JPH11256264A - Steel for cold forging - Google Patents

Steel for cold forging

Info

Publication number
JPH11256264A
JPH11256264A JP7654298A JP7654298A JPH11256264A JP H11256264 A JPH11256264 A JP H11256264A JP 7654298 A JP7654298 A JP 7654298A JP 7654298 A JP7654298 A JP 7654298A JP H11256264 A JPH11256264 A JP H11256264A
Authority
JP
Japan
Prior art keywords
steel
inclusions
hardness
cold forging
ones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7654298A
Other languages
Japanese (ja)
Inventor
Masaki Miyamoto
昌樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP7654298A priority Critical patent/JPH11256264A/en
Publication of JPH11256264A publication Critical patent/JPH11256264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel for cold forging suitable for forming a near-net shape in which the generation of cracking in a region with a severe working ratio is prevented, reduction in the yield caused by the increase of a cutting allowance is prevented, also, low O and low S are attained for the prevention of cracking caused by inclusions, and there is no deterioration in machinability therefor or there is no need of incorporating poisonous lead for supplementing this. SOLUTION: For realizing high cold forgeability, not only the content of S and the content of oxygen are reduced, but the number of oxide inclusions of certain dimensions or above present in the steel as shown by <=80 in the axis of abscissas, i.e., in the thick type (heavey) ones of >=8 μm of D series oxide inclusions based on the ASTM-D method, the number of the ones of 0.5 grade is made to <=10 pieces, also, the ones of >=1.0 grades are not allowed to contain, and furthermore, its hardness is made to <=90 HRB.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、ニアネットシェイ
プ化に適した冷間鍛造用鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold forging steel suitable for near net shaping.

【従来の技術】冷間鍛造はニアネットシェイプ化によ
り、熱問鍛造に比べエネルギー省略および歩留まり向上
の観点から、近年、白動車用部品をはじめとして急速に
適用が拡大されてきた。しかし歩留まりをさらに改善さ
せようと高冷鍛化を目指すと、加工率の厳しい領域では
割れを発生することがある。冷間鍛造の際に発生する割
れには、材料自身の限界による割れとAl23 、Mn
Sなどの介在物による割れがある。据込試験を行ったと
きに確認される割れは、据込方向に対して前者の場合は
45°方向のせん断割れ、後者の場合は据込方向に対し
て平行な割れである。特に後者の場合は、前者に比べ早
期で割れるため、最終加工率を落とすことになり、その
ための切削代が増加して歩留りが低下せざるを得なかっ
た。
2. Description of the Related Art In recent years, the application of cold forging has been rapidly expanded, especially in parts for white moving vehicles, from the viewpoint of energy saving and improvement of yield as compared with hot forging due to near net shaping. However, if high cold forging is aimed at in order to further improve the yield, cracks may occur in a region where the working ratio is severe. Cracks generated during cold forging include cracks due to the limitations of the material itself and Al 2 O 3 , Mn.
There are cracks due to inclusions such as S. The cracks observed when the upsetting test is performed are shear cracks in the 45 ° direction in the former case with respect to the upsetting direction and cracks parallel to the upsetting direction in the latter case. In particular, in the latter case, the cracking occurs earlier than in the former case, so that the final processing rate is lowered, and the cutting allowance for that is increased and the yield must be reduced.

【0001】これを解決する手段として従来の技術例に
は、介在物による割れを低減させるために低O、低Sに
よる高清浄度化の方法(「特殊鋼」29巻、2号、P.
31〜32、「特殊鋼」29巻、9号、P.17〜1
9、P.26〜28、「特殊鋼」31巻、12号、P.
21〜23、P.32〜34、P.35〜37、P.3
8〜39、「特殊鋼」34巻、3号、P.15〜17、
P.21〜23、P.29〜30)がある。しかし、こ
れの方法により最終加工率を上げて切削工程を省略して
も、高い表面精度を要求される部品には研磨工程を必要
とするものがある。Sは鋼中にMnSとして存在し、快
削元素として利用されているが、当該方法によってMn
Sが少なくなる(0.010%以下)ため、被削性は悪
くなってしまう。
As means for solving this problem, a conventional example of technology includes a method of high cleanliness by low O and low S in order to reduce cracks caused by inclusions ("Special Steel", Vol. 29, No. 2, P.S.
31-32, "Special Steel" Vol. 29, No. 9, p. 17-1
9, p. 26-28, "Special Steel", Vol. 31, No. 12, p.
21 to 23, p. 32-34, p. 35-37, p. 3
8 to 39, "Special Steel", vol. 34, No. 3, p. 15-17,
P. 21 to 23, p. 29-30). However, even if the final processing rate is increased by this method and the cutting step is omitted, some parts requiring high surface accuracy require a polishing step. S exists as MnS in steel and is used as a free-cutting element.
Since S decreases (0.010% or less), the machinability deteriorates.

