JPH11254017A - Method for controlling hydraulic rolling reduction in temper rolling mill and device therefor - Google Patents
Method for controlling hydraulic rolling reduction in temper rolling mill and device thereforInfo
- Publication number
- JPH11254017A JPH11254017A JP10059616A JP5961698A JPH11254017A JP H11254017 A JPH11254017 A JP H11254017A JP 10059616 A JP10059616 A JP 10059616A JP 5961698 A JP5961698 A JP 5961698A JP H11254017 A JPH11254017 A JP H11254017A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- reduction
- welding point
- rolling mill
- temper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、油圧圧下装置によ
りロールの圧下が制御される調質圧延機の油圧圧下制御
方法及び装置に係り、特に、溶接点通過処理中に加減速
や手介入を行った場合でも、圧下位置の変更が可能であ
り、適正な圧延荷重を得ることが可能な、調質圧延機の
油圧圧下制御方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a hydraulic reduction of a temper rolling mill in which the reduction of a roll is controlled by a hydraulic reduction apparatus. The present invention relates to a hydraulic pressure reduction control method and apparatus for a temper rolling mill, in which a reduction position can be changed and an appropriate rolling load can be obtained even when the reduction is performed.
【0002】[0002]
【従来の技術】冷間圧延において、焼なましを終えたコ
イルの機械的性質を改善し、同時に形状の改善並びにダ
ルやブライト等の表面仕上げを行う調質圧延機(スキン
パスミルとも称する)においては、鋼板に目標伸び率を
与えるために、図3に示す如く、調質圧延機10の前後
に設置されているテンションロール20やデフレクタロ
ール22の回転数を測定し、該測定値に基づいて算出し
た伸び率が所定値となるように、張力を制御している。
これは、一般的に伸び率制御と呼ばれており、この伸び
率制御を行っている際には、油圧圧下装置12の油圧シ
リンダ14の圧下位置Sは、一定値にして張力を制御し
ている。図において、16は、圧延荷重Pを検出するた
めのロードセル、18は、該ロードセル16で検出され
た圧延荷重Pに応じて、油圧圧下装置12に入力する圧
下位置変更量ΔS′を求めるための演算器である。2. Description of the Related Art In cold rolling, a temper rolling mill (also referred to as a skin pass mill) for improving the mechanical properties of a coil after annealing, and at the same time, improving the shape and surface finishing such as dull and bright. In order to give a target elongation rate to the steel sheet, as shown in FIG. 3, the rotation speeds of the tension rolls 20 and the deflector rolls 22 installed before and after the temper rolling mill 10 are measured, and based on the measured values, The tension is controlled so that the calculated elongation becomes a predetermined value.
This is generally called elongation rate control. When the elongation rate control is being performed, the tension position is controlled by setting the rolling position S of the hydraulic cylinder 14 of the hydraulic rolling-down device 12 to a constant value. I have. In the drawing, reference numeral 16 denotes a load cell for detecting a rolling load P, and reference numeral 18 denotes a load cell change amount ΔS ′ to be input to the hydraulic pressing device 12 according to the rolling load P detected by the load cell 16. It is an arithmetic unit.
【0003】ところで、鋼板8は溶接により接合されて
いる。従って、該溶接部に起因するロール疵を防止する
ため、従来は、当該材の所定圧延荷重とするために設定
していた圧下位置から、溶接点での圧延荷重を所定の圧
延荷重に低下させて、溶接点を通過させた後、次の材料
の設定圧延荷重とする圧下位置に設定していた。[0003] The steel sheet 8 is joined by welding. Therefore, in order to prevent roll flaws caused by the welded portion, conventionally, the rolling load at the welding point is reduced to a predetermined rolling load from a rolling position set to a predetermined rolling load of the material. Then, after passing through the welding point, it was set to the rolling position as the set rolling load of the next material.
