JPH11254562A - Tubular body and prepreg - Google Patents

Tubular body and prepreg

Info

Publication number
JPH11254562A
JPH11254562A JP10058178A JP5817898A JPH11254562A JP H11254562 A JPH11254562 A JP H11254562A JP 10058178 A JP10058178 A JP 10058178A JP 5817898 A JP5817898 A JP 5817898A JP H11254562 A JPH11254562 A JP H11254562A
Authority
JP
Japan
Prior art keywords
tubular body
layer
prepreg
degrees
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10058178A
Other languages
Japanese (ja)
Inventor
Takehiko Hirose
武彦 廣瀬
Kenichi Noguchi
健一 野口
Hiroyuki Takagishi
宏至 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10058178A priority Critical patent/JPH11254562A/en
Publication of JPH11254562A publication Critical patent/JPH11254562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Golf Clubs (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a tubular body which is light in weight and soft sufficiently, of which the amount of displacement is large and which is strong. SOLUTION: A tubular body constituted of carbon fibers and matrix resin has a part comprising a first layer wherein angles of orientation of the carbon fibers are arranged to be 30-70 degrees to the direction of the axis of the tubular body from the inside thereof, a second layer wherein reinforcing fibers are arranged in the direction of the axis of the tubular body and a third layer wherein the angles are arranged to be 30-70 degrees to the direction of the axis of the tubular body. The ratio t1 /t of the thickness t1 (mm) of the first layer to the wall thickness t (mm) of the tubular body is 0.2-0.7, the ratio of the thickness t2 (mm) of the second layer to t 0.05-0.5 and the ratio of the thickness t3 (mm) of the third layer to t 0.2-0.7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は繊維強化プラスチッ
ク(以下FRPと略す)製の管状体に関する。
The present invention relates to a tubular body made of fiber reinforced plastic (hereinafter abbreviated as FRP).

【0002】[0002]

【従来の技術】FRP製の管状体は、曲げ強さなどの力
学的特性が高いことから、釣り竿、ゴルフクラブ用シャ
フト、テニスラケット、バトミントンシャフト、スティ
ック、スキーポール(ストック)などといった各種スポ
ーツ/レジャー用品として好適なシャフト、ポール、支
柱等として、また、航空機、自動車、自転車等、ポンプ
や刈払い機、配管、アンテナなどの産業機械等における
各種フレーム、パイプ、シャフトとして用いられる。
2. Description of the Related Art A tubular body made of FRP has high mechanical properties such as bending strength, so that it can be used in various sports such as fishing rods, golf club shafts, tennis rackets, badminton shafts, sticks, ski poles (stock), and the like. They are used as shafts, poles, supports, and the like suitable for leisure goods, and as various frames, pipes, and shafts in industrial machines such as pumps, brush cutters, pipes, and antennas for aircraft, automobiles, bicycles, and the like.

【0003】このような管状体において、強度が高いと
いう特性に加えて、管状体の曲げ易さ、曲がり量の大き
さが求められることがある。
[0003] In such a tubular body, in addition to the characteristic of high strength, the tubular body is required to be easy to bend and to have a large amount of bending.

【0004】ゴルフシャフトのような管状体に、軽量、
高強度の利点を有する炭素繊維強化プラスチックが使用
されている。ゴルフクラブでは、打球の速度および方向
安定性を得るため、軽量シャフトが望まれている。しか
し、ゴルフシャフトを軽量化していくと、打球時、運搬
時その他あらゆる場面で折れやすくなる。こうした折損
はゴルフシャフトの先端から400mmのところで発生
する事が多い。そこで、繊維強化プラスチック製ゴルフ
シャフトでは、この先端から400mm程度のところま
で局部的に繊維強化プラスチック製の補強層(以下、先
端補強層)を付加してこの部分の強さを補っている。こ
の場合、補強効果を高くするために層内の繊維は管状体
軸方向に配されていることが一般的である。
[0004] A tubular body such as a golf shaft is lightweight,
Carbon fiber reinforced plastics with the advantage of high strength have been used. In a golf club, a lightweight shaft is desired in order to obtain the speed and directional stability of a hit ball. However, when the weight of the golf shaft is reduced, the golf shaft is likely to be broken at the time of hitting a ball, transporting, or any other occasion. Such breakage often occurs 400 mm from the tip of the golf shaft. Therefore, in the golf shaft made of fiber reinforced plastic, a reinforcing layer made of fiber reinforced plastic (hereinafter referred to as a tip reinforcing layer) is locally added to a position of about 400 mm from the tip to supplement the strength of this part. In this case, the fibers in the layer are generally arranged in the axial direction of the tubular body in order to enhance the reinforcing effect.

【0005】一般的にゴルフシャフトでは、高い曲げ特
性を得るために、管状体軸方向に炭素繊維を配してお
り、かつ、高いねじり特性を得るために管状体軸方向に
対し、30〜45度方向(バイアス層)に炭素繊維を配
している。先端から400mm程度までは補強層を炭素
繊維が管状体軸方向に配している。管状体内側より、補
強層、バイアス層、軸方向層の順に配されている。
[0005] Generally, in a golf shaft, carbon fibers are arranged in the axial direction of the tubular body in order to obtain high bending characteristics, and 30 to 45 to the axial direction of the tubular body in order to obtain high torsional characteristics. Carbon fibers are arranged in the direction (bias layer). Up to about 400 mm from the tip, the reinforcing layer is formed of carbon fibers in the axial direction of the tubular body. A reinforcing layer, a bias layer, and an axial layer are arranged in this order from the inside of the tubular body.

【0006】しかしながら、この補強層を配すること
で、シャフトの軸方向の曲げ剛性分布が先端で局部的に
高くなり、適正な曲げ剛性分布が不可能となり、打球速
度につながるヘッドスピードの低下やフィーリングの悪
化を招く。そのため、曲げ剛性を抑え、曲げに対する変
形量を大きくすることが必要である。
However, by disposing the reinforcing layer, the axial bending stiffness distribution of the shaft locally increases at the tip end, making it impossible to perform an appropriate bending stiffness distribution. The feeling is worsened. Therefore, it is necessary to suppress bending rigidity and increase the amount of deformation due to bending.

【0007】特開平7−1498294号公報におい
て、先端補強部にTガラスや低弾性率材料を用いること
により、先端部の局部的な曲げ剛性の増加を抑えている
が、ここに示された方法では、ヘッドスピードの向上効
果は十分とはいえず、また、これらの材料では補強効果
が必ずしも十分とはいえない。
[0007] In Japanese Patent Application Laid-Open No. 7-149294, the use of T glass or a low elastic modulus material for the tip reinforcing portion suppresses a local increase in bending rigidity at the tip portion. Then, the effect of improving the head speed cannot be said to be sufficient, and the reinforcing effect of these materials is not necessarily sufficient.

【0008】釣り竿、例えば穂先の様に比較的細い管状
体に、軽量、高強度、高剛性の要求を満たすために炭素
繊維強化プラスチックが用いられていることが多い。
For a fishing rod, for example, a relatively thin tubular body such as a tip, carbon fiber reinforced plastic is often used in order to satisfy requirements of light weight, high strength and high rigidity.

【0009】この様な比較的細い管状体において、管状
体の強度は特に重要な要因の一つである。特に釣り竿の
穂先、もしくはそれに近い2番、3番手などでは、魚を
つり上げるため、従来、引張強度や曲げ強度が重要視さ
れていた。さらに、釣竿穂先の曲げ剛性を小さくして、
しなり易くすることによる釣果向上が求められている。
例えば、特開平5-276855のように、釣竿の長手方向(い
わゆる軸方向)に繊維が配向した中実竿や、軸方向と周
方向に補強繊維が配向された中空竿の形状をしていた。
この様な管状体では、軸方向層が主体であり、それに、
潰れや成形性などを考慮して周方向層を持っているが、
軸方向層と周方向層いずれにも炭素繊維強化プラスチッ
クが用いられているため、高強度であるとともに、高弾
性率であるため、管状体の曲げ剛性を小さくするため
に、内径が極めて小さくされている。
In such a relatively thin tubular body, the strength of the tubular body is one of the particularly important factors. In particular, at the tip of the fishing rod or at the second or third position close to the tip, the tensile strength and the bending strength have conventionally been regarded as important in order to lift the fish. Furthermore, by reducing the bending rigidity of the fishing rod ear,
There is a demand for improved fishing results by making it easier to bend.
For example, as in Japanese Patent Application Laid-Open No. H5-276855, the shape of a solid rod in which fibers are oriented in the longitudinal direction (so-called axial direction) of a fishing rod or a hollow rod in which reinforcing fibers are oriented in an axial direction and a circumferential direction. .
In such a tubular body, the axial layer is mainly used, and
Although it has a circumferential layer in consideration of collapse and formability,
Because carbon fiber reinforced plastic is used for both the axial layer and the circumferential layer, it has high strength and high elastic modulus, so the inner diameter is extremely small to reduce the bending rigidity of the tubular body. ing.