【0002】そのため高清浄度化に加え、MnS以外の
快削元素である鉛を微細分散させる方法(「特殊鋼」2
9巻、2号、P.28〜29、「特殊鋼」31巻、12
号、P.16〜18、P.29〜31、「特殊鋼」34
巻、3号、P.31〜32、「特殊鋼」35巻、10
号、P.48〜39)があるが、鉛は有毒性の物質で近
年の環境問題配慮から削減方向にあり、また転動疲労が
要求される部品には適用できない問題もある。
[0002] Therefore, in addition to high cleanliness, a method of finely dispersing lead which is a free-cutting element other than MnS (“Special steel” 2
Vol. 9, No. 2, p. 28-29, "Special Steel", Volume 31, 12
No., P. 16-18, p. 29-31, "special steel" 34
Vol. 3, No. 3, p. 31-32, "Special Steel" 35 volumes, 10
No., P. 48-39), but lead is a toxic substance, and its use is being reduced in consideration of recent environmental issues, and there is also a problem that it cannot be applied to parts requiring rolling fatigue.

【0003】[0003]

【発明が解決しようとする課題】本発明は、厳しい加工
率の領域で割れを発生することなく、切削代の増加によ
る歩留りの低下を防ぎ、かつ、介在物による割れ防止の
ために低O、低Sをはかり、そのために被削性を悪くし
たり、あるいはこれを補うために有毒な鉛を含有するこ
とをなくしてニアネットシェイプ化に適した冷間鍛造用
鋼を提供することである。
DISCLOSURE OF THE INVENTION The present invention is intended to prevent a decrease in yield due to an increase in cutting allowance without cracking in a region with a severe processing rate, and to reduce cracking due to inclusions. An object of the present invention is to provide a cold-forging steel suitable for near-net shaping by reducing low S, thereby eliminating machinability or eliminating toxic lead in order to compensate for this.

【0004】[0004]

【課題を解決するための手段】本発明者は、冷間鍛造割
れに及ぼす要因、特に硫化物系介在物、酸化物系介在物
および硬さの影響についての解析を行った。冷間鍛造に
適した鋼、すなわちJIS規格鋼におけるSC、SC
R、SCM、SUJなど、において、酸素量、S量、硬
さを変化させ、さらに同一酸素量でも酸化物系介在物の
大きさを変化させた材料を供試材として、限界据込試験
(塑性加工学会に準じる)を行った。介在物と限界据込
率との関係を説明するために、ASTM−D法の結果と
限界据込試験の結果を関連づけることにした。なお、表
1に示すようにASTM−D法は介在物の幅を薄型(T
hin)と厚型(Heavy)に区別し、AないしC系
介在物では1視野中に確認される介在物の総長さにより
等級付けし、D系酸化物系介在物では1視野中に確認さ
れる介在物の数によって等級付けする。これは、光学顕
微鏡にて確認される視野において、表2に示す等級付け
を行い、視野が重ならないようにして総視野面積18
0.5mm2 で評価するものである。そこでデータの取
り扱いとしては、等級ごとの重み付けをするために、表
3に示す等級ごとの係数を掛け、その総和で評価するこ
とにした。結果を以下に述べる。
Means for Solving the Problems The present inventor has analyzed the factors affecting cold forging cracks, particularly the effects of sulfide inclusions, oxide inclusions and hardness. Steel suitable for cold forging, ie SC, SC in JIS standard steel
In R, SCM, SUJ, etc., a material in which the amount of oxygen, the amount of S, and hardness were changed, and the size of the oxide-based inclusion was changed even with the same amount of oxygen, was used as a test material, and a critical upsetting test ( (Based on the Japan Society for Technology of Plasticity). In order to explain the relationship between inclusions and the marginal upsetting rate, it was decided to associate the results of the ASTM-D method with the marginal upsetting test results. As shown in Table 1, in the ASTM-D method, the width of the inclusion is thin (T
hin) and thick type (Heavy), graded according to the total length of inclusions observed in one field of view for A to C-based inclusions, and confirmed in one field of view for D-based oxide-based inclusions Grades according to the number of inclusions. This is done by performing the grading shown in Table 2 on the visual field confirmed by the optical microscope so that the visual fields do not overlap and the total visual field area is 18
It is evaluated at 0.5 mm 2 . Therefore, as for the handling of the data, in order to weight each class, a coefficient for each class shown in Table 3 was multiplied, and the evaluation was made by the sum thereof. The results are described below.