【0004】例えば、特開平6−190422には、調
質圧延方法として、特異点あるいはナローラップシーム
溶接点が、調質圧延機を通過する直前までにライン速度
をミル通過速度に減速させ、該ミル通過速度に到達した
後、そのライン速度を保持すると共に、伸び率制御から
一定荷重制御に切り換え、上記特異点あるいはナローラ
ップシーム溶接点が該調質圧延機を通過した後、圧延荷
重あるいは張力のうち、少なくとも一方を操作し、その
目標範囲に到達後、伸び率制御に切り換えると共に、前
記ミル通過速度から加速する方法が記載されている。For example, JP-A-6-190422 discloses a temper rolling method in which a singular point or a narrow lap seam welding point reduces the line speed to a mill passing speed just before passing through a temper rolling mill. After reaching the mill passing speed, the line speed is maintained, and the elongation rate control is switched to the constant load control. After the singular point or the narrow lap seam welding point passes through the temper rolling mill, the rolling load or tension is increased. Describes a method of operating at least one of them, switching to elongation control after reaching the target range, and accelerating from the mill passing speed.
【0005】このような従来の切り換え制御を行うため
の演算器18の構成例を、図4に示す。図4において、
18Aは、溶接点の設定圧延荷重Pmと、前記ロードセ
ル16で検出された実績圧延荷重Pの差ΔPを求める減
算器、18Bは、該差ΔPから圧下位置変更量ΔS′を
求めるための変換器、18Cは、圧下位置変更量と加減
速補償量の和を求める加算器、18Dは、定常時に前記
加算器18Cの出力を圧下位置変更量ΔS′として出力
して圧下位置制御を行い、一方、溶接点通過処理時に
は、前記変換器18Bの出力を圧下位置変更量ΔS′と
して出力して荷重制御を行うための切換器である。FIG. 4 shows an example of the configuration of a computing unit 18 for performing such conventional switching control. In FIG.
18A is a subtractor for calculating the difference ΔP between the set rolling load Pm at the welding point and the actual rolling load P detected by the load cell 16, and 18B is a converter for calculating the rolling position change amount ΔS ′ from the difference ΔP. , 18C is an adder for obtaining the sum of the rolling position change amount and the acceleration / deceleration compensation amount, and 18D outputs the output of the adder 18C as the rolling position change amount ΔS ′ in a steady state to perform the rolling position control. During the welding point passage processing, the switch is a switch for outputting the output of the converter 18B as the rolling-down position change amount ΔS 'to perform load control.
【0006】このような従来例において、油圧圧下装置
12で圧下位置の指令値Sを演算しているので、演算器
18は、位置の変更量ΔS又は荷重変更量をそれぞれ演
算し、油圧圧下装置12に出力し、該油圧圧下装置12
が油圧シリンダ14の圧下位置Sの制御を行っている。
又、手介入による位置の変更量は、直接油圧圧下装置1
2に入力される。油圧圧下の位置制御は、演算器18で
求めた圧下位置変更量ΔS′を、油圧圧下装置12に出
力し、該油圧圧下装置12が、油圧シリンダ14の実績
圧下位置Sを前記油圧圧下位置変更量ΔS′だけ変更す
ることによって行われる。圧下位置変更量ΔS′が零の
場合には、油圧圧下装置12は油圧シリンダ14の実績
圧下位置Sを保持する。In such a conventional example, since the command value S of the rolling-down position is calculated by the hydraulic rolling-down device 12, the computing unit 18 calculates the position change amount ΔS or the load change amount, respectively. 12 and the hydraulic pressure reduction device 12
Controls the rolling position S of the hydraulic cylinder 14.
Also, the amount of position change due to manual intervention is directly
2 is input. In the hydraulic pressure reduction control, the reduction position change amount ΔS ′ obtained by the arithmetic unit 18 is output to the hydraulic reduction device 12, and the hydraulic reduction device 12 changes the actual reduction position S of the hydraulic cylinder 14 to the hydraulic reduction position. This is done by changing the quantity ΔS ′. When the reduction position change amount ΔS ′ is zero, the hydraulic reduction device 12 holds the actual reduction position S of the hydraulic cylinder 14.
【0007】更に、切換器18Dで、油圧シリンダ14
の圧下位置Sを一定値にした圧下位置制御と、前記溶接
点通過処理中の荷重制御とを切り替えている。Further, the hydraulic cylinder 14 is controlled by the switch 18D.
And the load control during the welding point passing process is switched.
【0008】[0008]
【発明が解決しようとする課題】前記のように、従来の
溶接点通過処理中は、ロードセル16で検出した圧延荷
重Pが設定荷重Pmとなるように、油圧シリンダ14の
位置を制御する荷重制御が行われている。従って、目標
の鋼板表面の粗さや伸び率を得るための、溶接点通過処
理中の加減速によって行われた圧下位置の変更は、溶接
点通過処理中は行われないことになり、それらの効果が
発揮できないばかりか、次の材料の圧延荷重が設定圧延
荷重から大きく異なってしまうという問題があった。即
ち、加減速による圧下位置の変更が必要でも、例えば図
5及び図6に示す如く、速度が増大するのに対応する圧
下位置の増加が、一部無視されてしまうので、圧延荷重
を低下させて溶接点を通過させた後、圧延荷重を同じ値
に戻したとしても、次材の圧延荷重が所定値から大きく
異なってしまう。As described above, during the conventional welding point passage processing, the load control for controlling the position of the hydraulic cylinder 14 so that the rolling load P detected by the load cell 16 becomes the set load Pm. Has been done. Therefore, the change of the rolling position performed by acceleration / deceleration during the welding point passage processing to obtain the target surface roughness and elongation of the steel sheet is not performed during the welding point passage processing. Not only cannot be exhibited, but also the problem that the rolling load of the next material greatly differs from the set rolling load. That is, even if it is necessary to change the rolling position by acceleration / deceleration, as shown in FIGS. 5 and 6, for example, as shown in FIGS. Even if the rolling load is returned to the same value after passing through the welding point, the rolling load of the next material is greatly different from the predetermined value.
【0009】本発明は、前記従来の問題点を解消するべ
くなされたもので、溶接点通過処理中であっても、加減
速による圧下位置の変更が可能であり、次の材料の圧延
荷重も設定圧延荷重からずれないようにすることを課題
とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. The rolling position can be changed by acceleration / deceleration even during welding point passing processing, and the rolling load of the next material can be reduced. It is an object to prevent deviation from the set rolling load.
【0010】[0010]
【課題を解決するための手段】本発明は、油圧圧下装置
によりロールの圧下が制御される調質圧延機において、
溶接点通過時の圧延荷重設定値から求めた圧下位置を目
標とすることにより、溶接点通過時も圧下位置制御を行
うようにして、前記課題を解決したものである。SUMMARY OF THE INVENTION The present invention relates to a temper rolling mill in which roll reduction is controlled by a hydraulic reduction device.
The present invention has solved the above-described problem by setting a target rolling position obtained from a rolling load set value at the time of passing a welding point, thereby performing a rolling position control also at the time of passing a welding point.
【0011】又、溶接点通過時に、前記油圧圧下装置に
より制御される圧下位置を、溶接点通過前の圧下位置か
ら、溶接点通過時の圧下位置に変更し、溶接点通過後
に、溶接点通過後の圧下位置に変更するようにしたもの
である。Further, when passing through the welding point, the rolling position controlled by the hydraulic pressure reduction device is changed from the rolling position before passing through the welding point to the rolling position when passing through the welding point, and after passing through the welding point, passing through the welding point. This is to change to the later rolling down position.
【0012】又、圧下位置変更量を、圧下位置変更前の
実績圧延荷重と圧下位置変更後の圧延荷重設定値の差
と、ミル定数とから求めるとから求めるようにしたもの
である。Further, the amount of change in the rolling position is determined from the difference between the actual rolling load before the change in the rolling position, the set value of the rolling load after the change in the rolling position, and the mill constant.
【0013】又、前記圧下位置に、加減速による圧下位
置補償量を加えるようにしたものである。[0013] Further, a reduction position compensation amount by acceleration / deceleration is added to the reduction position.
【0014】本発明は、又、ロールの圧下を制御する油
圧圧下装置を備えた調質圧延機の油圧圧下制御装置にお
いて、前記油圧圧下装置に、溶接点通過時の圧下位置変
更量と加減速による圧下位置補償量の和を入力する手段
を設けることにより、前記課題を解決したものである。According to the present invention, there is also provided a hydraulic pressure reduction control device for a temper rolling mill provided with a hydraulic pressure reduction device for controlling the reduction of a roll. The above-mentioned problem has been solved by providing a means for inputting the sum of the rolling position compensation amounts according to the above.
【0015】[0015]
【発明の実施の形態】以下、図面を参照して、本発明の
実施形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0016】本実施形態は、図3に示したような調質圧
延機10において、鋼板8の溶接点を該調質圧延機10
に通過させるにあたって、図1に手順を示す如く、溶接
点が調質圧延機を通過する直前の実績圧延荷重Paと、
溶接点を通過処理する際のIn this embodiment, in the temper rolling mill 10 as shown in FIG.
In passing, as shown in FIG. 1, the actual rolling load Pa immediately before the welding point passes through the temper rolling mill,
When passing through the welding point
【外1】 との差ΔPaに基づいて、圧下位置の変更量ΔSaを算
出し、圧下位置Sを、前記溶接点が調質圧延機10を通
過する直前に、前記変更量ΔSaだけ変更して溶接点を
圧延し、溶接点が前記調質圧延機10を通過した直後
に、その時の実績圧延荷重設定値Pwと、溶接点が調質
圧延機10を通過した後の[Outside 1] The change amount ΔSa of the rolling position is calculated based on the difference ΔPa, and the rolling position S is changed by the change amount ΔSa just before the welding point passes through the temper rolling mill 10 to roll the welding point. Immediately after the welding point has passed through the temper rolling mill 10, the actual rolling load set value Pw at that time and after the welding point has passed through the temper rolling mill 10.
【外2】 との差ΔPbに基づいて、圧下位置の変更量ΔSbを算
出し、圧下位置Sを、前記溶接点が調質圧延機10を通
過した直後に、前記変更量ΔSbだけ変更して、調質圧
延する。[Outside 2] The change amount ΔSb of the rolling position is calculated on the basis of the difference ΔPb from the pressure reduction position, and the rolling position S is changed by the change amount ΔSb immediately after the welding point has passed through the temper rolling mill 10 to perform the temper rolling. I do.
【0017】即ち、本発明においては、伸び率制御を行
っている溶接点の前後、及び、溶接点の通過処理の間、
常時、油圧シリンダ14を位置制御しており、本実施形
態における演算器18の構成は、図2に示す如く、切換
器を用いない、加算器18Cのみの極単純なものとな
る。That is, in the present invention, before and after the welding point where the elongation rate is controlled, and during the passage processing of the welding point,
The position of the hydraulic cylinder 14 is constantly controlled, and the configuration of the arithmetic unit 18 in the present embodiment is an extremely simple configuration including only an adder 18C without using a switch as shown in FIG.
【0018】本実施形態において、前記演算器18は、
位置の変更量ΔSを演算し、油圧圧下装置12に出力
し、油圧圧下装置12が油圧シリンダ14の圧下位置S
の制御を行っている。加減速による圧下位置補償は、加
算器18Cで加算して行う。又、手入れによる位置の変
更量は、直接、油圧圧下装置12に入力される。In the present embodiment, the arithmetic unit 18
The position change amount ΔS is calculated and output to the hydraulic pressure reduction device 12, and the hydraulic pressure reduction device 12 adjusts the pressure reduction position S of the hydraulic cylinder 14.
Is controlled. The rolling position compensation by acceleration / deceleration is performed by adding in the adder 18C. Further, the amount of position change due to maintenance is directly input to the hydraulic pressure reduction device 12.