【0010】近年、釣り糸を釣り竿の内側に通す竿、い
わゆる中通し竿が増えてきた。そのため、内径が大きく
なって竿が硬くなりすぎてしまい、竿の調子が変わった
り、魚をつり上げる際に釣り糸のみが変形負担して糸切
れするなどが起こりやすくなるという問題があった。
[0010] In recent years, rods for passing fishing lines inside fishing rods, so-called center rods, have been increasing. For this reason, there has been a problem that the inner diameter becomes large and the rod becomes too hard, the condition of the rod is changed, and when fishing the fish, only the fishing line is deformed and the line is liable to be broken.

【0011】この様な問題を解決するには、ある程度の
内径を確保しつつ、十分な強度と柔らかさが必要とな
る。釣り竿穂先の強度が強ければ折れにくく、また、柔
らかければ十分曲がるため、竿が釣り糸の抵抗になりに
くく、折れたり、糸切れしにくくなる。
In order to solve such a problem, it is necessary to have sufficient strength and softness while securing a certain inner diameter. If the strength of the tip of the fishing rod is strong, it is difficult to break, and if it is soft, it bends sufficiently, so that the rod does not easily resist the fishing line, and it is hard to break or break the line.

【0012】以上のように、従来の繊維強化プラスチッ
ク製の管状体では、強さと最適な曲げ剛性および大変形
を両立させる得る技術が求められているが、これまでは
なかなか困難な状況にあった。
As described above, in a conventional tubular body made of fiber reinforced plastic, a technique for achieving both strength and optimum bending rigidity and large deformation has been demanded, but it has been quite difficult until now. .

【0013】[0013]

【発明が解決しようとする課題】この発明の目的は、従
来の管状体の上述した問題点を解決し、管状体として、
軽量であり、十分に柔らかく、変位量が大きく、かつ高
強度を有し、特にゴルフシャフトの先端補強部または、
釣り竿の穂先など、さらには配管などの産業用管状体と
して好適に用い得る管状体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional tubular body,
Lightweight, sufficiently soft, large displacement, and high strength, especially the tip reinforcement of the golf shaft, or
It is an object of the present invention to provide a tubular body that can be suitably used as an industrial tubular body such as a tip of a fishing rod and also a pipe.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の管状体は次の構成を有する。すなわち、炭
素繊維とマトリックス樹脂からなる管状体において、炭
素繊維の配向角が管状体内側より、管状体軸方向に対し
30〜70度に配されている第1層と、管状体軸方向に
強化繊維が配されている第2層と、管状体軸方向に対し
30〜70度に配されている第3層からなる部分を有
し、管状体の肉厚t(mm)に対する第1層の厚さt1
(mm)の比t1/tが0.2〜0.7、tに対する第
2層の厚さt2(mm)の比が0.05〜0.5、tに
対する第3層の厚さt3(mm)の比が0.2〜0.7
であることを特徴とする管状体である。
In order to achieve the above object, the tubular body of the present invention has the following configuration. That is, in a tubular body composed of a carbon fiber and a matrix resin, a first layer in which the orientation angle of the carbon fibers is arranged at 30 to 70 degrees from the inside of the tubular body to the tubular body axial direction, and reinforced in the tubular body axial direction. It has a portion composed of a second layer in which fibers are arranged and a third layer arranged at 30 to 70 degrees with respect to the tubular body axial direction, and the first layer with respect to the wall thickness t (mm) of the tubular body. Thickness t 1
(Mm) ratio t 1 / t is 0.2 to 0.7, ratio of t 2 (mm) of second layer to t is 0.05 to 0.5, thickness of third layer to t The ratio of t 3 (mm) is 0.2 to 0.7
The tubular body is characterized in that:

【0015】また、上記目的を達成するために、本発明
の貼り合わせプリプレグは、次の構成を有する。すなわ
ち、補強繊維が一方向に引き揃えられたプリプレグシー
トを、互いの補強繊維が40〜90度になるよう配して
なる貼り合わせプリプレグ、または、補強繊維が一方向
に引き揃えられ、かつ補強繊維量が10g/m2〜10
0g/m2のプリプレグシートを、互いの補強繊維が4
0〜90度になるよう配してなる貼り合わせプリプレグ
である。
Further, in order to achieve the above object, a bonded prepreg of the present invention has the following configuration. That is, a prepreg sheet in which reinforcing fibers are aligned in one direction, a bonded prepreg in which the reinforcing fibers are arranged at 40 to 90 degrees, or reinforcing fibers are aligned in one direction and reinforced. Fiber amount is 10 g / m 2 to 10
0 g / m 2 of prepreg sheet, each reinforcing fiber is 4
It is a bonded prepreg arranged so as to be 0 to 90 degrees.

【0016】さらに、上記目的を達成するために、本発
明のFRP製管状体の製造方法は次の構成を有する。す
なわち、所望の形状に切り出した一方向性プリプレグを
芯金に巻き付けて成形するFRP製管状体の製造方法に
おいて、管状体軸方向に対し炭素繊維の配向角が30〜
70度の範囲にある内層と外層が、炭素繊維の配向角が
軸方向に対し互いに正逆両方向になるように、2枚の一
方向性プリプレグを重ねた後に芯金に巻き付けて形成す
ることを特徴とするFRP製管状体の製造方法である。
Further, in order to achieve the above object, a method for producing an FRP tubular body of the present invention has the following configuration. That is, in a method of manufacturing a FRP tubular body in which a unidirectional prepreg cut into a desired shape is wound around a cored bar and formed, the orientation angle of the carbon fibers is 30 to an axial direction of the tubular body.
The inner layer and the outer layer in the range of 70 degrees are formed by stacking two unidirectional prepregs and winding them around a core metal so that the orientation angles of the carbon fibers are in both forward and reverse directions with respect to the axial direction. This is a method for producing an FRP tubular body.

【0017】[0017]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態とともに、本発明について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail together with preferred embodiments of the present invention.

【0018】本発明の管状体は、炭素繊維強化プラスチ
ック層(以下、CFRP層と略す)を有する。炭素繊維
としては、ポリアクリロニトリル系やピッチ系などの炭
素繊維を用いることができる。特に圧縮強さ、曲げ強さ
に優れるポリアクリロニトリル系炭素繊維を用いるのが
良い。なお、補強繊維は、炭素繊維以外の異なる種類の
ものを併用することができる。また、同じ種類のもので
あっても、特性の異なるものを併用することができる。
The tubular body of the present invention has a carbon fiber reinforced plastic layer (hereinafter abbreviated as CFRP layer). As the carbon fibers, polyacrylonitrile-based or pitch-based carbon fibers can be used. In particular, it is preferable to use polyacrylonitrile-based carbon fibers having excellent compressive strength and bending strength. Note that different types of reinforcing fibers other than carbon fibers can be used in combination. Further, even those of the same type, those having different characteristics can be used together.

【0019】また、本発明において用いられるマトリッ
クス樹脂としては、エポキシ樹脂、不飽和ポリエステル
樹脂、その他の熱硬化性樹脂を使用することができる。
なかでも、耐熱性、耐水性、接着性に優れたエポキシ樹
脂を用いることが好ましい。エポキシ樹脂としては、例
えば、ビスフェノールA型エポキシ樹脂、フェノールノ
ボラック型エポキシ樹脂、クレゾールノボラック型エポ
キシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エ
ポキシ樹脂、ウレタン変性エポキシ樹脂、ブロム化ビス
フェノールA型エポキシ樹脂などを使用することができ
る。これらのエポキシ樹脂は、単独または2種類以上を
併用して使用することができ、さらには液状のものから
固体状のものまで使用することができる。通常、エポキ
シ樹脂には硬化剤を加えて用いられることが多い。
As the matrix resin used in the present invention, epoxy resins, unsaturated polyester resins, and other thermosetting resins can be used.
Among them, it is preferable to use an epoxy resin having excellent heat resistance, water resistance and adhesiveness. As the epoxy resin, for example, bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin, urethane modified epoxy resin, brominated bisphenol A type epoxy resin, etc. Can be used. These epoxy resins can be used alone or in combination of two or more, and furthermore, a liquid to a solid can be used. Usually, epoxy resins are often used by adding a curing agent.

【0020】管状体の強さとは、単なる強度ではなく変
形していった時に変形量が大きいことでもあるため、本
発明の管状体はこの変形量と柔らかさをバランスよく両
立させえる。
The strength of the tubular body means not only mere strength but also a large amount of deformation when deformed. Therefore, the tubular body of the present invention can balance this deformation with softness in a well-balanced manner.

【0021】炭素繊維の配向角は、軸方向層は軸方向に
対する強度を確保するため必要であり、軸方向に対し3
0〜70度に配していた層は、曲げ剛性を小さくするこ
と、および変形量を大きくできる。ただし、軸方向層が
30〜70度層の内側や外側にした場合、曲げ変形して
いくと、30〜70度層が破壊しなくても、軸方向層が
壊れてしまい、結局管状体の破壊に至ってしまう。
[0021] The orientation angle of the carbon fiber is required to ensure that the axial layer has sufficient strength in the axial direction.
The layers arranged at 0 to 70 degrees can reduce bending rigidity and increase deformation. However, if the axial layer is on the inside or outside of the 30-70 degree layer, if the bending deformation continues, even if the 30-70 degree layer does not break, the axial layer will break, and eventually the tubular body It leads to destruction.

【0022】第2層の軸方向層の破壊をできるだけ抑え
るためには、30〜70度層で軸方向層ではさむことに
より、軸方向層の破壊する変形量を大きくすることが可
能となる。30度より小さければ変形量が小さくなりや
すく、かつ曲げ剛性が小さくできない。また、70度よ
り大きいと変形量が小さくなりやすくなる。第1層と第
3層の配向角は好ましくは40〜65度、さらには50
〜65度の範囲が望ましい。
In order to suppress the destruction of the second axial layer as much as possible, it is possible to increase the amount of deformation in which the second axial layer is broken by sandwiching the second axial layer with a 30-70 ° layer. If the angle is smaller than 30 degrees, the deformation tends to be small, and the bending rigidity cannot be reduced. On the other hand, if it is larger than 70 degrees, the amount of deformation tends to be small. The orientation angle of the first layer and the third layer is preferably 40 to 65 degrees, more preferably 50 to 65 degrees.
A range of -65 degrees is desirable.

【0023】各層の厚さの割合によっても、管状体の変
形量や柔らかさが異なる。第1層は変形量や柔らかさに
直接関係するため、管状体肉厚tに対し、t1の比t1
tが0.2〜0.7の範囲にあるのが適当である。0.
2より小さければ、変形量や柔らかさが十分でなく、本
発明の主旨に含まれない。また、0.7より大きけれ
ば、ある程度変形させた後、力を除いても、当初の形状
を維持できなく、管状体がわずかに変形したまま(以
下、残留変形)になり、これを繰り返し使用すると本来
持っている性能を発揮できなくなる。このt1/tは好
ましくは0.3〜0.6、さらに好ましくは0.35〜
0.5とすることが適当である。第3層についても第1
層の場合と同様である。
The deformation and softness of the tubular body also vary depending on the thickness ratio of each layer. Since the first layer which is directly related to the amount of deformation and softness, to the tubular body wall thickness t, the ratio of t 1 t 1 /
Suitably, t is in the range of 0.2 to 0.7. 0.
If it is smaller than 2, the deformation and softness are not sufficient, and are not included in the gist of the present invention. Also, if it is larger than 0.7, after deforming to some extent, even if the force is removed, the original shape cannot be maintained, and the tubular body remains slightly deformed (hereinafter referred to as residual deformation). Then, the original performance cannot be exhibited. This t 1 / t is preferably from 0.3 to 0.6, more preferably from 0.35 to
It is appropriate to set it to 0.5. The third layer is also the first
Same as for layers.

【0024】tに対する第2層の比t2/tは、0.0
5〜0.4の範囲にあることよい。第2層は管状体の強
さや変形後の残留変形に影響する。0.05より小さけ
れば、残留変形が大きくなりすぎ、また、0.4より大
きければ、変形量が小さく、曲げ剛性が大きくなりすぎ
る。このt2/tは好ましくは0.1〜0.4、さらに
好ましくは0.1〜0.3とすることが適当である。
The ratio t 2 / t of the second layer to t is 0.0
It may be in the range of 5 to 0.4. The second layer affects the strength of the tubular body and the residual deformation after deformation. If it is smaller than 0.05, the residual deformation is too large, and if it is larger than 0.4, the deformation is small and the bending rigidity is too large. The value of t 2 / t is preferably 0.1 to 0.4, more preferably 0.1 to 0.3.

【0025】特に本発明の管状体をゴルフシャフトとし
て用いる場合、内径dは通常5mm〜15mmであり、また
は、釣り竿、特に穂先として用いる場合、内径は1.5
mm〜5mmであるため、釣り竿とゴルフシャフト両者に当
てはめると内径と肉厚の比率t/dは、重量と形状か
ら、0.01〜0.4、好ましくは0.02〜0.3、
より好ましくは0.04〜0.2とすることが適当であ
る。0.4より大きいと管状体が硬くなりすぎてしま
い、また、重量の余分な増加にしかならない。一方、
0.01より管状体の径方向に対する力が弱くなってし
まう。
In particular, when the tubular body of the present invention is used as a golf shaft, the inner diameter d is usually from 5 mm to 15 mm, or when used as a fishing rod, especially as a tip, the inner diameter is 1.5 mm.
When applied to both a fishing rod and a golf shaft, the ratio t / d of the inner diameter to the wall thickness is 0.01 to 0.4, preferably 0.02 to 0.3,
More preferably, it is suitable to be 0.04 to 0.2. If it is larger than 0.4, the tubular body becomes too stiff, and it causes only an extra increase in weight. on the other hand,
The force in the radial direction of the tubular body becomes weaker than 0.01.

【0026】本発明の管状体における第1層または第3
層の30〜70度層には、強化繊維の配向角が正逆両方
向である2つの層をともに有しているのが適当である。
ここでいう正逆両方向とは、管状体軸方向に対し補強繊
維方向がほぼ対称である状態、すなわち±30〜±70
度層になっていることをいう。この場合正逆両方向の2
層が互いに重なりあってことが特に好ましい。正逆両方
向の層を有することで、管状体が軸方向に向かって平衡
な状態に保たれることになり好ましく用いられる。
The first layer or the third layer in the tubular body of the present invention.
It is appropriate that the 30- to 70-degree layers of the layers both include two layers in which the orientation angles of the reinforcing fibers are in both forward and reverse directions.
Here, the forward and reverse directions refer to a state in which the reinforcing fiber direction is substantially symmetric with respect to the tubular body axial direction, that is, ± 30 to ± 70.
It means that it is a layer. In this case, two
It is particularly preferred that the layers overlap one another. By having the layers in both the forward and reverse directions, the tubular body is maintained in an equilibrium state in the axial direction, and is preferably used.

【0027】本発明の管状体における第1層および第3
層の炭素繊維の配列方向は、第2層の中心面に対し鏡面
対称になっていることが適当である。鏡面対称にするこ
とで、管状体に曲げ力が加わったとき、第2層に働くせ
ん断力を軽減することができ、それによって曲げ強さや
変形量を大きくすることになる。
The first and third layers in the tubular body of the present invention
Suitably, the arrangement direction of the carbon fibers in the layer is mirror-symmetric with respect to the center plane of the second layer. By providing mirror symmetry, when a bending force is applied to the tubular body, the shear force acting on the second layer can be reduced, thereby increasing the bending strength and the amount of deformation.

【0028】一方、管状体の性能は、各層に含まれる炭
素繊維量によって左右される。各層に含まれる炭素繊維
量、マトリックス樹脂量、およびそれらの割合によって
各層の厚さが大きく変わってしまい、本発明の管状体の
能力を十分発揮できない可能性がでてくる。なかでも、
管状体の能力に大きく影響する炭素繊維量が重要な要因
である。そのため、第2層に対する第1層および第3層
の比がそれぞれ0.5〜3の範囲にあることが適当であ
る。0.5より小さければ、炭素繊維が軸方向に配され
た第2層が増えるため、管状体が硬くなるなどして本発
明の効果が発揮されない。また、3より大きければ、第
2層が少なくなり、変形後の残留変形量が大きくなって
しまう。好ましくは0.8〜3、さらに好ましくは1〜
3とすることが適当である。
On the other hand, the performance of the tubular body depends on the amount of carbon fibers contained in each layer. The thickness of each layer greatly changes depending on the amount of carbon fiber, the amount of matrix resin, and the ratio thereof contained in each layer, and the capability of the tubular body of the present invention may not be sufficiently exhibited. Above all,
An important factor is the amount of carbon fiber that greatly affects the performance of the tubular body. Therefore, it is appropriate that the ratio of the first layer and the third layer to the second layer is in the range of 0.5 to 3, respectively. If it is smaller than 0.5, the second layer in which the carbon fibers are arranged in the axial direction increases, so that the effect of the present invention is not exhibited because the tubular body is hardened. On the other hand, if it is larger than 3, the number of the second layers is small, and the amount of residual deformation after deformation is large. Preferably 0.8 to 3, more preferably 1 to
A value of 3 is appropriate.

【0029】本発明の管状体を得るには、シャフト内径
と同じテーパをもった外径のマンドレルに第1層から順
番に、第3層までプリプレグを巻き付け、ラッピングテ
ープを巻き付け成形する方法、フィラメントワインディ
ング法、テープワインド法などを用いることができる。
In order to obtain the tubular body of the present invention, a prepreg is wound in order from the first layer to the third layer on a mandrel having an outer diameter having the same taper as the inner diameter of the shaft, and a wrapping tape is wound and formed. A winding method, a tape winding method, or the like can be used.

【0030】本発明の管状体を得るために、プリプレグ
を用いることが簡便であり、例えば、あらかじめ上述し
てきたように本発明に適した炭素繊維プリプレグを使用
すればよい。特に所定の形状にしたプリプレグを貼り合
わせた後、巻き付けるなどしても良く、本発明における
第1層や第3層では特に好ましく用いられる。また、そ
の際、プリプレグを管状体径の半周分ずらして貼り合わ
せるなどの方法を用いても良い。
It is convenient to use a prepreg in order to obtain the tubular body of the present invention. For example, a carbon fiber prepreg suitable for the present invention may be used as described above. In particular, a prepreg having a predetermined shape may be bonded and then wound, and is particularly preferably used in the first and third layers of the present invention. At that time, a method of pasting the prepreg by shifting it by half a circumference of the tubular body diameter or the like may be used.

【0031】一方、プリプレグとして、補強繊維を一方
向に引き揃えたプリプレグシートを、互いの補強繊維が
40度〜90度になるよう配した貼り合わせプリプレグ
が好適に用いられる。
On the other hand, as the prepreg, a bonded prepreg in which prepreg sheets in which reinforcing fibers are arranged in one direction are arranged such that the reinforcing fibers are at 40 ° to 90 ° is preferably used.

【0032】補強繊維間の角度は、一方向プリプレグシ
ート用いた場合、例えば、互いに40度の角度に配すれ
ば、もう一方の角度は140度になる。このように、互
いの補強繊維間の角度は2通りの表示ができる。そのた
め、本発明においては、角度が小さい方を表記してい
る。
When the unidirectional prepreg sheet is used, for example, if the reinforcing fibers are arranged at an angle of 40 degrees, the other angle becomes 140 degrees. Thus, the angle between the reinforcing fibers can be displayed in two ways. Therefore, in the present invention, the smaller angle is described.

【0033】特にプリプレグシートの厚さが薄い場合
は、作業性の面から効率的であり、補強繊維量が10g
/m2〜100g/m2のプリプレグシートを互いの補強
繊維が40度〜90度になるよう配した貼り合わせプリ
プレグが好適に用いられる。さらに、10g/m2〜5
0g/m2のプリプレグシートが好ましく適する。
In particular, when the thickness of the prepreg sheet is small, it is efficient from the viewpoint of workability, and the reinforcing fiber amount is 10 g.
A bonded prepreg in which prepreg sheets of / m 2 to 100 g / m 2 are arranged such that the reinforcing fibers thereof are at 40 to 90 degrees is preferably used. Furthermore, 10 g / m 2 -5
A prepreg sheet of 0 g / m 2 is preferably suitable.

【0034】本発明の管状体における炭素繊維強化プラ
スチック層の繊維含有率は、使用する補強繊維配向角に
応じて、その特性、特に機械的特性を考慮して決められ
るが、通常、30体積%〜80体積%、好ましくは30体
積%〜65体積%の範囲、特に薄物プリプレグの場合は、
取り扱い性を考慮して25体積%〜65体積%、好まし
くは25体積%〜60体積%の範囲が適する。
The fiber content of the carbon fiber reinforced plastic layer in the tubular body of the present invention is determined according to the orientation angle of the reinforcing fiber to be used in consideration of its properties, particularly mechanical properties. ~ 80% by volume, preferably in the range of 30% to 65% by volume, especially for thin prepregs,
The range of 25% by volume to 65% by volume, preferably 25% by volume to 60% by volume is suitable in consideration of handling properties.

【0035】用いる炭素繊維としては、特に第2層の炭
素繊維は、曲げ変形を受けたときに、十分な変形を可能
にするため、JIS R 7601に記載の方法による引張り試験
における引張り伸度が1.7%以上あることが本発明の
管状体に好適に使用できる。
As the carbon fiber to be used, particularly, the carbon fiber in the second layer has a tensile elongation in a tensile test according to a method described in JIS R 7601 in order to allow sufficient deformation when subjected to bending deformation. 1.7% or more can be suitably used for the tubular body of the present invention.

【0036】本発明の管状体は、強さと柔らかさを求め
られる用途であれば、いずれにも適用できるが、中でも
ゴルフシャフト、特に先端補強層を有する部分として好
適に用いられる。さらには、本発明をゴルフシャフトに
適用法として例えば、第1層と第2層がゴルフシャフト
の基本構成であって、第3層が先補強層になる構成、い
わゆる外補強構成になっていても形態も取り得る。
The tubular body of the present invention can be applied to any application where strength and softness are required. Among them, the tubular body is suitably used as a golf shaft, particularly as a portion having a tip reinforcing layer. Furthermore, as a method of applying the present invention to a golf shaft, for example, the first layer and the second layer are a basic structure of a golf shaft, and the third layer is a first reinforcing layer, that is, a so-called outer reinforcing structure. Can take any form.

【0037】また、釣り竿、特に穂先の曲げ剛性を小さ
くして、しなり易くすることにより釣果が向上するた
め、これに好適に用いられる。なかでも、釣り糸を釣り
竿の内側に通す中通し竿では、本発明の管状体が好適に
用いられ、本発明の効果はより顕著に発揮される。
Further, since the bending rigidity of the fishing rod, especially the tip of the ear, is reduced to make it easier to bend, the fishing result is improved. Above all, the tubular body of the present invention is suitably used in a through rod for passing a fishing line inside a fishing rod, and the effect of the present invention is more remarkably exhibited.

【0038】さらに、本発明の管状体は、管状体の径方
向の押し潰し反力(圧壊強さ)でも十分な強さを発揮で
きる。
Further, the tubular body of the present invention can exhibit a sufficient strength even in the radial crushing reaction force (crushing strength) of the tubular body.

【0039】[0039]

【実施例】以下、本発明を実施例によってさらに具体的
に説明する。
EXAMPLES The present invention will be described more specifically with reference to the following examples.

【0040】なお、本実施例中、管状体の曲げ剛性、最
大変位量は、次のようにして求めた。
In this example, the bending rigidity and the maximum displacement of the tubular body were obtained as follows.

【0041】管状体を、下部支点間距離300mm、上部
支点間距離100mm、負荷速度10mm/minとして4点曲
げ試験を行い荷重-変位曲線を記録する。この荷重-変位
曲線から曲げ剛性を算出、また、荷重立ち上がりから最
大荷重時までの上部支点の移動量を最大変位量とする。
The tubular body is subjected to a four-point bending test at a distance between the lower supports of 300 mm, a distance between the upper supports of 100 mm, and a load speed of 10 mm / min, and the load-displacement curve is recorded. The bending stiffness is calculated from the load-displacement curve, and the amount of movement of the upper fulcrum from the start of the load to the maximum load is defined as the maximum displacement.

【0042】実施例には、次に示すプリプレグを製作し
た。
In the examples, the following prepregs were produced.

【0043】プリプレグA:ポリアクリロニトリル系炭
素繊維A(引張強さ:4900MPa、引張弾性率:2
30GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は120g/m2、炭素繊維含有率は67重量%
であった。厚さは0.120mmであった。
Prepreg A: polyacrylonitrile-based carbon fiber A (tensile strength: 4900 MPa, tensile modulus: 2
A unidirectional prepreg obtained by impregnating epoxy resin into a sheet obtained by arranging 30 GPa) in parallel with each other in a sheet shape. The carbon fiber weight is 120 g / m 2 and the carbon fiber content is 67% by weight.
Met. The thickness was 0.120 mm.

【0044】プリプレグB:ポリアクリロニトリル系炭
素繊維A(引張強さ:4900MPa、引張弾性率:2
30GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は100g/m2、炭素繊維含有率は67重量%
であった。厚さは0.096mmであった。
Prepreg B: polyacrylonitrile-based carbon fiber A (tensile strength: 4900 MPa, tensile modulus: 2)
A unidirectional prepreg obtained by impregnating epoxy resin into a sheet obtained by arranging 30 GPa) in parallel with each other in a sheet shape. Carbon fiber basis weight is 100 g / m 2 , carbon fiber content is 67% by weight
Met. The thickness was 0.096 mm.

【0045】プリプレグC:ポリアクリロニトリル系炭
素繊維B(引張強さ:4410MPa、引張弾性率:3
75GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は92g/m2、炭素繊維含有率は67重量%で
あった。厚さは0.089mmであった。
Prepreg C: polyacrylonitrile-based carbon fiber B (tensile strength: 4410 MPa, tensile modulus: 3)
75 GPa) is a unidirectional prepreg obtained by impregnating epoxy resin into a parallel and sheet-like structure. The carbon fiber basis weight was 92 g / m 2 , and the carbon fiber content was 67% by weight. The thickness was 0.089 mm.

【0046】プリプレグD:ポリアクリロニトリル系炭
素繊維C(引張強さ:3530MPa、引張弾性率:2
30GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は55g/m2、炭素繊維含有率は63重量%で
あった。厚さは0.058mmであった。
Prepreg D: polyacrylonitrile-based carbon fiber C (tensile strength: 3530 MPa, tensile modulus: 2)
A unidirectional prepreg obtained by impregnating epoxy resin into a sheet obtained by arranging 30 GPa) in parallel with each other in a sheet shape. The carbon fiber weight was 55 g / m 2 and the carbon fiber content was 63% by weight. The thickness was 0.058 mm.

【0047】プリプレグE:ポリアクリロニトリル系炭
素繊維C(引張強さ:3530MPa、引張弾性率:2
30GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は40g/m2、炭素繊維含有率は58重量%で
あった。厚さは0.046mmであった。
Prepreg E: polyacrylonitrile-based carbon fiber C (tensile strength: 3530 MPa, tensile modulus: 2)
A unidirectional prepreg obtained by impregnating epoxy resin into a sheet obtained by arranging 30 GPa) in parallel with each other in a sheet shape. The carbon fiber basis weight was 40 g / m 2 , and the carbon fiber content was 58% by weight. The thickness was 0.046 mm.

【0048】プリプレグF:ポリアクリロニトリル系炭
素繊維C(引張強さ:3530MPa、引張弾性率:2
30GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は10g/m2、炭素繊維含有率は50重量%で
あった。厚さは0.014mmであった。
Prepreg F: polyacrylonitrile-based carbon fiber C (tensile strength: 3530 MPa, tensile modulus: 2)
A unidirectional prepreg obtained by impregnating epoxy resin into a sheet obtained by arranging 30 GPa) in parallel with each other in a sheet shape. The carbon fiber basis weight was 10 g / m 2 , and the carbon fiber content was 50% by weight. The thickness was 0.014 mm.

【0049】プリプレグG:ポリアクリロニトリル系炭
素繊維C(引張強さ:3530MPa、引張弾性率:2
30GPa)を互いに並行かつシート状に引き揃えたも
のにエポキシ樹脂を含浸してなる一方向プリプレグ。炭
素繊維目付は15g/m2、炭素繊維含有率は50重量%で
あった。厚さは0.021mmであった。
Prepreg G: polyacrylonitrile-based carbon fiber C (tensile strength: 3530 MPa, tensile modulus: 2)
A unidirectional prepreg obtained by impregnating epoxy resin into a sheet obtained by arranging 30 GPa) in parallel with each other in a sheet shape. The carbon fiber weight was 15 g / m 2 and the carbon fiber content was 50% by weight. The thickness was 0.021 mm.

【0050】(実施例1)外径6.3mmφのテーパー無
しのストレート型のステンレス製マンドレルに、離形処
理を処し、プリプレグB2枚を互いの炭素繊維方向がほ
ぼ90度になるようにあらかじめ貼り合わせ、炭素繊維
方向がマンドレル軸方向に対し45度になるように2周
巻き付けた。次にプリプレグAを炭素繊維方向がマンド
レル軸方向とほぼ同じになるように2周巻き付けた。次
にもう一度、互いの炭素繊維方向がほぼ90度になるよ
うにあらかじめ貼り合わせたプリプレグBを炭素繊維方
向がマンドレル軸方向に対し45度になるように2周巻
き付けた。しかる後に、当業者による周知の方法、つま
りラッピングテープにより加圧し、硬化炉により加熱硬
化後、ラッピングテープを取り去り本発明の管状体を得
た。t1/tは0.38、t2/tは0.24、t3/t
は0.38、t/dは0.16であった。この管状体に
つき、4点曲げ試験した結果、曲げ剛性は6.75Nm
2、最大変形量は44mmであった。
(Example 1) A straight type stainless steel mandrel having an outer diameter of 6.3 mmφ and having no taper was subjected to a release treatment, and two prepregs B were previously bonded so that the carbon fiber directions of the two prepregs were substantially 90 degrees. Then, two turns were wound so that the carbon fiber direction was 45 degrees with respect to the mandrel axis direction. Next, the prepreg A was wound twice so that the carbon fiber direction was almost the same as the mandrel axis direction. Next, once again, prepreg B, which had been bonded in advance so that the directions of the carbon fibers were substantially 90 degrees, was wound twice around so that the direction of the carbon fibers was 45 degrees with respect to the mandrel axis direction. Thereafter, pressure was applied by a wrapping tape and heat-cured in a curing furnace, and the wrapping tape was removed to obtain a tubular body of the present invention. t 1 / t is 0.38, t 2 / t is 0.24, t 3 / t
Was 0.38 and t / d was 0.16. As a result of a four-point bending test on this tubular body, the bending rigidity was 6.75 Nm.
2. The maximum deformation was 44 mm.

【0051】(実施例2)プリプレグBを互いの炭素繊
維方向が120度になるようにあらかじめ貼り合わせ、
炭素繊維方向がマンドレル軸方向に対し60度になるよ
うに巻き付けるように変更した以外は実施例1と同様に
して本発明の管状体を得た。t1/tは0.38、t2
tは0.24、t3/tは0.38、t/dは0.16
であった。この管状体につき、4点曲げ試験した結果、
曲げ剛性は6.01Nm2、最大変形量は50mmであ
った。
(Example 2) The prepregs B were bonded together in advance so that the carbon fiber directions of the prepregs were 120 degrees.
A tubular body of the present invention was obtained in the same manner as in Example 1 except that the direction of the carbon fiber was changed so as to be wound at 60 degrees with respect to the mandrel axis direction. t 1 / t is 0.38, t 2 /
t is 0.24, t 3 / t is 0.38, t / d is 0.16
Met. As a result of a four-point bending test on this tubular body,
The flexural rigidity was 6.01 Nm 2 and the maximum deformation was 50 mm.

【0052】(実施例3)プリプレグBの代わりにプリ
プレグCを用いた以外は実施例1と同様にして本発明の
管状体を得た。t1/tは0.37、t2/tは0.2
5、t3/tは0.37、t/dは0.15であった。
この管状体につき、4点曲げ試験した結果、曲げ剛性は
6.58Nm2、最大変形量は46mmであった。
(Example 3) A tubular body of the present invention was obtained in the same manner as in Example 1 except that prepreg C was used instead of prepreg B. t 1 / t is 0.37 and t 2 / t is 0.2
5, t 3 / t was 0.37, and t / d was 0.15.
The tubular body was subjected to a four-point bending test to find that the bending rigidity was 6.58 Nm 2 and the maximum deformation was 46 mm.

【0053】(実施例4)互いの炭素繊維方向がほぼ9
0度になるようにあらかじめ貼り合わせたプリプレグA
2枚を炭素繊維方向がマンドレル軸方向に対し45度に
なるように3周巻き付けた。次にプリプレグBを炭素繊
維方向がマンドレル軸方向とほぼ同じになるように2周
巻き付けた。次にもう一度、互いの炭素繊維方向がほぼ
90度になるようにあらかじめ貼り合わせたプリプレグ
Aを炭素繊維方向がマンドレル軸方向に対し45度にな
るように1周巻き付けるよう変更した以外は実施例1と
同様にして本発明の管状体を得た。t1/tは0.5
7、t2/tは0.24、t3/tは0.20、t/dは
0.044であった。この管状体につき、4点曲げ試験
した結果、曲げ剛性は6.62Nm2、最大変形量は4
7mmであった。
(Example 4) The directions of the carbon fibers were substantially 9
Pre-preg A bonded in advance so that it becomes 0 degrees
Two sheets were wound three times so that the carbon fiber direction was at 45 degrees to the mandrel axis direction. Next, prepreg B was wound twice so that the carbon fiber direction was almost the same as the mandrel axis direction. Next, Example 1 was repeated except that once again, prepreg A, which had been bonded in advance so that the carbon fiber directions of each other were substantially 90 degrees, was wound around once so that the carbon fiber direction was 45 degrees with respect to the mandrel axis direction. In the same manner as in Example 1, a tubular body of the present invention was obtained. t 1 / t is 0.5
7, t 2 / t is 0.24, t 3 / t is 0.20, t / d was 0.044. As a result of a four-point bending test on this tubular body, the bending rigidity was 6.62 Nm 2 and the maximum deformation was 4
7 mm.

【0054】(実施例5)互いの炭素繊維方向がほぼ9
0度になるようにあらかじめ貼り合わせたプリプレグE
2枚を炭素繊維方向がマンドレル軸方向に対し45度に
なるように2周巻き付けた。次にプリプレグDを炭素繊
維方向がマンドレル軸方向とほぼ同じになるように1周
巻き付けた。次にもう一度、互いの炭素繊維方向がほぼ
90度になるようにあらかじめ貼り合わせたプリプレグ
Eを炭素繊維方向がマンドレル軸方向に対し45度にな
るように2周巻き付けるよう変更した以外は実施例1と
同様にして本発明の管状体を得た。t1/tは0.4
3、t2/tは0.13、t3/tは0.43、t/dは
0.068であった。この管状体につき、4点曲げ試験
した結果、曲げ剛性は1.08Nm2、最大変形量は4
9mmであった。
(Example 5) The directions of carbon fibers were substantially 9
Pre-preg E bonded in advance so that it becomes 0 degrees
Two sheets were wound twice so that the carbon fiber direction was at 45 degrees to the mandrel axis direction. Next, the prepreg D was wound one round so that the carbon fiber direction was almost the same as the mandrel axis direction. Next, Example 1 was repeated except that the prepreg E, which had been bonded in advance so that the directions of the carbon fibers were substantially 90 degrees again, was wound twice around so that the direction of the carbon fibers was 45 degrees with respect to the direction of the mandrel axis. In the same manner as in the above, a tubular body of the present invention was obtained. t 1 / t is 0.4
3, t 2 / t was 0.13, t 3 / t was 0.43, and t / d was 0.068. As a result of a four-point bending test on this tubular body, the bending rigidity was 1.08 Nm 2 and the maximum deformation was 4
9 mm.

【0055】(実施例6)プリプレグEを互いの炭素繊
維方向が120度になるようにあらかじめ貼り合わせ、
炭素繊維方向がマンドレル軸方向に対し60度になるよ
うに巻き付けるように変更した以外は実施例5と同様に
して本発明の管状体を得た。t1/tは0.43、t2
tは0.13、t3/tは0.43、t/dは0.06
8であった。この管状体につき、4点曲げ試験した結
果、曲げ剛性は0.96Nm2、最大変形量は54mm
であった。
(Example 6) The prepregs E were previously bonded so that the carbon fiber directions of the prepregs were 120 degrees.
A tubular body of the present invention was obtained in the same manner as in Example 5, except that the carbon fiber direction was changed so that the carbon fiber direction was wound at 60 degrees with respect to the mandrel axis direction. t 1 / t is 0.43, t 2 /
t is 0.13, t 3 / t is 0.43, and t / d is 0.06.
It was 8. As a result of a four-point bending test on this tubular body, the bending rigidity was 0.96 Nm 2 and the maximum deformation was 54 mm.
Met.

【0056】(実施例7)外径3mmφのテーパー無しの
ストレート型のステンレス製マンドレルに、離形処理を
処し、プリプレグFを互いの炭素繊維方向が120度に
なるようにあらかじめ貼り合わせ、炭素繊維方向がマン
ドレル軸方向に対し60度になるように2周巻き付け
た。次にプリプレグGを炭素繊維方向がマンドレル軸方
向とほぼ同じになるように1周巻き付けた。次にもう一
度、プリプレグFを互いの炭素繊維方向が120度にな
るようにあらかじめ貼り合わせ、炭素繊維方向がマンド
レル軸方向に対し60度になるように2周巻き付けるよ
うに変更した以外は実施例1と同様にして本発明の管状
体を得た。t1/tは0.42、t2/tは0.16、t
3/tは0.42、t/dは0.044であった。この
管状体につき、4点曲げ試験した結果、曲げ剛性は0.
036Nm2、最大変形量は63mmであった。
Example 7 A prepreg F was preliminarily bonded to a straight stainless steel mandrel having an outer diameter of 3 mmφ and having no taper so that the directions of carbon fibers became 120 degrees. Two turns were wound so that the direction was 60 degrees with respect to the mandrel axis direction. Next, the prepreg G was wound one round so that the carbon fiber direction was substantially the same as the mandrel axis direction. Next, Example 1 was repeated except that the prepreg F was once again bonded in advance so that the carbon fiber directions of each other became 120 degrees and wound twice around so that the carbon fiber directions became 60 degrees with respect to the mandrel axis direction. In the same manner as in the above, a tubular body of the present invention was obtained. t 1 / t is 0.42, t 2 / t is 0.16, t
3 / t was 0.42 and t / d was 0.044. The tubular body was subjected to a four-point bending test, and as a result, the bending stiffness was found to be 0.1.
036 Nm 2 and the maximum deformation were 63 mm.

【0057】(実施例8)プリプレグGを炭素繊維方向
がマンドレル軸方向とほぼ同じになるように2周巻き付
けた以外は実施例7と同様にして本発明の管状体を得
た。t1/tは0.36、t2/tは0.27、t3/t
は0.36、t/dは0.051であった。この管状体
につき、4点曲げ試験した結果、曲げ剛性は0.060
Nm2、最大変形量は51mmであった。
(Example 8) A tubular body of the present invention was obtained in the same manner as in Example 7, except that the prepreg G was wound twice so that the carbon fiber direction was substantially the same as the mandrel axis direction. t 1 / t is 0.36, t 2 / t is 0.27, t 3 / t
Was 0.36 and t / d was 0.051. As a result of a four-point bending test on this tubular body, the bending rigidity was 0.060.
Nm 2 and the maximum deformation were 51 mm.

【0058】(実施例9)プリプレグFを互いの炭素繊
維方向が120度になるようにあらかじめ貼り合わせ、
炭素繊維方向がマンドレル軸方向に対し60度になるよ
うに1周巻き付けた。次にプリプレグGを炭素繊維方向
がマンドレル軸方向とほぼ同じになるように1周巻き付
けた。次にもう一度、プリプレグFを互いの炭素繊維方
向が120度になるようにあらかじめ貼り合わせ、炭素
繊維方向がマンドレル軸方向に対し60度になるように
3周巻き付けるように変更した以外は実施例7と同様に
して本発明の管状体を得た。t1/tは0.63、t2
tは0.16、t3/tは0.21、t/dは0.04
4であった。この管状体につき、4点曲げ試験した結
果、曲げ剛性は0.040Nm2、最大変形量は65m
mであった。
(Example 9) The prepregs F were bonded together in advance so that the carbon fiber directions of the prepregs were 120 degrees.
One round was wound so that the carbon fiber direction was 60 degrees with respect to the mandrel axis direction. Next, the prepreg G was wound one round so that the carbon fiber direction was substantially the same as the mandrel axis direction. Next, Example 7 was repeated except that the prepreg F was once again bonded in advance so that the carbon fiber directions of each other became 120 degrees and wound three turns so that the carbon fiber directions became 60 degrees with respect to the mandrel axis direction. In the same manner as in the above, a tubular body of the present invention was obtained. t 1 / t is 0.63, t 2 /
t is 0.16, t 3 / t is 0.21, t / d is 0.04
It was 4. As a result of a four-point bending test on this tubular body, the bending rigidity was 0.040 Nm 2 and the maximum deformation was 65 m.
m.

【0059】(比較例1)外径6.3mmφのテーパー無
しのストレート型のステンレス製マンドレルに、離形処
理を処し、プリプレグB2枚を互いの炭素繊維方向がほ
ぼ90度になるようにあらかじめ貼り合わせ、炭素繊維
方向がマンドレル軸方向に対し45度になるように4周
巻き付けた。次にプリプレグAを炭素繊維方向がマンド
レル軸方向とほぼ同じになるように2周巻き付けた。し
かる後に、当業者による周知の方法、つまりラッピング
テープにより加圧し、硬化炉により加熱硬化後、ラッピ
ングテープを取り去り管状体を得た。t1/tは0.3
8、t2/tは0.24、t3/tは0.38、t/dは
0.16であった。この管状体につき、4点曲げ試験し
た結果、曲げ剛性は7.06Nm2、最大変形量は35
mmであった。
(Comparative Example 1) A straight type stainless steel mandrel having an outer diameter of 6.3 mmφ and having no taper was subjected to a release treatment, and two prepregs B were previously bonded so that the carbon fiber directions of the two prepregs were substantially 90 degrees. It was wound four times so that the carbon fiber direction was 45 degrees with respect to the mandrel axis direction. Next, the prepreg A was wound twice so that the carbon fiber direction was almost the same as the mandrel axis direction. Thereafter, pressure was applied by a wrapping tape and heat-cured in a curing furnace, and the wrapping tape was removed to obtain a tubular body. t 1 / t is 0.3
8, t 2 / t is 0.24, t 3 / t is 0.38, t / d was 0.16. As a result of a four-point bending test on this tubular body, the bending rigidity was 7.06 Nm 2 and the maximum deformation was 35.
mm.

【0060】(比較例2)プリプレグB2枚を互いの炭
素繊維方向がほぼ同方向になるようにあらかじめ貼り合
わせ、炭素繊維方向がマンドレル軸方向と同じになるよ
うに2周巻き付けた。次にプリプレグAを炭素繊維方向
がマンドレル軸方向とほぼ同じになるように2周巻き付
けた。次に互いの炭素繊維方向がほぼ90度になるよう
にあらかじめ貼り合わせたプリプレグBを炭素繊維方向
がマンドレル軸方向に対し45度になるように2周巻き
付けるよう変更した以外は比較例1と同様にして管状体
を得た。t1/tは0.38、t2/tは0.24、t3
/tは0.38、t/dは0.16であった。この管状
体につき、4点曲げ試験した結果、曲げ剛性は17.4
Nm2、最大変形量は25mmであった。
(Comparative Example 2) Two prepregs B were bonded together in advance so that the carbon fiber directions of the prepregs were substantially the same, and were wound twice so that the carbon fiber direction was the same as the mandrel axis direction. Next, the prepreg A was wound twice so that the carbon fiber direction was almost the same as the mandrel axis direction. Next, the same as Comparative Example 1 except that the prepreg B preliminarily bonded so that the carbon fiber directions of each other were substantially 90 degrees was wound twice around so that the carbon fiber direction was 45 degrees with respect to the mandrel axis direction. To obtain a tubular body. t 1 / t is 0.38, t 2 / t is 0.24, t 3
/ T was 0.38 and t / d was 0.16. As a result of a four-point bending test on this tubular body, the bending rigidity was 17.4.
Nm 2 and the maximum deformation were 25 mm.

【0061】(比較例3)プリプレグB2枚を互いの炭
素繊維方向がほぼ90度になるようにあらかじめ貼り合
わせ、炭素繊維方向がマンドレル軸方向に対し45度に
なるように5周巻き付けるよう変更した以外は比較例1
と同様にして管状体を得た。t/dは0.15であっ
た。この管状体につき、4点曲げ試験した結果、曲げ剛
性は2.16Nm2、最大変形量は67mmであった。
(Comparative Example 3) Two prepregs B were preliminarily bonded so that the carbon fiber directions of each other were substantially 90 degrees, and the wrapping was changed five times so that the carbon fiber directions were 45 degrees with respect to the mandrel axis direction. Other than Comparative Example 1
A tubular body was obtained in the same manner as described above. t / d was 0.15. As a result of a four-point bending test on this tubular body, the bending rigidity was 2.16 Nm 2 and the maximum deformation was 67 mm.

【0062】(比較例4)プリプレグE2枚を互いの炭
素繊維方向がほぼ90度になるようにあらかじめ貼り合
わせ、炭素繊維方向がマンドレル軸方向に対し45度に
なるように1周巻き付けた。次にプリプレグAを炭素繊
維方向がマンドレル軸方向とほぼ同じになるように2周
巻き付けた。次にもう一度互いの炭素繊維方向がほぼ9
0度になるようにあらかじめ貼り合わせたプリプレグE
を炭素繊維方向がマンドレル軸方向に対し45度になる
ように1周巻き付けるよう変更した以外は比較例1と同
様にして管状体を得た。t1/tは0.22、t2/tは
0.56、t3/tは0.22、t/dは0.069で
あった。この管状体につき、4点曲げ試験した結果、曲
げ剛性は4.12Nm2、最大変形量は29mmであっ
た。
(Comparative Example 4) Two prepregs E were bonded in advance so that the carbon fiber directions of each other were substantially 90 degrees, and were wound one round so that the carbon fiber directions were 45 degrees with respect to the mandrel axis direction. Next, the prepreg A was wound twice so that the carbon fiber direction was almost the same as the mandrel axis direction. Next, once again, the carbon fiber directions of each other are almost 9
Pre-preg E bonded in advance so that it becomes 0 degrees
Was obtained in the same manner as in Comparative Example 1, except that the wire was wound one turn so that the carbon fiber direction was 45 degrees with respect to the mandrel axis direction. t 1 / t was 0.22, t 2 / t was 0.56, t 3 / t was 0.22, and t / d was 0.069. As a result of performing a four-point bending test on this tubular body, the bending rigidity was 4.12 Nm 2 , and the maximum deformation was 29 mm.

【0063】(比較例5)プリプレグB2枚を互いの炭
素繊維方向がほぼ同方向になるようにあらかじめ貼り合
わせ、炭素繊維方向がマンドレル周方向になるように2
周巻き付けた。次にプリプレグAを炭素繊維方向がマン
ドレル軸方向とほぼ同じになるように2周巻き付けた。
次にもう一度互いの炭素繊維方向がほぼ同方向になるよ
うにあらかじめ貼り合わせたプリプレグBを炭素繊維方
向がマンドレル周方向になるように2周巻き付けるよう
変更した以外は比較例1と同様にして管状体を得た。t
1/tは0.38、t2/tは0.24、t3/tは0.
38、t/dは0.16であった。この管状体につき、
4点曲げ試験した結果、曲げ剛性は5.6Nm2、最大
変形量は23mmであった。
(Comparative Example 5) Two prepregs B were bonded together in advance so that the carbon fiber directions of the two prepregs were substantially the same, and the prepreg B was bonded so that the carbon fiber direction was the circumferential direction of the mandrel.
Wrapped around. Next, the prepreg A was wound twice so that the carbon fiber direction was almost the same as the mandrel axis direction.
Next, the same procedure as in Comparative Example 1 was repeated except that the prepreg B, which had been bonded in advance so that the directions of the carbon fibers were substantially the same each other, was wound twice so that the direction of the carbon fibers became the circumferential direction of the mandrel. I got a body. t
1 / t is 0.38, t 2 / t is 0.24, and t 3 / t is 0.2.
38 and t / d was 0.16. For this tubular body,
As a result of the four-point bending test, the bending rigidity was 5.6 Nm 2 and the maximum deformation was 23 mm.

【0064】(比較例6)プリプレグE2枚を互いの炭
素繊維方向がほぼ同方向になるようにあらかじめ貼り合
わせ、炭素繊維方向がマンドレル周方向になるように2
周巻き付けた。次にプリプレグDを炭素繊維方向がマン
ドレル軸方向とほぼ同じになるように1周巻き付けた。
次にもう一度互いの炭素繊維方向がほぼ同方向になるよ
うにあらかじめ貼り合わせたプリプレグEを炭素繊維方
向がマンドレル周方向になるように2周巻き付けるよう
変更した以外は比較例1と同様にして管状体を得た。t
1/tは0.43、t2/tは0.13、t3/tは0.
43、t/dは0.068であった。この管状体につ
き、4点曲げ試験した結果、曲げ剛性は2.11N
2、最大変形量は28mmであった。
(Comparative Example 6) Two prepregs E were previously bonded so that the carbon fiber directions of the two prepregs were substantially the same, and the two prepregs were so bonded that the carbon fiber direction was the circumferential direction of the mandrel.
Wrapped around. Next, the prepreg D was wound one round so that the carbon fiber direction was almost the same as the mandrel axis direction.
Next, the same procedure as in Comparative Example 1 was repeated except that the prepreg E, which was previously bonded so that the directions of the carbon fibers were substantially the same once again, was wound twice around so that the direction of the carbon fibers became the circumferential direction of the mandrel. I got a body. t
1 / t is 0.43, t 2 / t is 0.13, and t 3 / t is 0.1.
43, t / d was 0.068. As a result of a four-point bending test on this tubular body, the bending rigidity was 2.11 N.
m 2 , and the maximum deformation amount was 28 mm.

【0065】(比較例7)外径3mmφのテーパー無しの
ストレート型のステンレス製マンドレルに、離形処理を
処し、プリプレグFを互いの炭素繊維方向が同方向にな
るようにあらかじめ貼り合わせ、炭素繊維方向がマンド
レル軸方向に対し周方向になるように2周巻き付けた。
次にプリプレグGを炭素繊維方向がマンドレル軸方向と
ほぼ同じになるように1周巻き付けた。次にもう一度、
プリプレグFを互いの炭素繊維方向が同方向になるよう
にあらかじめ貼り合わせ、炭素繊維方向がマンドレル軸
方向に対し周方向になるように2周巻き付けるように変
更した以外は実施例1と同様にして本発明の管状体を得
た。t1/tは0.42、t2/tは0.16、t3/t
は0.42、t/dは0.044であった。この管状体
につき、4点曲げ試験した結果、曲げ剛性は0.035
Nm2、最大変形量は35mmであった。
Comparative Example 7 A prepreg F was preliminarily bonded to a straight stainless steel mandrel having an outer diameter of 3 mmφ and having no taper so that the directions of carbon fibers were the same. Two turns were wound so that the direction was circumferential to the mandrel axial direction.
Next, the prepreg G was wound one round so that the carbon fiber direction was substantially the same as the mandrel axis direction. Then again,
Prepreg F was bonded in advance so that the carbon fiber directions were the same as each other, and wound in two turns so that the carbon fiber direction was circumferential with respect to the mandrel axis direction. The tubular body of the present invention was obtained. t 1 / t is 0.42, t 2 / t is 0.16, t 3 / t
Was 0.42 and t / d was 0.044. As a result of performing a four-point bending test on this tubular body, the bending rigidity was 0.035.
Nm 2 and the maximum deformation were 35 mm.

【0066】(比較例8)プリプレグFを互いの炭素繊
維方向が120度になるようにあらかじめ貼り合わせ、
炭素繊維方向がマンドレル軸方向に対し60度になるよ
うに1周巻き付けた。次にプリプレグDを炭素繊維方向
がマンドレル軸方向とほぼ同じになるように2周巻き付
けた。次にもう一度、プリプレグFを互いの炭素繊維方
向が120度になるようにあらかじめ貼り合わせ、炭素
繊維方向がマンドレル軸方向に対し60度になるように
1周巻き付けるように変更した以外は比較例7と同様に
して本発明の管状体を得た。t1/tは0.16、t2
tは0.68、t3/tは0.16、t/dは0.05
7であった。この管状体につき、4点曲げ試験した結
果、曲げ剛性は0.200Nm2、最大変形量は31m
mであった。
(Comparative Example 8) Pre-preg F was bonded in advance so that the carbon fiber directions of each were 120 °.
One round was wound so that the carbon fiber direction was 60 degrees with respect to the mandrel axis direction. Next, the prepreg D was wound twice so that the carbon fiber direction was substantially the same as the mandrel axis direction. Next, Comparative Example 7 was repeated, except that the prepreg F was once again bonded in advance so that the carbon fiber directions thereof were 120 degrees, and the carbon fiber direction was wound around once so that the carbon fiber direction was 60 degrees with respect to the mandrel axis direction. In the same manner as in the above, a tubular body of the present invention was obtained. t 1 / t is 0.16, t 2 /
t is 0.68, t 3 / t is 0.16, and t / d is 0.05
It was 7. As a result of a four-point bending test on this tubular body, the bending rigidity was 0.200 Nm 2 and the maximum deformation was 31 m.
m.

