode in alkaline storage batteries
CN111554897A (en) High-performance lithium ion battery composite cathode material and preparation method thereof
KR20210123378A (en) Cobalt-free layered positive electrode material and manufacturing method thereof, lithium ion battery
CN114583141B (en) Precursor material with three-layer structure, preparation method thereof and anode material
CN111769277A (en) Gradient single crystal high-nickel cathode material and preparation method thereof
CN104868094A (en) Porous ruthenium dioxide and manganese dioxide combined electrode and preparation method and application thereof
JP2000113904A (en) Alkaline storage battery
JP2005251755A (en) Powder material, electrode structure, manufacturing method of powder material and electrode structure, and secondary battery
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
CN112374551A (en) Iron-manganese-containing layered transition metal oxide precursor material and preparation method and application thereof
JP4403594B2 (en) Cathode active material for alkaline storage battery and method for producing the same
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JP3371473B2 (en) Paste positive electrode plate for alkaline storage batteries
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JP3567687B2 (en) Method for producing positive electrode active material for alkaline storage battery
CN115529825B (en) Single particle form nickel-rich lithium composite transition metal oxide positive electrode active material, solid phase synthesis method thereof, positive electrode comprising same and lithium secondary battery
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
KR20230159451A (en) Core-shell gradient ternary precursor, its preparation method and application
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JP3953550B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees