JPH11255576A - Apparatus for pulling silicon single crystal and pulling up thereof - Google Patents

Apparatus for pulling silicon single crystal and pulling up thereof

Info

Publication number
JPH11255576A
JPH11255576A JP5922798A JP5922798A JPH11255576A JP H11255576 A JPH11255576 A JP H11255576A JP 5922798 A JP5922798 A JP 5922798A JP 5922798 A JP5922798 A JP 5922798A JP H11255576 A JPH11255576 A JP H11255576A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
heat
silicon
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5922798A
Other languages
Japanese (ja)
Other versions
JP3642174B2 (en
Inventor
Shinrin Fu
森林 符
Naoki Ono
直樹 小野
Michio Kida
道夫 喜田
Yasushi Shimanuki
康 島貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP05922798A priority Critical patent/JP3642174B2/en
Publication of JPH11255576A publication Critical patent/JPH11255576A/en
Application granted granted Critical
Publication of JP3642174B2 publication Critical patent/JP3642174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of a thermal stress in a silicon single crystal rod by uniformizing a temperature gradient in the vertical direction in the central part of a straight trunk part of the silicon single crystal rod during the pulling up. SOLUTION: This apparatus for pulling a silicon single crystal is equipped with a crucible lifting or lowering means 17 for lifting or lowering a quartz crucible 13 storing a silicon melt 12 therein and a cylindrical heat shielding unit 26 surrounding a silicon single crystal rod 25 grown from the silicon melt 12. The heat shielding unit 26 is provided with an annular heat radiating unit 27 having an area covering a space between the inner surface of the quartz crucible 13 and the outer surface of the heat shielding unit 26. The heat radiating unit 27 is lifted or lowered respectively independently of the heat shielding unit 26 and the crucible lifting or lowering means 17 by a means 41 for lifting or lowering the heat radiating unit 27. One or more through-holes are preferably formed in the heat radiating unit 27, which is arranged at the top or upper part of the quartz crucible 13 when forming the shoulder part 25b of the silicon single crystal rod 25 and further arranged near the liquid surface of the silicon melt 12 when forming a straight trunk part 25c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶棒
を引上げて育成するシリコン単結晶の引上げ装置及びそ
の引上げ方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal pulling apparatus and method for pulling and growing a silicon single crystal rod.

【0002】[0002]

【従来の技術】シリコン単結晶棒を育成する方法として
るつぼ内のシリコン融液から半導体用の高純度シリコン
単結晶棒を成長させるチョクラルスキー法(以下、CZ
法という)が知られている。このCZ方法では、石英る
つぼの周囲に設けられたカーボンヒータにより石英るつ
ぼ内のシリコン融液を加熱して所定温度に維持し、ミラ
ーエッチングされた種結晶をシリコン融液に接触させ、
種結晶を引上げてシリコン単結晶棒を育成するものであ
る。このシリコン単結晶棒の育成方法では、種結晶を引
上げてシリコン融液から種絞り部を作製した後、目的と
するシリコン単結晶棒の直径まで結晶を徐々に太らせて
肩部を形成し、その後更に引上げてシリコン単結晶棒の
直胴部を形成するようになっている。
2. Description of the Related Art As a method for growing a silicon single crystal rod, a Czochralski method (hereinafter referred to as CZ) for growing a high-purity silicon single crystal rod for a semiconductor from a silicon melt in a crucible.
Is known). In this CZ method, a silicon heater in a quartz crucible is heated by a carbon heater provided around the quartz crucible to maintain the silicon melt at a predetermined temperature, and a mirror-etched seed crystal is brought into contact with the silicon melt,
The seed crystal is pulled up to grow a silicon single crystal rod. In this method of growing a silicon single crystal rod, a seed crystal is pulled up to form a seed drawing portion from a silicon melt, and then the crystal is gradually thickened to the diameter of the target silicon single crystal rod to form a shoulder, Thereafter, it is further pulled up to form a straight body of the silicon single crystal rod.

【0003】このCZ方法におけるシリコン単結晶棒の
品質及び生産性を向上させるために、従来この種の装置
には、チャンバ内に設けられたシリコン融液を貯留する
石英るつぼを上昇又は下降させるるつぼ昇降手段と、シ
リコン融液から成長するシリコン単結晶棒を包囲する筒
状の熱遮蔽体とを備えたものが知られている。るつぼ昇
降手段は、石英るつぼを上昇させることによりシリコン
単結晶棒の引上げに伴うシリコン融液表面の低下を防止
し、シリコン融液の表面を所定位置に維持して均一なシ
リコン単結晶棒を得るようにするとともに、熱遮蔽体が
シリコン単結晶棒を包囲して、シリコン融液の熱が成長
したシリコン単結晶棒に到達しないように遮蔽し、シリ
コン単結晶棒の冷却速度を向上させて引上げ速度を増大
し、シリコン単結晶棒の生産性を向上するようになって
いる。
In order to improve the quality and productivity of a silicon single crystal rod in the CZ method, a conventional apparatus of this type includes a crucible for raising or lowering a quartz crucible for storing a silicon melt provided in a chamber. 2. Description of the Related Art There is known an apparatus provided with an elevating means and a cylindrical heat shield surrounding a silicon single crystal rod grown from a silicon melt. The crucible raising / lowering means raises the quartz crucible to prevent the surface of the silicon melt from lowering due to the pulling of the silicon single crystal rod, and obtains a uniform silicon single crystal rod while maintaining the surface of the silicon melt at a predetermined position. At the same time, the heat shield surrounds the silicon single crystal rod, shields the heat of the silicon melt from reaching the grown silicon single crystal rod, improves the cooling rate of the silicon single crystal rod, and pulls it up Increasing the speed and increasing the productivity of silicon single crystal rods.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のシリコ
ン単結晶の引上げでは、熱遮蔽体によるシリコン融液の
熱の遮蔽効果が乏しく、特にシリコン融液近傍における
シリコン単結晶棒の冷却が十分でなかった。このため、
シリコン単結晶棒の中心部の軸方向の固液界面近傍にお
ける温度勾配が変動する不具合がある。一方、シリコン
単結晶棒の大口径化が進むと、上記シリコン単結晶棒の
中心部の軸方向の温度勾配の変動は更に大きくなること
が予想される。このため、シリコン単結晶棒中に上記温
度勾配の変動に基づく熱的ストレスが発生する恐れがあ
った。本発明の目的は、シリコン融液から引上げ中のシ
リコン単結晶棒の中心部の軸方向の固液界面近傍におけ
る温度勾配を均一にすることにより、シリコン単結晶棒
中の熱的ストレスの発生を抑制できるシリコン単結晶の
引上げ装置及びその引上げ方法を提供することにある。
However, in the conventional pulling of a silicon single crystal, the heat shielding effect of the heat shield of the silicon melt is poor. In particular, the cooling of the silicon single crystal rod near the silicon melt is insufficient. Did not. For this reason,
There is a problem that the temperature gradient fluctuates near the solid-liquid interface in the axial direction at the center of the silicon single crystal rod. On the other hand, as the diameter of the silicon single crystal rod increases, the fluctuation of the axial temperature gradient at the center of the silicon single crystal rod is expected to further increase. For this reason, there is a possibility that thermal stress is generated in the silicon single crystal rod due to the fluctuation of the temperature gradient. An object of the present invention is to reduce the occurrence of thermal stress in a silicon single crystal rod by making the temperature gradient near the solid-liquid interface in the axial direction near the center of the silicon single crystal rod being pulled from the silicon melt uniform. An object of the present invention is to provide a silicon single crystal pulling apparatus and a pulling method thereof that can be suppressed.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、シリコン融液12を貯留する石英る
つぼ13を上昇又は下降させるるつぼ昇降手段17と、
シリコン融液12から成長するシリコン単結晶棒25を
包囲する筒状の熱遮蔽体26とを備えたシリコン単結晶
の引上げ装置の改良である。その特徴ある構成は、熱遮
蔽体26が石英るつぼ13の内面と熱遮蔽体26の外面
の間を覆う面積を有する環状の熱輻射体27を有し、熱
輻射体27を熱遮蔽体26及びるつぼ昇降手段17とそ
れぞれ独立して上昇又は下降させる熱輻射体昇降手段4
1を備えたところにある。熱輻射体昇降手段41で熱輻
射体27を熱遮蔽体26及びるつぼ昇降手段17とそれ
ぞれ独立して上昇又は下降させることにより、熱輻射体
27がシリコン融液12の熱をチャンバ内に放散するの
を防ぎ、熱遮蔽体26とともに成長したシリコン単結晶
棒25の冷却を促進し、直胴部25cの形成時のシリコ
ン単結晶棒25の中心部の軸方向の温度勾配を均一にす
る。
The invention according to claim 1 is
As shown in FIG. 1, crucible lifting / lowering means 17 for raising / lowering quartz crucible 13 for storing silicon melt 12,
This is an improvement in a silicon single crystal pulling apparatus provided with a cylindrical heat shield 26 surrounding a silicon single crystal rod 25 grown from the silicon melt 12. The characteristic configuration has an annular heat radiator 27 having an area in which the heat shield 26 covers an inner surface of the quartz crucible 13 and an outer surface of the heat shield 26, and the heat radiator 27 is connected to the heat shield 26 and Heat radiation body elevating means 4 for raising or lowering independently of crucible elevating means 17
There is one. The heat radiator 27 dissipates the heat of the silicon melt 12 into the chamber by raising or lowering the heat radiator 27 independently of the heat shield 26 and the crucible lifting means 17 by the heat radiator raising / lowering means 41. And cooling of the silicon single crystal rod 25 grown together with the heat shield 26 is promoted, and the temperature gradient in the axial direction at the center of the silicon single crystal rod 25 when the straight body portion 25c is formed is made uniform.

【0006】請求項2に係る発明は、請求項1に係る発
明であって、熱輻射体昇降手段41が、チャンバ11の
上部から吊り下げられ周囲にラックギヤが形成され下端
に熱輻射体27が取付けられた支持棒42と、チャンバ
11の上部に設けられ上記ラックギヤに歯合する駆動ギ
ヤが内蔵されこの駆動ギヤの回転により支持棒42を上
下動させるギヤボックス43と、チャンバ11の上部に
設けられ上記駆動ギヤを駆動する駆動モータ46とを有
するシリコン単結晶の引上げ装置である。ラックギヤに
歯合する駆動ギヤの回転により支持棒42が昇降するた
め、容易に熱輻射体27の位置を制御できる。
The invention according to claim 2 is the invention according to claim 1, wherein the heat radiator elevating means 41 is suspended from the upper part of the chamber 11, a rack gear is formed around the chamber, and the heat radiator 27 is provided at the lower end. A mounted support rod 42, a gear box 43 provided at the upper part of the chamber 11 and having a drive gear meshing with the rack gear, and a gear box 43 for moving the support rod 42 up and down by rotation of the drive gear, and provided at the upper part of the chamber 11 And a driving motor 46 for driving the driving gear. Since the support rod 42 is moved up and down by the rotation of the drive gear meshing with the rack gear, the position of the heat radiator 27 can be easily controlled.

【0007】請求項3に係る発明は、請求項1又は2に
係る発明であって、図4に示すように、熱輻射体27に
1又は2以上の通孔27cが形成されたシリコン単結晶
の引上げ装置である。熱輻射体27に1又は2以上の通
孔27cを形成することにより、不活性ガスをこの通孔
27cに流通させてシリコン融液12の表面から蒸発し
たガスをこの不活性ガスとともに有効に排出する。
A third aspect of the present invention is the invention according to the first or second aspect, wherein a silicon single crystal in which one or more through holes 27c are formed in a heat radiator 27 as shown in FIG. The lifting device. By forming one or more through-holes 27c in the heat radiator 27, an inert gas is allowed to flow through the through-holes 27c to effectively discharge the gas evaporated from the surface of the silicon melt 12 together with the inert gas. I do.

【0008】請求項4に係る発明は、石英るつぼ13に
貯留されたシリコン融液12から成長するシリコン単結
晶棒25を筒状の熱遮蔽体26で包囲した状態でシリコ
ン単結晶を引上げるシリコン単結晶の引上げ方法の改良
である。その特徴ある点は、シリコン単結晶棒25の肩
部25b形成時に石英るつぼ13の内面と熱遮蔽体26
の外面の間を覆う面積を有する環状の熱輻射体27を熱
遮蔽体26に遊嵌して石英るつぼ13の上端又は上方に
配置し、シリコン単結晶棒25の直胴部25c形成時に
シリコン融液12の液面近傍に熱輻射体27を配置する
ところにある。肩部25bの形成時に熱輻射体27を石
英るつぼ13の上端又は上方に配置し、シリコン融液1
2の熱を形成途中の肩部25bに積極的に放散させるこ
とにより、速やかに肩部25bを形成させ、シリコン単
結晶棒25の直胴部25cの形成時にシリコン融液12
の液面近傍に熱輻射体27を配置し、シリコン融液12
の熱が直胴部25cに直接放散するのを防ぎ、熱遮蔽体
26とともに成長したシリコン単結晶棒25の冷却を促
進して、直胴部25c形成時のシリコン単結晶棒25の
中心部の軸方向の温度勾配を肩部25bの形成時と同等
に高く維持する。
According to a fourth aspect of the present invention, a silicon single crystal is pulled while a silicon single crystal rod 25 growing from a silicon melt 12 stored in a quartz crucible 13 is surrounded by a cylindrical heat shield 26. This is an improvement in the method for pulling a single crystal. The characteristic point is that the inner surface of the quartz crucible 13 and the heat shield 26 during the formation of the shoulder 25b of the silicon single crystal rod 25 are formed.
An annular heat radiator 27 having an area covering the outer surface of the silicon crucible 13 is loosely fitted to the heat shield 26 and disposed above or above the quartz crucible 13. The heat radiator 27 is located near the liquid surface of the liquid 12. At the time of forming the shoulder portion 25b, the heat radiator 27 is disposed at the upper end or above the quartz crucible 13, and the silicon melt 1
2 is actively dissipated to the shoulder 25b in the process of forming, whereby the shoulder 25b is quickly formed, and the silicon melt 12 is formed when the straight body 25c of the silicon single crystal rod 25 is formed.
The heat radiator 27 is arranged near the liquid surface of the silicon melt 12.
Of the silicon single crystal rod 25 grown together with the heat shield 26 is promoted, and the heat of the central portion of the silicon single crystal rod 25 when the straight body 25c is formed is prevented. The temperature gradient in the axial direction is maintained as high as when the shoulder 25b is formed.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1〜図3に示すように、シリコン
単結晶の引上げ装置10のチャンバ11内には、シリコ
ン融液12を貯留する石英るつぼ13が設けられ、この
石英るつぼ13の外面は黒鉛サセプタ14により被覆さ
れる。石英るつぼ13の下面は黒鉛サセプタ14を介し
て支軸16の上端に固定され、この支軸16の下部はる
つぼ昇降手段17に接続される。るつぼ昇降手段17は
図示しないが石英るつぼ13を回転させる第1回転用モ
ータと、石英るつぼ13を昇降させる昇降用モータとを
有し、これらのモータにより石英るつぼ13が所定の方
向に回転し得るとともに、上下方向に移動可能となって
いる。石英るつぼ13の外周面は石英るつぼ13から所
定の間隔をあけてカーボンヒータ18により包囲され、
このカーボンヒータ18は保温筒19により包囲され
る。カーボンヒータ18は石英るつぼ13に投入された
高純度のシリコン多結晶体を加熱・溶融してシリコン融
液12にする。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIGS. 1 to 3, a quartz crucible 13 for storing a silicon melt 12 is provided in a chamber 11 of a silicon single crystal pulling apparatus 10, and the outer surface of the quartz crucible 13 is covered with a graphite susceptor 14. Is done. The lower surface of the quartz crucible 13 is fixed to the upper end of a support shaft 16 via a graphite susceptor 14, and the lower portion of the support shaft 16 is connected to crucible lifting / lowering means 17. The crucible raising / lowering means 17 has a first rotation motor (not shown) for rotating the quartz crucible 13 and a lifting / lowering motor for moving the quartz crucible 13 up and down, and these motors can rotate the quartz crucible 13 in a predetermined direction. At the same time, it can be moved up and down. The outer peripheral surface of the quartz crucible 13 is surrounded by a carbon heater 18 at a predetermined interval from the quartz crucible 13,
The carbon heater 18 is surrounded by a heat retaining tube 19. The carbon heater 18 heats and melts the high-purity polycrystalline silicon charged in the quartz crucible 13 to form the silicon melt 12.

【0010】またチャンバ11の上端には円筒状のケー
シング21が接続される。このケーシング21には引上
げ手段22が設けられる。引上げ手段22はケーシング
21の上端部に水平状態で旋回可能に設けられた引上げ
ヘッド(図示せず)と、このヘッドを回転させる第2回
転用モータ(図示せず)と、ヘッドから石英るつぼ13
の回転中心に向って垂下されたワイヤケーブル23と、
上記ヘッド内に設けられワイヤケーブル23を巻取り又
は繰出す引上げ用モータ(図示せず)とを有する。ワイ
ヤケーブル23の下端にはシリコン融液12に浸してシ
リコン単結晶棒25を引上げるための種結晶24が取付
けられる。
A cylindrical casing 21 is connected to the upper end of the chamber 11. The casing 21 is provided with a pulling means 22. The pulling means 22 includes a pulling head (not shown) rotatably provided at the upper end of the casing 21 in a horizontal state, a second rotation motor (not shown) for rotating the head, and a quartz crucible 13 from the head.
A wire cable 23 suspended toward the center of rotation of
And a pulling motor (not shown) provided in the head for winding or feeding the wire cable 23. At the lower end of the wire cable 23 is attached a seed crystal 24 for dipping in the silicon melt 12 and pulling up the silicon single crystal rod 25.

【0011】更に、チャンバ11にはこのチャンバ11
のシリコン単結晶棒側に不活性ガスを供給しかつ上記不
活性ガスをチャンバ11のるつぼ内周面側から排出する
ガス給排手段28が接続される。ガス給排手段28は一
端がケーシング21の周壁に接続され他端が上記不活性
ガスを貯留するタンク(図示せず)に接続された供給パ
イプ29と、一端がチャンバ11の下壁に接続され他端
が真空ポンプ(図示せず)に接続された排出パイプ30
とを有する。供給パイプ29及び排出パイプ30にはこ
れらのパイプ29,30を流れる不活性ガスの流量を調
整する第1及び第2流量調整弁31,32がそれぞれ設
けられる。
Further, the chamber 11
Gas supply / discharge means 28 for supplying an inert gas to the silicon single crystal rod side and discharging the inert gas from the inner peripheral surface side of the crucible of the chamber 11 is connected. The gas supply / discharge means 28 has one end connected to the peripheral wall of the casing 21 and the other end connected to a supply pipe 29 connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 11. Discharge pipe 30 having the other end connected to a vacuum pump (not shown)
And The supply pipe 29 and the discharge pipe 30 are provided with first and second flow control valves 31 and 32 for adjusting the flow rate of the inert gas flowing through these pipes 29 and 30, respectively.

【0012】一方、シリコン単結晶棒25の外周面と石
英るつぼ13の内周面との間には、シリコン単結晶棒2
5を包囲する筒状の熱遮蔽体26が設けられる。熱遮蔽
体26はシリコン融液12の熱をシリコン単結晶棒25
に到達しないように遮蔽するために設けられ、この熱遮
蔽体26の上縁には外方に略水平方向に張り出すフラン
ジ部26aが連設される。このフランジ部26aを保温
筒19上に載置することにより熱遮蔽体26はチャンバ
11内に固定され、熱遮蔽体26の下縁は石英るつぼ1
3に貯留されたシリコン融液12表面から所定の距離だ
け上方に位置するように構成される。
On the other hand, between the outer peripheral surface of the silicon single crystal rod 25 and the inner peripheral surface of the quartz crucible 13, the silicon single crystal rod 2
5 is provided with a tubular heat shield 26. The heat shield 26 transfers the heat of the silicon melt 12 to the silicon single crystal rod 25.
The heat shield 26 is provided with a flange portion 26a extending outward in a substantially horizontal direction at an upper edge thereof. The heat shield 26 is fixed in the chamber 11 by placing the flange portion 26a on the heat retaining tube 19, and the lower edge of the heat shield 26 is
3 is located above the surface of the silicon melt 12 stored by a predetermined distance.

【0013】熱遮蔽体26には環状の熱輻射体27が遊
嵌して設けられる。図5に示すように、熱輻射体27は
環状のカーボンのケーシング27bの内部に断熱材27
aを充填することにより作られ、熱輻射体27は石英る
つぼ13の内面と熱遮蔽体26の外面の間を覆う面積を
有するように構成される。また、図4及び図5に示すよ
うに、熱輻射体27はガス給排手段28(図1〜図3)
により供給された不活性ガスを流通させるために下部か
ら上部に向って互いに広がるように斜めに形成された複
数の通孔27cと、後述する熱輻射体昇降手段41(図
1〜図3)により支持されるための一対の支持孔27d
が形成される。熱輻射体27はシリコン融液12からの
放熱を反射しかつシリコン融液12からの輻射熱を蓄熱
する。これにより、熱輻射体27はシリコン融液12の
熱がチャンバ11内に放散するのを防ぐとともに、熱遮
蔽体26とともに成長したシリコン単結晶棒25の冷却
を促進し、とくに直胴部25cの形成時(図1及び図
2)におけるシリコン単結晶棒25の軸方向の温度勾配
を肩部25bの形成時(図3)と同等に高く維持するよ
うになっている。
An annular heat radiator 27 is loosely fitted to the heat shield 26. As shown in FIG. 5, the heat radiator 27 is provided with a heat insulating material 27 inside an annular carbon casing 27b.
a, and the heat radiator 27 is configured to have an area covering the inner surface of the quartz crucible 13 and the outer surface of the heat shield 26. As shown in FIGS. 4 and 5, the heat radiator 27 is provided with gas supply / discharge means 28 (FIGS. 1 to 3).
A plurality of through-holes 27c formed obliquely so as to spread from the lower part to the upper part in order to circulate the inert gas supplied by the heat radiating member 41 (FIGS. 1 to 3). A pair of support holes 27d to be supported
Is formed. The heat radiator 27 reflects the heat radiation from the silicon melt 12 and stores the radiant heat from the silicon melt 12. Thus, the heat radiator 27 prevents the heat of the silicon melt 12 from dissipating into the chamber 11 and promotes the cooling of the silicon single crystal rod 25 grown together with the heat shield 26, and in particular, the heat radiation of the straight body 25c. The temperature gradient in the axial direction of the silicon single crystal rod 25 at the time of formation (FIGS. 1 and 2) is maintained as high as that at the time of formation of the shoulder 25b (FIG. 3).

【0014】図1〜図3に戻って、チャンバ11の上部
にはケーシング21を挟むように一対の熱輻射体昇降手
段41が設けられる。熱輻射体昇降手段41は周囲にラ
ックギヤ(図示せず)が形成され下端が熱輻射体27の
支持孔27dに挿通された支持棒42と、チャンバ11
の上部に設けられラックギヤに歯合する駆動ギヤが内蔵
され駆動ギヤの回転により支持棒42を上下動させるギ
ヤボックス43と、チャンバ11の上部にサポート部材
44を介して取付けられ回転軸46aが駆動ギヤに接続
された駆動モータ46とを有する。熱輻射体27の支持
孔27dに挿通され支持棒42の下部には大径部42a
が形成され、この大径部42aは熱輻射体27を下面か
ら支持するように構成される。熱輻射体昇降手段41
は、駆動モータ46による回転軸46aの回転によりギ
ヤボックス43に内蔵された図示しない駆動ギヤが回転
し、支持棒42を上下動させることにより熱輻射体27
を上昇又は下降させるように構成される。
Returning to FIGS. 1 to 3, a pair of heat radiation body elevating means 41 is provided above the chamber 11 so as to sandwich the casing 21. The heat radiator elevating means 41 includes a support rod 42 having a rack gear (not shown) formed around the support rod 42 and a lower end inserted into the support hole 27 d of the heat radiator 27, and the chamber 11.
A gearbox 43 is provided at the upper part of the housing 11 and meshes with a rack gear. The gearbox 43 moves the support rod 42 up and down by the rotation of the drive gear. The gearbox 43 is mounted on the upper part of the chamber 11 via a support member 44 and the rotating shaft 46a is driven. And a drive motor 46 connected to the gear. A large-diameter portion 42 a is inserted through the support hole 27 d of the heat radiator 27 and is provided below the support rod 42.
Is formed, and the large-diameter portion 42a is configured to support the heat radiator 27 from below. Heat radiation body elevating means 41
The drive motor 46 rotates a rotation shaft 46 a to rotate a drive gear (not shown) built in the gear box 43, and moves the support rod 42 up and down to move the heat radiator 27.
Is configured to rise or fall.

【0015】一方、引上げ手段22における引上げ用モ
ータの出力軸(図示せず)にはロータリエンコーダ(図
示せず)が設けられ、るつぼ昇降手段17には石英るつ
ぼ13内のシリコン融液12の重量を検出する重量セン
サ(図示せず)と、支軸16の昇降位置を検出するリニ
ヤエンコーダ(図示せず)とが設けられる。ロータリエ
ンコーダ、重量センサ及びリニヤエンコーダの各検出出
力はコントローラ(図示せず)の制御入力に接続され、
コントローラの制御出力は引上げ手段22の引上げ用モ
ータ、るつぼ昇降手段17の昇降用モータ及び熱輻射体
昇降手段41の駆動モータ46にそれぞれ接続される。
またコントローラにはメモリ(図示せず)が設けられ、
このメモリにはロータリエンコーダの検出出力に対する
ワイヤケーブル23の巻取り長さ、即ちシリコン単結晶
棒25の引上げ長さが第1マップとして記憶され、重量
センサの検出出力に対する石英るつぼ13内のシリコン
融液12の液面レベルが第2マップとして記憶される。
コントローラは重量センサの検出出力に基づいて石英る
つぼ13内のシリコン融液12の液面を常に一定のレベ
ルに保つように、るつぼ昇降手段17の昇降用モータを
制御するとともに、熱輻射体27をるつぼ昇降手段17
と独立して上昇又は下降するように熱輻射体昇降手段4
1の駆動モータ46を制御するように構成される。
On the other hand, a rotary encoder (not shown) is provided on the output shaft (not shown) of the pulling motor in the pulling means 22, and the weight of the silicon melt 12 in the quartz crucible 13 is provided on the crucible elevating means 17. And a linear encoder (not shown) for detecting the vertical position of the support shaft 16. Each detection output of the rotary encoder, the weight sensor and the linear encoder is connected to a control input of a controller (not shown),
The control output of the controller is connected to the pulling motor of the pulling means 22, the raising and lowering motor of the crucible lifting and lowering means 17, and the drive motor 46 of the heat radiator lifting and lowering means 41.
The controller is provided with a memory (not shown),
In this memory, the winding length of the wire cable 23 with respect to the detection output of the rotary encoder, that is, the pulling length of the silicon single crystal rod 25, is stored as a first map, and the silicon melting in the quartz crucible 13 with respect to the detection output of the weight sensor is stored. The liquid level of the liquid 12 is stored as a second map.
The controller controls the elevating motor of the crucible elevating means 17 so as to always keep the liquid level of the silicon melt 12 in the quartz crucible 13 at a constant level based on the detection output of the weight sensor, and controls the heat radiator 27. Crucible lifting means 17
Means 4 for raising and lowering the heat radiator independently
It is configured to control one drive motor 46.

【0016】このように構成された装置による本発明に
よるシリコン単結晶の引上げ方法を説明する。図3に示
すように、石英るつぼ13に高純度のシリコン多結晶体
を投入し、カーボンヒータ18によりこの高純度のシリ
コン多結晶体を加熱・溶融してシリコン融液12にす
る。このシリコン多結晶体の溶融に際し、熱輻射体昇降
手段41は支持棒42を上方に移動させ、この実施の形
態では熱輻射体27を石英るつぼ13の上方に配置す
る。シリコン多結晶体が溶融して石英るつぼ13にシリ
コン融液12が貯留されたならば、次に、第1及び第2
流量調整弁31,32を開くことにより不活性ガスをケ
ーシング21内に供給してシリコン融液12の表面から
蒸発したガスをこの不活性ガスとともに排出パイプ30
から排出させる。
A method for pulling a silicon single crystal according to the present invention using the above-configured apparatus will be described. As shown in FIG. 3, a high-purity silicon polycrystal is put into a quartz crucible 13, and the high-purity silicon polycrystal is heated and melted by a carbon heater 18 to form a silicon melt 12. When the silicon polycrystal is melted, the heat radiator elevating means 41 moves the support rod 42 upward, and in this embodiment, the heat radiator 27 is disposed above the quartz crucible 13. If the silicon polycrystal is melted and the silicon melt 12 is stored in the quartz crucible 13, then the first and second
By opening the flow control valves 31 and 32, an inert gas is supplied into the casing 21 and the gas evaporated from the surface of the silicon melt 12 is discharged together with the inert gas into the discharge pipe 30.
To be discharged from

【0017】次に、引上げ手段の図示しない引上げ用モ
ータによりワイヤ19を繰出して種結晶24を降下さ
せ、種結晶24の先端部をシリコン融液12に接触させ
る。その後種結晶24を徐々に引上げて種絞り部25a
を形成した後、更に種結晶24を引上げることにより種
絞り部25aの下部に先ず肩部25bを育成させる。こ
の肩部25bの形成時において、熱輻射体27が石英る
つぼ13の上方に配置されているので、シリコン融液1
2の熱が形成途中の肩部25bに積極的に放散し、速や
かに肩部25bの形成が行われる。
Next, the wire 19 is drawn out by a pulling motor (not shown) of the pulling means to lower the seed crystal 24, and the tip of the seed crystal 24 is brought into contact with the silicon melt 12. Thereafter, the seed crystal 24 is gradually pulled up, and the seed drawing portion 25a
Is formed, the seed crystal 24 is further pulled up to first grow a shoulder 25b below the seed drawing portion 25a. When the shoulder 25b is formed, the heat radiator 27 is arranged above the quartz crucible 13, so that the silicon melt 1
The heat of No. 2 is actively dissipated to the shoulder 25b being formed, and the formation of the shoulder 25b is performed promptly.

【0018】肩部25bが育成されたならば、図1に示
すように、更に種結晶24を引上げることにより肩部2
5bの下方に直胴部25cを形成する。この直胴部25
cの形成に際し、熱輻射体昇降手段41は支持棒42を
下方に移動させ、シリコン融液12の液面近傍に予め熱
輻射体27を配置する。シリコン融液12の液面近傍に
位置する熱輻射体27は、シリコン融液12の熱が直胴
部25cに直接放散するのを防ぎ、熱遮蔽体26ととも
に成長したシリコン単結晶棒25の冷却を促進し、直胴
部25cの形成時における単結晶棒25の中心部の軸方
向の温度勾配を肩部25bの形成時と同等に高く維持す
る。
Once the shoulder 25b is grown, as shown in FIG.
A straight body 25c is formed below 5b. This straight body 25
When forming c, the heat radiator elevating means 41 moves the support rod 42 downward, and arranges the heat radiator 27 in advance near the liquid surface of the silicon melt 12. The heat radiator 27 located near the liquid surface of the silicon melt 12 prevents the heat of the silicon melt 12 from directly dissipating to the straight body portion 25c, and cools the silicon single crystal rod 25 grown together with the heat shield 26. And the temperature gradient in the axial direction of the central portion of the single crystal rod 25 at the time of forming the straight body portion 25c is maintained as high as that at the time of forming the shoulder portion 25b.

【0019】直胴部25cの育成に伴い、シリコン融液
12の表面は低下し、減少する融液12の量に応じて図
示しない昇降用モータはるつぼ13を上昇させ、図2に
示すように、種結晶24の引上げとともに低下するシリ
コン融液12の表面を所定位置に維持させる。この石英
るつぼ13の上昇にもかかわらず、熱輻射体昇降手段4
1はシリコン融液12の液面近傍に熱輻射体27を維持
させる。シリコン融液12の液面近傍に位置する熱輻射
体27はシリコン融液12の熱が直胴部25cに直接放
散するのを防ぎ、熱遮蔽体26とともに成長したシリコ
ン単結晶棒25の冷却を促進し、直胴部25cの中心部
における軸方向の固液界面における温度勾配を均一にす
る。
As the straight body portion 25c grows, the surface of the silicon melt 12 lowers, and a raising / lowering motor (not shown) raises the crucible 13 according to the decreasing amount of the melt 12, as shown in FIG. Then, the surface of the silicon melt 12 which is lowered as the seed crystal 24 is pulled is maintained at a predetermined position. Despite the rise of the quartz crucible 13, the heat radiating body elevating means 4
1 keeps the heat radiator 27 near the liquid surface of the silicon melt 12. The heat radiator 27 located near the liquid surface of the silicon melt 12 prevents the heat of the silicon melt 12 from directly dissipating to the straight body portion 25c, and cools the silicon single crystal rod 25 grown together with the heat shield 26. This promotes uniformity of the temperature gradient at the solid-liquid interface in the axial direction at the center of the straight body 25c.

【0020】なお、上述した実施の形態では、環状のカ
ーボンのケーシング27bの内部に断熱材27aを充填
した熱輻射体27を使用したが、熱輻射体はシリコン融
液12のチャンバ11内への放熱を防ぐことができる限
り、図6及び図7に示すような環状のモリブデンからな
る板材であっても良い。このような板状の熱輻射体47
にあっては、支持孔47d及びガス給排手段により供給
された不活性ガスを流通させるための複数の通孔47c
を打抜き又は一部立ち上げにより形成することができ
る。
In the above-described embodiment, the heat radiator 27 in which the heat insulating material 27a is filled in the inside of the annular carbon casing 27b is used, but the heat radiator is used to transfer the silicon melt 12 into the chamber 11. As long as heat radiation can be prevented, an annular plate made of molybdenum as shown in FIGS. 6 and 7 may be used. Such a plate-shaped heat radiator 47
Is provided with a plurality of through holes 47c for passing the inert gas supplied by the support holes 47d and the gas supply / discharge means.
Can be formed by punching or partially rising.

【0021】また、上述した実施の形態では、肩部25
bの形成に際し、熱輻射体27を石英るつぼ13の上方
に配置したが、熱輻射体27を石英るつぼ13の上端に
配置しても良い。熱輻射体27を石英るつぼ13の上端
に配置すれば、石英るつぼ13の上端に位置する熱輻射
体27はシリコン融液12の熱がチャンバ11内へ放散
することを防ぎ、カーボンヒータ18からの熱が石英る
つぼ13を介して効率良くシリコン融液12に伝達さ
れ、シリコン融液12を少ない電力で所定の温度にする
ことができる。
In the above-described embodiment, the shoulder 25
In forming b, the heat radiator 27 is arranged above the quartz crucible 13, but the heat radiator 27 may be arranged at the upper end of the quartz crucible 13. If the heat radiator 27 is arranged at the upper end of the quartz crucible 13, the heat radiator 27 located at the upper end of the quartz crucible 13 prevents the heat of the silicon melt 12 from dissipating into the chamber 11, and Heat is efficiently transmitted to the silicon melt 12 via the quartz crucible 13, and the silicon melt 12 can be brought to a predetermined temperature with a small amount of electric power.

【0022】[0022]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>図1に示すように、内径が約400mmの
石英るつぼ13と内径及び高さがともに約400mmの
熱遮蔽体26とを有するシリコン単結晶の引上げ装置1
0に、石英るつぼ13の内面と熱遮蔽体26の外面の間
を覆う面積を有する厚さ約38mmの環状の熱輻射体2
7を熱遮蔽体26に遊嵌し、熱輻射体昇降手段41の支
持棒42に吊持した。この熱輻射体27は厚さ約22m
mであって、環状のカーボンのケーシング27bの内部
に断熱材27aを充填することにより作られたものを使
用した。このように構成された引上げ装置10を実施例
1とした。 <比較例1>図示しないが熱輻射体27を設けないこと
を除いて、引上げ装置を上記実施例1と同一に構成し
た。この引上げ装置を比較例1とした。
Next, examples of the present invention will be described in detail together with comparative examples. Embodiment 1 As shown in FIG. 1, a silicon single crystal pulling apparatus 1 having a quartz crucible 13 having an inner diameter of about 400 mm and a heat shield 26 having both an inner diameter and a height of about 400 mm.
0, an annular heat radiator 2 having an area covering an inner surface of the quartz crucible 13 and an outer surface of the heat shield 26 and having a thickness of about 38 mm.
7 was loosely fitted to the heat shield 26 and hung on the support rod 42 of the heat radiator elevating means 41. This heat radiator 27 has a thickness of about 22 m.
m, which was made by filling a heat insulating material 27a into an annular carbon casing 27b. The pulling device 10 thus configured was referred to as Example 1. <Comparative Example 1> A pulling device was constructed in the same manner as in Example 1 except that the heat radiator 27 was not provided, although not shown. This pulling device was designated as Comparative Example 1.

【0023】<比較試験及び評価>実施例1及び比較例
1の各引上げ装置にて直胴部の直径300mmのシリコ
ン単結晶棒を引上げ速度0.4mm/分で200mm、
600mm及び1000mm引上げたときのシリコン単
結晶棒の軸方向の固液界面近傍における温度勾配をを輻
射伝熱を考慮した熱伝導解析プログラムにてシミュレー
ション計算し、比較を行った。この結果を図8に示す。
図8より明らかなように、比較例1ではシリコン単結晶
棒を200mm引上げた時点が最大値を示し、その後6
00mm引上げた時点において最小値を示し、1000
mm引上げた時点で僅かに上昇した。これに対して、実
施例1ではシリコン単結晶棒を200mm引上げた時点
が最小値を示し、その後600mm引上げた時点で僅か
に上昇し、1000mm引上げた時点で僅かに下降して
その値がほぼ均一化していることが判る。これは、実施
例1では熱輻射体がシリコン融液のチャンバ内への放熱
を防ぎ、シリコン融液の熱が直胴部に直接放散するのを
防止して熱遮蔽体とともに成長したシリコン単結晶棒の
冷却を促進したのに対し、比較例1ではシリコン融液か
らチャンバ内へ熱が放散され、この熱により直胴部の中
心部における軸方向の固液界面近傍における温度勾配が
低下したためと考えられる。
<Comparative Test and Evaluation> A silicon single crystal rod having a diameter of 300 mm in a straight body portion was pulled up to 200 mm at a pulling speed of 0.4 mm / min by each pulling device of Example 1 and Comparative Example 1.
The temperature gradient in the vicinity of the solid-liquid interface in the axial direction of the silicon single crystal rod when the silicon single crystal rod was pulled up by 600 mm and 1000 mm was simulated by a heat conduction analysis program in consideration of radiant heat transfer, and compared. The result is shown in FIG.
As is clear from FIG. 8, in Comparative Example 1, the maximum value was obtained when the silicon single crystal rod was pulled up by 200 mm, and thereafter, the maximum value was 6 mm.
It shows the minimum value when it is pulled up by 00 mm, and is 1000
When it was raised by mm, it slightly increased. On the other hand, in Example 1, the point when the silicon single crystal rod was pulled up by 200 mm showed the minimum value, and then increased slightly when pulled up by 600 mm, and dropped slightly when pulled up by 1000 mm, and the value was almost uniform. It turns out that it is becoming. This is because in the first embodiment, the silicon radiator prevents the silicon melt from radiating into the chamber, prevents the heat of the silicon melt from directly dissipating to the straight body, and grows together with the heat shield. While cooling of the rod was promoted, in Comparative Example 1, heat was radiated from the silicon melt into the chamber, and this heat reduced the temperature gradient near the solid-liquid interface in the axial direction at the center of the straight body. Conceivable.

【0024】[0024]

【発明の効果】以上述べたように、本発明によれば、熱
遮蔽体が石英るつぼの内面と熱遮蔽体の外面の間を覆う
面積を有する環状の熱輻射体を有し、熱輻射体昇降手段
により熱輻射体を熱遮蔽体及びるつぼ昇降手段とそれぞ
れ独立して上昇又は下降させるようにしたので、シリコ
ン融液の熱がチャンバ内に放散するのを防ぎ、熱遮蔽体
とともに成長したシリコン単結晶棒の冷却を促進し、直
胴部形成時の単結晶棒の中心部の軸方向の温度勾配を肩
部形成時と同等に高く維持することができる。また、熱
輻射体に1又は2以上の通孔を形成すれば、不活性ガス
をこの通孔に流通させてシリコン融液の表面から蒸発し
たガスをこの不活性ガスとともに有効に排出することが
できる。
As described above, according to the present invention, the heat shield has an annular heat radiator having an area covering the inner surface of the quartz crucible and the outer surface of the heat shield. Since the heat radiator is raised or lowered independently of the heat shield and the crucible lifting and lowering means by the raising and lowering means, the heat of the silicon melt is prevented from dissipating into the chamber, and the silicon grown together with the heat shield is grown. Cooling of the single crystal rod can be promoted, and the temperature gradient in the axial direction at the center of the single crystal rod when the straight body is formed can be maintained as high as when the shoulder is formed. Further, if one or more through holes are formed in the heat radiator, an inert gas can be passed through the through holes to effectively discharge the gas evaporated from the surface of the silicon melt together with the inert gas. it can.

【0025】更に、シリコン単結晶棒の肩部の形成時に
熱輻射体を石英るつぼの上端又は上方に配置すれば、シ
リコン融液の熱を形成途中の肩部に積極的に放散させる
ことにより、速やかに肩部を形成させることができ、シ
リコン単結晶棒の直胴部の形成時にシリコン融液の液面
近傍に熱輻射体を配置すれば、シリコン融液の熱が直胴
部に直接放散するのを防ぎ、熱遮蔽体とともに成長した
シリコン単結晶棒の冷却を促進して、直胴部形成時の単
結晶棒の中心部の軸方向の温度勾配を肩部の形成時と同
等に高く維持する。この結果、シリコン単結晶棒の中心
部の軸方向の固液界面近傍における温度勾配を均一に
し、シリコン単結晶棒中の熱的ストレスの発生を抑制す
ることができる。
Further, by disposing the heat radiator above or above the quartz crucible at the time of forming the shoulder portion of the silicon single crystal rod, the heat of the silicon melt can be actively dissipated to the shoulder portion during the formation, The shoulder can be formed quickly, and if a heat radiator is arranged near the liquid surface of the silicon melt when forming the straight body of the silicon single crystal rod, the heat of the silicon melt is directly radiated to the straight body Promotes cooling of the silicon single crystal rod grown with the heat shield, and increases the axial temperature gradient at the center of the single crystal rod at the time of forming the straight body as high as at the time of forming the shoulder. maintain. As a result, the temperature gradient near the solid-liquid interface in the axial direction at the center of the silicon single crystal rod can be made uniform, and the occurrence of thermal stress in the silicon single crystal rod can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシリコン単結晶の引上げ装置の断面構
成図。
FIG. 1 is a cross-sectional configuration diagram of a silicon single crystal pulling apparatus of the present invention.

【図2】シリコン単結晶棒の直胴部が引上げられた状態
を示す図1に対応する断面構成図。
FIG. 2 is a cross-sectional configuration diagram corresponding to FIG. 1, showing a state where a straight body of a silicon single crystal rod is pulled up.

【図3】シリコン単結晶棒の肩部が引上げられた状態を
示す図1に対応する断面構成図。
FIG. 3 is a cross-sectional configuration diagram corresponding to FIG. 1, showing a state in which a shoulder of a silicon single crystal rod is pulled up.

【図4】その熱輻射体の平面図。FIG. 4 is a plan view of the heat radiator.

【図5】図4のA−A線断面図。FIG. 5 is a sectional view taken along line AA of FIG. 4;

【図6】その別の熱輻射体の平面図。FIG. 6 is a plan view of another heat radiator.

【図7】図6のB−B線断面図。FIG. 7 is a sectional view taken along line BB of FIG. 6;

【図8】シリコン単結晶棒の引上げ長さに対するシリコ
ン単結晶棒の中心部の軸方向の固液界面近傍における温
度勾配の変化を示す図。
FIG. 8 is a diagram showing a change in a temperature gradient in the vicinity of a solid-liquid interface in an axial direction of a central portion of a silicon single crystal rod with respect to a pulled length of the silicon single crystal rod.

【符号の説明】[Explanation of symbols]