【0067】[0067]

【発明の効果】この発明の管状体は、上述したような構
成を有することにより、強さと柔らかさを両立できる。
すなわち、曲げ力が加わった時に十分な変位量がありか
つ、曲げ剛性を小さくできるという効果を有する。した
がって、特にゴルフシャフトの細径部分、または、釣り
竿の穂先に好適に適用できる。本発明の管状体は、航空
機、自動車、産業用資材、また、バトミントンシャフト
など各種レジャー用の高性能管状体としても用いられ、
この様な用途での軽量化にも役立つ。
The tubular body of the present invention has both the strength and the softness by having the above-described configuration.
That is, there is an effect that there is a sufficient amount of displacement when a bending force is applied and the bending rigidity can be reduced. Therefore, it can be suitably applied particularly to a small diameter portion of a golf shaft or a tip of a fishing rod. The tubular body of the present invention is used as a high-performance tubular body for various leisures such as aircraft, automobiles, industrial materials, and badminton shafts,
It is also useful for weight reduction in such applications.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 105:06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI // B29K 105: 06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維とマトリックス樹脂からなる管
状体において、炭素繊維の配向角が管状体内側より、管
状体軸方向に対し30〜70度に配されている第1層
と、管状体軸方向に強化繊維が配されている第2層と、
管状体軸方向に対し30〜70度に配されている第3層
からなる部分を有し、管状体の肉厚t(mm)に対する
第1層の厚さt1(mm)の比t1/tが0.2〜0.
7、tに対する第2層の厚さt2(mm)の比が0.0
5〜0.5、tに対する第3層の厚さt3(mm)の比
が0.2〜0.7であることを特徴とする管状体。
1. A tubular body comprising carbon fibers and a matrix resin, a first layer in which the carbon fibers are oriented at an angle of 30 to 70 degrees from the inside of the tubular body with respect to the axial direction of the tubular body; A second layer in which reinforcing fibers are arranged in a direction,
Has a portion consisting of a third layer which is arranged to 30-70 degrees with respect to the tubular body axis, the ratio t 1 of the thickness of the first layer to the thickness of the tubular body t (mm) t 1 (mm ) / T is 0.2-0.
7. The ratio of the thickness t 2 (mm) of the second layer to t is 0.0
A tubular body, wherein the ratio of the thickness t 3 (mm) of the third layer to 5 to 0.5, t is 0.2 to 0.7.
【請求項2】 炭素繊維強化プラスチック層に含まれる
炭素繊維量が、第2層に対する第1層および第3層の比
が0.5〜3の範囲にあることを特徴とする請求項1に
記載の管状体。
2. The method according to claim 1, wherein the amount of carbon fibers contained in the carbon fiber reinforced plastic layer is such that the ratio of the first layer and the third layer to the second layer is in the range of 0.5 to 3. The tubular body according to any one of the preceding claims.
【請求項3】 管状体の内径d(mm)と肉厚tの比t
/dが、0.01〜0.4の範囲にあることを特徴とす
る請求項1もしくは2に記載の管状体。
3. The ratio t between the inner diameter d (mm) of the tubular body and the wall thickness t.
3. The tubular body according to claim 1, wherein / d is in the range of 0.01 to 0.4.
【請求項4】 管状体を構成する第1層の繊維配向角と
第3層の繊維配向角がほぼ同じであり、かつt1とt2
ほぼ同じ厚さであることを特徴とする請求項1〜3のい
ずれかに記載の管状体。
4. The fiber orientation angle of the first layer and the fiber orientation angle of the third layer constituting the tubular body are substantially the same, and t 1 and t 2 have substantially the same thickness. Item 4. The tubular body according to any one of Items 1 to 3.
【請求項5】 第1層と第3層において、管状体軸方向
に対する炭素繊維の配向角が正逆両方向をともに有して
いることを特徴とする請求項1〜4のいずれかに記載の
管状体。
5. The method according to claim 1, wherein in the first layer and the third layer, the orientation angle of the carbon fibers with respect to the tubular body axial direction has both forward and reverse directions. Tubular body.
【請求項6】 第1層と第3層の炭素繊維の配列方向
が、第2層の中心層面に対して鏡面対称であることを特
徴とする請求項1〜5のいずれかに記載の管状体。
6. The tubular structure according to claim 1, wherein the arrangement direction of the carbon fibers in the first layer and the third layer is mirror-symmetric with respect to the center layer surface of the second layer. body.
【請求項7】 第2層を形成する炭素繊維の引張伸度が
1.7%以上であることを特徴とする請求項1〜6のい
ずれか記載の管状体。
7. The tubular body according to claim 1, wherein the carbon fiber forming the second layer has a tensile elongation of 1.7% or more.
【請求項8】 管状体がゴルフクラブ用シャフトである
ことを特徴とする請求項1〜7のいずれか記載の管状
体。
8. The tubular body according to claim 1, wherein the tubular body is a golf club shaft.
【請求項9】 管状体が釣り竿であることを特徴とする
請求項1〜7のいずれか記載の管状体。
9. The tubular body according to claim 1, wherein the tubular body is a fishing rod.
【請求項10】 補強繊維が一方向に引き揃えられたプ
リプレグシートを、互いの補強繊維が40〜90度にな
るよう配してなる貼り合わせプリプレグ。
10. A bonded prepreg in which prepreg sheets in which reinforcing fibers are aligned in one direction are arranged such that the reinforcing fibers are at an angle of 40 to 90 degrees.
【請求項11】 補強繊維が一方向に引き揃えられ、か
つ補強繊維量が10g/m2〜100g/m2のプリプレ
グシートを、互いの補強繊維が40〜90度になるよう
配してなる貼り合わせプリプレグ。
11. The reinforcing fiber is aligned in one direction, and the amount of reinforcing fibers prepreg sheets of 10g / m 2 ~100g / m 2 , formed by arranging such that the reinforcing fibers to each other is 40 to 90 degrees Laminated prepreg.
【請求項12】 所望の形状に切り出した一方向性プリ
プレグを芯金に巻き付けて成形する繊維強化プラスチッ
ク製管状体の製造方法において、管状体軸方向に対し炭
素繊維の配向角が30〜70度の範囲にある内層と外層
が、炭素繊維の配向角が軸方向に対し互いに正逆両方向
になるように、2枚の一方向性プリプレグを重ねた後に
芯金に巻き付けて形成することを特徴とする繊維強化プ
ラスチック製管状体の製造方法。
12. A method for producing a fiber-reinforced plastic tubular body, wherein a unidirectional prepreg cut into a desired shape is wound around a cored bar and molded, wherein the carbon fiber has an orientation angle of 30 to 70 degrees with respect to the axial direction of the tubular body. The inner layer and the outer layer in the range of are characterized by being formed by winding two unidirectional prepregs and winding them around a core metal so that the orientation angles of the carbon fibers are in both forward and reverse directions with respect to the axial direction. Of producing a fiber-reinforced plastic tubular body.
JP10058178A 1998-03-10 1998-03-10 Tubular body and prepreg Pending JPH11254562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10058178A JPH11254562A (en) 1998-03-10 1998-03-10 Tubular body and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10058178A JPH11254562A (en) 1998-03-10 1998-03-10 Tubular body and prepreg

Publications (1)

Publication Number Publication Date
JPH11254562A true JPH11254562A (en) 1999-09-21

Family

ID=13076759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10058178A Pending JPH11254562A (en) 1998-03-10 1998-03-10 Tubular body and prepreg

Country Status (1)

Country Link
JP (1) JPH11254562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081614A (en) * 2004-09-14 2006-03-30 Sri Sports Ltd Golf club shaft
CN113467302A (en) * 2021-07-02 2021-10-01 南京晓庄学院 Intelligent badminton hall control system based on wireless communication
JP2021528275A (en) * 2018-06-21 2021-10-21 テープ、ウィービング、スウェーデン、アクチボラグTape Weaving Sweden Ab Ultra-thin prepreg sheet and its composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081614A (en) * 2004-09-14 2006-03-30 Sri Sports Ltd Golf club shaft
JP4533063B2 (en) * 2004-09-14 2010-08-25 Sriスポーツ株式会社 Golf club shaft
JP2021528275A (en) * 2018-06-21 2021-10-21 テープ、ウィービング、スウェーデン、アクチボラグTape Weaving Sweden Ab Ultra-thin prepreg sheet and its composite material
CN113467302A (en) * 2021-07-02 2021-10-01 南京晓庄学院 Intelligent badminton hall control system based on wireless communication
CN113467302B (en) * 2021-07-02 2022-04-22 南京晓庄学院 Intelligent badminton hall control system based on wireless communication

Similar Documents

Publication Publication Date Title
US7384354B2 (en) Single wall ball bat including quartz structural fiber
JP5080886B2 (en) Golf club shaft
JP3317619B2 (en) Hollow shaft with taper
JP2005270515A (en) Tubular body made of fiber reinforced composite material
US6857972B2 (en) Golf club shaft
JPH11254562A (en) Tubular body and prepreg
US20080287228A1 (en) Single wall ball bat including e-glass structural fiber
JP2009219652A (en) Golf club shaft
JPH1175630A (en) Fishing rod
JP2861447B2 (en) Tapered tubular body
JP3692691B2 (en) Fiber reinforced plastic tubular body
JP3279154B2 (en) Fiber reinforced plastic cylinder
JP3508429B2 (en) Fiber reinforced plastic tubular body
JP2000263653A (en) Tubular body made of fiber-reinforced composite material
JPH1015129A (en) Fiber reinforced plastic golf club shaft
JP3278985B2 (en) FRP cylinder
JPH07124277A (en) Golf club shaft
JP2007252574A (en) Shaft for golf club
JPH06233843A (en) Golf club shaft and its manufacture
JP3570411B2 (en) Fiber reinforced plastic cylinder
JPH11262545A (en) Badminton racket shaft
JPH10180910A (en) Tubular body
JPH0382486A (en) Tapered tubular body
JP2007117730A (en) Golf shaft
JP2005238472A (en) Tubular body made of fiber reinforced composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516