【0005】[0005]

【表1】 [Table 1]

【0006】[0006]

【表2】 [Table 2]

【0007】[0007]

【表3】 [Table 3]

【0008】硬さHRB90を超える範囲ではMnSの
ような硫化物系介在物であるA系介在物が影響を及ぼ
し、それ以下の硬さではD系酸化物系介在物の厚型(H
eavy)の8mm以上の球状酸化物が大きな影響を及
ぼすことがわかった。特に後者では、D系厚型(Hea
vy)の酸化物系介在物の等級0.5が10以下、かつ
等級1.0以上を合まない場合において、図1における
横軸の80以下に見られるように、限界据込率が極めて
改善されることを見出した。また、この制限は酸素量を
10ppm以下に抑えることで得られることが、顕著な
傾向として認められた。
[0008] When the hardness exceeds HRB90, A-type inclusions such as MnS, which are sulfide-based inclusions, exert an influence.
eavy), a spherical oxide of 8 mm or more was found to have a significant effect. In particular, in the latter case, the D type thick type (Hea
When the grade 0.5 of the oxide-based inclusions of vy) does not meet the grade of 0.5 or less and the grade of 1.0 or more, as shown in the horizontal axis of FIG. It was found to be improved. Further, it was recognized that this restriction was obtained by suppressing the oxygen content to 10 ppm or less, as a remarkable tendency.

【0009】介在物起因による割れは、冷間鍛造におけ
る変形により介在物に応力集中が作用して破壊の起点に
なると考えられる。硫化物系介在物と酸化物系介在物の
鋼中での存在状態は、前者は圧延方向に沿って展伸して
いるのに対し、後者は展伸しない。これは変形能の違い
によるものであり、前者の方が変形能が高い。硬さの低
い領域、すなわちHRB90以下、では、マトリックス
自身の変形能が高く、酸化物系介在物に比べて硫化物系
介在物は変形能があるため、お互いに応力集中を緩和す
ることができるのに対して、酸化物系介在物は変形能が
ほとんどないため応力集中が作用しやすい。一方、硬さ
の高い領域、すなわちHRB90を超える領域、ではマ
トリックス自身の変形能が低いため、鋼中で展伸した状
態で存在する硫化物系介在物の方が応力集中として作用
しやすい。酸化物系介在物も応力集中として作用する
が、形状的に展伸した硫化物系介存物の方が応力集中の
作用は大きいため、影響が少ない。
[0009] It is considered that the cracks caused by inclusions cause the concentration of stress on the inclusions due to the deformation in the cold forging, and become the starting point of the destruction. The existence state of sulfide inclusions and oxide inclusions in steel indicates that the former extends along the rolling direction, whereas the latter does not. This is due to the difference in deformability, the former having higher deformability. In a region having a low hardness, that is, at an HRB of 90 or less, the matrix itself has a high deformability, and the sulfide-based inclusion has a deformability as compared with the oxide-based inclusion. On the other hand, oxide inclusions have little deformability, so that stress concentration tends to act. On the other hand, in a region having high hardness, that is, in a region exceeding HRB90, the matrix itself has a low deformability, so that the sulfide-based inclusions existing in a state of being expanded in the steel are more likely to act as stress concentration. Oxide-based inclusions also act as stress concentrations, but sulfide-based inclusions that have been expanded in shape have a greater effect on stress concentration, and therefore have less effect.

【0010】すなわち、HRB90以下においては、硫
化物系介在物の影響は小さいと考えて良いため、酸化物
系介存物の数を減らすことがカギとなる。その中で減ら
すべき酸化物系介在物はサイズの大きいものである。サ
イズが小さいものはマトリックスの変形能が高いことに
よって応力集中を緩和できるが、サイズの大きいものは
応力集中を緩和できない。そのサイズの限界がASTM
−D法のD系酸化物系介在物の薄型(Thin)と厚型
(Heavy)の境界にあると言える。サイズの大きい
介在物が数多くあると、応力集中として作用するばかり
か、き裂の伝播にもつながりやすいため、数を減らすこ
とは、高冷鍛性を実現する上で極めて有効な方法とな
る。
In other words, when the HRB is 90 or less, the influence of the sulfide-based inclusions can be considered to be small. Therefore, the key is to reduce the number of oxide-based inclusions. Among them, oxide-based inclusions to be reduced are large in size. Smaller ones can relieve stress concentration due to the high deformability of the matrix, while larger ones cannot relieve stress concentration. ASTM is the size limit
This can be said to be at the boundary between the thin type (Thin) and the thick type (Heavy) of the D-based oxide-based inclusions of the -D method. If there are many inclusions having a large size, they not only act as stress concentration, but also easily lead to crack propagation. Therefore, reducing the number is an extremely effective method for realizing high cold forgeability.

【0011】一方、硬さHRB90を超える材料の冷間
鍛造は、変形抵抗が大きいことから高冷鍛性に使用され
ることはない。
On the other hand, cold forging of a material having a hardness exceeding HRB 90 is not used for high cold forging because of high deformation resistance.

【0012】以上の検討結果から、本発明の課題を解決
するための手段は、高冷鍛性を実現するためにただ単に
S量および酸素量を低減することではなく、鋼中に存在
するある大きさ以上の酸化物系介在物の数を制限する、
すなわちASTM−D法に基づくD系酸化物系介在物の
8μm以上の厚型(Heavy)の等級0.5を10個
以下、かつ等級1.0以上を含まないようにし、さらに
硬さをHRB90以下としたことである。
From the results of the above studies, the means for solving the problem of the present invention is not merely to reduce the S content and the oxygen content in order to realize high cold forging, but to exist in steel. Limiting the number of oxide-based inclusions larger than the size,
That is, the D-type oxide-based inclusions based on the ASTM-D method are set so that the thickness of the D-type oxide inclusions (Heavy) of 8 μm or more is 10 or less and the hardness is not more than 1.0 and the hardness is HRB90. It is as follows.

【0013】以上の冷鍛鋼としたことにより、冷間鍛造
の最終加工率を上げることが可能となり、よりニアネッ
トシェイプに近づき、切削代の減少もしくは切削の省略
が図れる結果コストダウンに寄与する。また、研磨工程
を必要とする部品に対してはS量を増量してもD系厚型
(Heavy)を少なくすることで十分にカバーできる
ため、被削性を加味することができる利点も持ち合わせ
ることが可能となり、工具の寿命延長に寄与する。
The use of the cold forged steel described above makes it possible to increase the final working ratio of the cold forging, thereby approaching the near net shape, reducing the cutting allowance or eliminating the cutting, thereby contributing to cost reduction. In addition, for components that require a polishing step, even if the amount of S is increased, sufficient coverage can be obtained by reducing the D type thick type (Heavy), so that there is an advantage that machinability can be added. It is possible to extend the life of the tool.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を、本発明の
開発鋼および比較鋼を対比する実施例により説明する。
本発明の開発鋼は電気炉で溶製し、炉外精錬(LF)を
行い、次いで真空脱ガス(RH)により精錬しして得た
溶鋼を連続鋳造してJIS規格鋼であるSCM420の
鋼鋳片を製造した。その際に、LF−RH時間、耐火物
の種類、鋳造温度を変化させることにより、トータル酸
素量、酸化物系介在物の大きさおよび硫化物系介仕物の
大きさをコントロールした。これらの鋼鋳片から分解圧
延して得た鋼片を900℃×1hrで焼きならしを行っ
た。熱処理はフェライト粒度およびフェライト面積率を
可能な限り同一とし、硬さをそろえるように行った。こ
のときの硬さは本発明におけるHRB90以下である。
これらの圧延材から、1号拘束型据込試験片(φ14m
m×21mm長)を割り出した。表4および表5に化学
成分と硬さおよび介在物評価であるASTM−D法の結
果をそれぞれ示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to examples comparing the developed steel of the present invention and a comparative steel.
The developed steel of the present invention is smelted in an electric furnace, subjected to out-of-furnace refining (LF), and then smelted by vacuum degassing (RH). A slab was produced. At that time, the total oxygen content, the size of the oxide-based inclusions, and the size of the sulfide-based inclusions were controlled by changing the LF-RH time, the type of refractory, and the casting temperature. A steel slab obtained by dissolving and rolling from these steel slabs was normalized at 900 ° C. × 1 hr. The heat treatment was performed so that the ferrite grain size and the ferrite area ratio were as uniform as possible and the hardness was uniform. The hardness at this time is HRB90 or less in the present invention.
From these rolled materials, the No. 1 restraint type upsetting test piece (φ14m
mx 21 mm length). Tables 4 and 5 show the results of the ASTM-D method for evaluating the chemical components, hardness, and inclusions, respectively.

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【表5】 [Table 5]

【0017】比較鋼1−1〜1−4は、D系厚型(He
avy)の等級0.5が10以上であり、かつ等級1.
0以上も含む。一方、開発鋼1−1〜1−6は本請求項
の範囲を満足している。特に開発鋼1−4は、比較鋼1
−2、1−3に比べ酸素量が高いにも関わらず、D系H
eavyは少ない。
Comparative steels 1-1 to 1-4 are D-type thick (He
avy) having a grade of 0.5 or more and a grade of 1.
Including 0 or more. On the other hand, the developed steels 1-1 to 1-6 satisfy the scope of the claims. Especially developed steel 1-4 is comparative steel 1
Despite the high oxygen content compared to -2 and 1-3,
eave is small.

【0018】限界据込試験(塑性加工学会に基づく)結
果を以下に示す。図2に限界据込率とD系Heavyと
の関係を示す。なお横軸は、それぞれの等級に対して係
数(表3)を掛けた総和で評価している。D系Heav
yが少ないほど、限界据込率は改善されているが、本発
明の範囲である開発鋼になると、限界据込率改善の効果
が高く、高冷鍛性に適した材料であることがわかる。
The results of the limit upsetting test (based on the Japan Society for Technology of Plasticity) are shown below. FIG. 2 shows the relationship between the marginal upsetting ratio and the D-system Heavy. In addition, the horizontal axis is evaluated by the sum total obtained by multiplying each class by a coefficient (Table 3). D type Heav
As y is smaller, the critical upsetting ratio is improved. However, in the case of the developed steel within the scope of the present invention, the effect of improving the critical upsetting ratio is high, and the material is suitable for high cold forging. .

【0019】[0019]

【表6】 [Table 6]

【0020】さらにJIS規格鋼であるS55Cについ
ても上記と同様の方法で精錬し、鋼片を作製し、圧延し
た。これらの圧延材を焼ならし(900℃×lhr)、
さらに球状化焼きなまし(最高温度740℃)3回した
ものからそれぞれ1号拘束型据込試験片を作製した。硬
さは前者がHRB90以上と本発明の硬さを満足してお
らず、後者は満足している。表6および表7に化学成分
およびASTM−D法の結果を示す。比較鋼2−1〜2
−4は、D系Heavyの等級0.5が10以上であ
り、かつ等級1.0以上も含む。また比較鋼2−4は、
従来の冷鍛用鋼であり、S量を抑えてある。一方、開発
鋼2−1〜2−5は、請求項の範囲を満足している。特
に開発鋼2−1は、比較鋼2−4に比べ酸素量が高いに
も関わらず、D系Heavyは少ない。
Further, S55C, a JIS standard steel, was refined in the same manner as described above, and a steel piece was prepared and rolled. Normalize these rolled materials (900 ° C × lhr),
Further, No. 1 restraint type upsetting test pieces were prepared from three times of spheroidizing annealing (maximum temperature 740 ° C.). As for the hardness, the former is not higher than HRB 90 and does not satisfy the hardness of the present invention, and the latter is satisfied. Tables 6 and 7 show the chemical components and the results of the ASTM-D method. Comparative steel 2-1 to 2
-4 is D-type Heavy having a grade of 0.5 or more, and also includes a grade of 1.0 or more. Comparative steel 2-4 is
It is a conventional steel for cold forging, and the amount of S is suppressed. On the other hand, the developed steels 2-1 to 2-5 satisfy the claims. In particular, although the developed steel 2-1 has a higher oxygen content than the comparative steel 2-4, the D-based heavy is small.