10 シリコン単結晶の引上げ装置 11 チャンバ 12 シリコン融液 13 石英るつぼ 17 るつぼ昇降手段 25 シリコン単結晶棒 25b 肩部 25c 直胴部 26 熱遮蔽体 27 熱輻射体 41 熱輻射体昇降手段 42 支持棒 43 ギヤボックス 46 駆動モータ Reference Signs List 10 silicon single crystal pulling device 11 chamber 12 silicon melt 13 quartz crucible 17 crucible lifting / lowering means 25 silicon single crystal rod 25b shoulder 25c straight body 26 heat shield 27 heat radiator 41 heat radiator lifting / lowering means 42 support rod 43 Gear box 46 Drive motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島貫 康 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yasushi Shimanuki 1-5-1, Otemachi, Chiyoda-ku, Tokyo Mitsubishi Materials Silicon Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン融液(12)を貯留する石英るつぼ
(13)を上昇又は下降させるるつぼ昇降手段(17)と、前記
シリコン融液(12)から成長するシリコン単結晶棒(25)を
包囲する筒状の熱遮蔽体(26)とを備えたシリコン単結晶
の引上げ装置において、 前記熱遮蔽体(26)が前記石英るつぼ(13)の内面と前記熱
遮蔽体(26)の外面の間を覆う面積を有する環状の熱輻射
体(27)を有し、 前記熱輻射体(27)を前記熱遮蔽体(26)及び前記るつぼ昇
降手段(17)とそれぞれ独立して上昇又は下降させる熱輻
射体昇降手段(41)を備えたことを特徴とするシリコン単
結晶の引上げ装置。
1. A quartz crucible for storing a silicon melt (12).
(13) a crucible lifting / lowering means (17) for raising or lowering, and a silicon heat shield (26) surrounding a silicon single crystal rod (25) grown from the silicon melt (12). In the single crystal pulling apparatus, the heat shield (26) has an annular heat radiator (27) having an area covering an inner surface of the quartz crucible (13) and an outer surface of the heat shield (26). And a heat radiator elevating means (41) for raising or lowering the heat radiator (27) independently of the heat shield (26) and the crucible elevating means (17). Equipment for pulling silicon single crystals.
【請求項2】 熱輻射体昇降手段(41)が、チャンバ(11)
の上部から吊り下げられ周囲にラックギヤが形成され下
端に熱輻射体(27)が取付けられた支持棒(42)と、前記チ
ャンバ(11)の上部に設けられ前記ラックギヤに歯合する
駆動ギヤが内蔵され前記駆動ギヤの回転により前記支持
棒(42)を上下動させるギヤボックス(43)と、前記チャン
バ(11)の上部に設けられ前記駆動ギヤを駆動する駆動モ
ータ(46)とを有する請求項1記載のシリコン単結晶の引
上げ装置。
2. The heat radiator lifting / lowering means (41) includes a chamber (11).
A support rod (42) suspended from the upper part of the rack, a rack gear is formed around it, and a heat radiator (27) is attached to the lower end, and a drive gear provided on the upper part of the chamber (11) and meshing with the rack gear. A gear box (43) which is built-in and moves the support rod (42) up and down by rotation of the drive gear, and a drive motor (46) provided on an upper portion of the chamber (11) and driving the drive gear. Item 2. An apparatus for pulling a silicon single crystal according to Item 1.
【請求項3】 熱輻射体(27)に1又は2以上の通孔(27
c)が形成された請求項1又は2記載のシリコン単結晶の
引上げ装置。
3. A heat radiator (27) having one or more through holes (27).
3. The apparatus for pulling a silicon single crystal according to claim 1, wherein c) is formed.
【請求項4】 石英るつぼ(13)に貯留されたシリコン融
液(12)から成長するシリコン単結晶棒(25)を筒状の熱遮
蔽体(26)で包囲した状態で引上げる方法において、 前記シリコン単結晶棒(25)の肩部(25b)形成時に前記石
英るつぼ(13)の内面と前記熱遮蔽体(26)の外面の間を覆
う面積を有する環状の熱輻射体(27)を前記熱遮蔽体(26)
に遊嵌して前記石英るつぼ(13)の上端又は上方に配置
し、 前記シリコン単結晶棒(25)の直胴部(25c)形成時に前記
シリコン融液(12)の液面近傍に前記熱輻射体(27)を配置
することを特徴とするシリコン単結晶の引上げ方法。
4. A method of pulling a silicon single crystal rod (25) growing from a silicon melt (12) stored in a quartz crucible (13) in a state surrounded by a cylindrical heat shield (26), When forming the shoulder portion (25b) of the silicon single crystal rod (25), an annular heat radiator (27) having an area covering an inner surface of the quartz crucible (13) and an outer surface of the heat shield (26) is formed. The heat shield (26)
And placed at the upper end or above the quartz crucible (13), and at the time of forming the straight body (25c) of the silicon single crystal rod (25), the heat near the liquid surface of the silicon melt (12) is formed. A method for pulling a silicon single crystal, comprising disposing a radiator (27).
JP05922798A 1998-03-11 1998-03-11 Silicon single crystal pulling apparatus and pulling method thereof Expired - Lifetime JP3642174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05922798A JP3642174B2 (en) 1998-03-11 1998-03-11 Silicon single crystal pulling apparatus and pulling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05922798A JP3642174B2 (en) 1998-03-11 1998-03-11 Silicon single crystal pulling apparatus and pulling method thereof

Publications (2)

Publication Number Publication Date
JPH11255576A true JPH11255576A (en) 1999-09-21
JP3642174B2 JP3642174B2 (en) 2005-04-27

Family

ID=13107291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05922798A Expired - Lifetime JP3642174B2 (en) 1998-03-11 1998-03-11 Silicon single crystal pulling apparatus and pulling method thereof

Country Status (1)

Country Link
JP (1) JP3642174B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202436A (en) * 2009-03-02 2010-09-16 Sumco Corp Single crystal pulling apparatus
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
CN111379018A (en) * 2020-04-02 2020-07-07 徐州鑫晶半导体科技有限公司 Method for growing semiconductor silicon crystal bar
CN114197034A (en) * 2020-09-02 2022-03-18 西安奕斯伟材料科技有限公司 Combined sleeve of single crystal furnace and single crystal furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202436A (en) * 2009-03-02 2010-09-16 Sumco Corp Single crystal pulling apparatus
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
US10066315B2 (en) 2013-12-03 2018-09-04 Sk Siltron Co., Ltd. Single crystal growing apparatus
CN111379018A (en) * 2020-04-02 2020-07-07 徐州鑫晶半导体科技有限公司 Method for growing semiconductor silicon crystal bar
CN111379018B (en) * 2020-04-02 2021-08-27 徐州鑫晶半导体科技有限公司 Method for growing semiconductor silicon crystal bar
CN114197034A (en) * 2020-09-02 2022-03-18 西安奕斯伟材料科技有限公司 Combined sleeve of single crystal furnace and single crystal furnace

Also Published As

Publication number Publication date
JP3642174B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP6760128B2 (en) Silicon single crystal manufacturing method, rectifying member, and single crystal pulling device
JP5163386B2 (en) Silicon melt forming equipment
JP2010024123A (en) Device for feeding silicon melt and apparatus for growing silicon single crystal equipped with the same
JP3428625B2 (en) Apparatus and method for pulling silicon single crystal
JPH11255576A (en) Apparatus for pulling silicon single crystal and pulling up thereof
JP3428626B2 (en) Apparatus and method for pulling silicon single crystal
JP3428624B2 (en) Silicon single crystal pulling method
JP2007186356A (en) Apparatus and method for producing single crystal
JPH09175889A (en) Single crystal pull-up apparatus
JP2001010892A (en) Method for melting polycrystalline silicon for silicon single crystal pulling device
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
US7195671B2 (en) Thermal shield
CN114277434A (en) Thermal field adjusting device and method for single crystal growth
JP4221797B2 (en) Melting method of polycrystalline silicon before silicon single crystal growth
JP5051044B2 (en) Method for growing silicon single crystal
JP4310980B2 (en) Pulling method of silicon single crystal
JP3719336B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3587231B2 (en) Silicon single crystal pulling device
KR101069911B1 (en) a silicon single crystal ingot grower used czochralski method and controlling method of the same
JP3719329B2 (en) Silicon single crystal pulling device
JP3557872B2 (en) Silicon single crystal growth equipment
TWI806139B (en) Single crystal manufacturing apparatus
JP2024504533A (en) Thermal field adjustment device and method for single crystal growth
JP2023549206A (en) Ingot pulling device having a heat shield disposed below a side heater and method for producing ingots with such device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term