【0021】[0021]

【表7】 [Table 7]

【0022】図3に焼きならし材のD系Heavyと限
界据込率との関係を示す。硬さがHRB90以上であ
り、D系Heavyを本発明の範囲にしたとしても限界
据込率の改善に効果がない。図4にA系介在物との関係
を示すように相関があり、D系よりもA系の方が限界据
込率に影響を及ぼしていることがわかる。一方で本発明
の硬さを満足する球状化焼きなまし3回では、図5に示
すようにD系Heavyを請求項の範囲にすることで限
界据込率は大きく改善される。特に開発鋼2−1、2−
2は、従来から冷鍛用としてS量を抑えて使用されてい
る比較鋼2−4よりも限界据込率が高いことから、切削
用にも適した材料でもある。
FIG. 3 shows the relationship between the D-type Heavy of the normalizing material and the critical upsetting ratio. Even if the hardness is HRB90 or more and the D-based Heavy is within the range of the present invention, there is no effect on the improvement of the critical upsetting ratio. As shown in FIG. 4, there is a correlation as shown in the relationship with the A-type inclusions, and it can be seen that the A-type affects the critical upsetting ratio more than the D-type. On the other hand, in the spheroidizing annealing which satisfies the hardness of the present invention three times, the critical upsetting ratio is greatly improved by setting the D-type Heavy in the scope of the claims as shown in FIG. Especially developed steel 2-1 and 2-
No. 2 is also a material suitable for cutting because it has a higher critical upsetting ratio than the comparative steel 2-4 which has been conventionally used for cold forging with a reduced amount of S.

【0023】[0023]

【発明の効果】以上説明したとおり、本発明の冷間鍛造
用鋼は、ASTM−D法に基づく介在物D系厚型の8μ
m以上の酸化物系介在物の等級0.5が10以下であ
り、かつ等級1.0以上は含まず、硬さがHRB90以
下としたことにより、厳しい加工率の領域で割れの発生
を減少し、切削代の増加による歩留りの低下を防ぎ、か
つ、介在物による割れ防止のために低O、低Sを図るこ
とで被削性を悪くすることを解消し、あるいは被削性の
劣化を補うために環境に悪影響を及ぼす有毒な鉛を鋼成
分に含有させることをなくしたニアネットシェイプ化に
適した冷間鍛造用鋼が得られ、その結果、切削加工を省
略して生産コストの低下を図ることができるなど優れた
効果を奏するものである。
As described above, the steel for cold forging according to the present invention has a thickness of 8 μm of the inclusion D type thick die based on the ASTM-D method.
Oxide-based inclusions of m or more have a grade of 0.5 or less and do not include a grade of 1.0 or more and have a hardness of HRB90 or less. In addition, to prevent a decrease in yield due to an increase in cutting allowance, and to prevent deterioration of machinability by reducing O and S to prevent cracks due to inclusions, or to reduce deterioration of machinability. A cold-forging steel suitable for near-net-shaping that eliminates the inclusion of toxic lead in the steel component that has a negative impact on the environment to compensate for it is obtained, and as a result, cutting costs are reduced and production costs are reduced. It has excellent effects such as being able to achieve the following.

【図面の簡単な説明】[Brief description of the drawings]

【図1】限界据込率に及ぼすD系 Heavyの影響を示す図
である。
FIG. 1 is a diagram showing the effect of D-series Heavy on critical upsetting ratio.

【図2】限界据込率に及ぼすD系 Heavyの影響を示す図
である。
FIG. 2 is a diagram showing an influence of a D heavy on a critical upsetting ratio.

【図3】焼きならし材のD系 Heavyと限界据込率の関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a D heavy of normalizing material and a critical upsetting ratio.

【図4】限界据込率に及ぼすA系介在物の影響を示す図
である。
FIG. 4 is a diagram showing the influence of A-based inclusions on the critical upsetting ratio.

【図5】本発明の硬さを満たす鋼の限界据込率とD系 H
eavyの影響を示す図である。
FIG. 5: Critical upsetting ratio of steel satisfying hardness according to the present invention and D system H
It is a figure showing the influence of eavy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷間鍛造用に使われる鋼において、AST
M−D法に基づく介在物D系厚型の8μm以上の酸化物
系介在物の等級0.5が10以下であり、かつ等級1.
0以上は含まず、硬さがHRB90以下としたことを特
徴とする冷間加工性に優れる鋼。
1. A steel used for cold forging, comprising: AST
Inclusion D-based thick type oxide inclusions of 8 μm or more based on the MD method have a grade of 0.5 or less and a grade of 0.5 or less.
A steel excellent in cold workability, characterized in that hardness is not more than 0 and HRB is 90 or less.
JP7654298A 1998-03-09 1998-03-09 Steel for cold forging Pending JPH11256264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7654298A JPH11256264A (en) 1998-03-09 1998-03-09 Steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7654298A JPH11256264A (en) 1998-03-09 1998-03-09 Steel for cold forging

Publications (1)

Publication Number Publication Date
JPH11256264A true JPH11256264A (en) 1999-09-21

Family

ID=13608167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7654298A Pending JPH11256264A (en) 1998-03-09 1998-03-09 Steel for cold forging

Country Status (1)

Country Link
JP (1) JPH11256264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055340A1 (en) * 2014-06-10 2018-03-02 Safran Aircraft Engines PIECE IN LOW ALLOY STEEL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055340A1 (en) * 2014-06-10 2018-03-02 Safran Aircraft Engines PIECE IN LOW ALLOY STEEL
US10364479B2 (en) 2014-06-10 2019-07-30 Safran Aircraft Engines Method for producing a low-alloy steel ingot
US11560612B2 (en) 2014-06-10 2023-01-24 Safran Aircraft Engines Method for producing a low-alloy steel ingot

Similar Documents

Publication Publication Date Title
EP2985362B1 (en) Age-hardenable steel
CN109207840A (en) A kind of easy-cutting untempered steel and its manufacturing method
CN106148651A (en) Containing Al joint Co type high specific strength Secondery-hardening Ultrahigh Strength Steel and preparation method
JP2002069569A (en) Free cutting steel for machine structure having excellent mechanical property
JP3671688B2 (en) Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting
WO2021057954A1 (en) Steel for alloy structure and manufacturing method therefor
JP5007930B2 (en) Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength
CN104264040A (en) Non-quenched and tempered steel and preparation method of non-quenched and tempered steel, and crank shaft fabricated by using non-quenched and tempered steel
JP2005256115A (en) High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
CN103820706A (en) Hot-rolling H-shaped steel containing and vanadium boride and having excellent low-temperature impacttoughness and preparation method of hot-rolling H-shaped steel
JP2001073086A (en) Seamless steel tube with high toughness and high corrosion resistance
JPH11256264A (en) Steel for cold forging
EP3249068A1 (en) Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part
CN107604243A (en) A kind of high-strength bolt material and preparation method thereof
EP2985361A1 (en) Age-hardening steel
JP2000297345A (en) Steel for carburized bearing
JP4291761B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics
JPH09170048A (en) High strength hot rolled steel plate for working, excellent in fatigue characteristic and bore expandability
JP5030695B2 (en) High carbon steel excellent in break separation and production method thereof
JPH0641684A (en) Electric-resistance-welded tube excellent in sulfide stress corrosion cracking resistance
JPH0563542B2 (en)
JPH07292442A (en) Steel wire in which delayed fracture is hard to occur
JP6620822B2 (en) steel
JP2006249458A (en) High strength steel excellent in delayed fracture resistance and method for manufacturing the same