【0019】前記圧延荷重の差ΔPa、圧下位置の変更
量ΔSaは、溶接点通過前の圧下位置をSaとすると、
次式により計算することができる。The difference ΔPa of the rolling load and the change amount ΔSa of the rolling position are as follows, where Sa is the rolling position before passing through the welding point.
It can be calculated by the following equation.
【0020】[0020]
【数1】 (Equation 1)
【0021】ΔSa=ΔPa/M …(2) ここで、Mはミル定数である。ΔSa = ΔPa / M (2) where M is a mill constant.
【0022】又、前記圧延荷重の差ΔPb、圧下位置変
更量ΔSbは、次式により求めることができる。The rolling load difference ΔPb and the rolling position change amount ΔSb can be obtained by the following equations.
【0023】[0023]
【数2】 (Equation 2)
【0024】ΔSb=ΔPb/M …(4)ΔSb = ΔPb / M (4)
【0025】このようにして、調質圧延機10の溶接点
通過処理に際して、溶接点通過前の圧延荷重実績値Pa
と、溶接点通過処理時のAs described above, in the pass-through processing of the temper rolling mill 10, the actual rolling load Pa
And during welding point passage processing
【外3】 との差ΔPaが、(1)式により計算され、その値ΔP
aとミル定数Mから、圧下位置変更量ΔSaが(2)式
により計算される。又、荷重復帰時も、実績圧延荷重P
wと溶接点通過後の[Outside 3] Is calculated by equation (1), and the value ΔP
From the a and the mill constant M, the rolling position change amount ΔSa is calculated by equation (2). Also, when the load returns, the actual rolling load P
w and after passing the welding point
【外4】 とから(3)式により荷重変更量ΔPbを計算し、
(4)式により圧下位置変更量ΔSbを計算するように
したので、溶接点通過処理時も油圧圧下は位置制御モー
ドのままでよい。従って、溶接点通過処理時に加減速等
による圧下位置変更ΔSxが発生した場合でも、(5)
式により圧下位置変更量ΔSに足し合わせた結果で圧下
位置制御すればよいので、結果として適正な荷重を得る
ことができる。[Outside 4] From the formula (3), the load change amount ΔPb is calculated, and
Since the reduction position change amount ΔSb is calculated by the equation (4), the hydraulic pressure reduction may remain in the position control mode even during the welding point passing process. Therefore, even when the rolling position change ΔSx due to acceleration or deceleration occurs during the welding point passage processing, (5)
Since the roll-down position control may be performed based on the result of adding the roll-down position change amount ΔS by the formula, an appropriate load can be obtained as a result.
【0026】ΔS′=ΔS+ΔSx …(5)ΔS ′ = ΔS + ΔSx (5)
【0027】[0027]
【実施例】溶接点通過前の実績圧延荷重Pa=800ト
ン、溶接点通過処理時の圧延荷重設定値Pw=100ト
ンの場合、(1)式より荷重変更量ΔPaは700トン
となる。ミル定数M=380トン/mmとすると、
(2)式より圧下位置変更量ΔSaは1.842mmと
なるので、これを、油圧圧下装置12へ圧下位置変更量
として出力する。[Embodiment] When the actual rolling load Pa before welding point passing is 800 tons and the rolling load set value Pw at welding point passing processing is 100 tons, the load change amount ΔPa is 700 tons according to the equation (1). Assuming that the mill constant M = 380 tons / mm,
From the equation (2), the amount of change ΔSa of the rolling-down position is 1.842 mm.
【0028】一方、荷重復帰時は、溶接点通過処理時の
実績圧延荷重Pが100トン、溶接点通過処理後の復帰
荷重設定値Psが600トンとすると、荷重変更量ΔP
bは−500トンとなり、(4)式より圧下位置変更量
ΔSbは−1.316mmとなる。On the other hand, at the time of load return, if the actual rolling load P during the welding point passing process is 100 tons and the return load set value Ps after the welding point passing process is 600 tons, the load change amount ΔP
b is -500 tons, and the roll-down position change amount ΔSb is -1.316 mm from the equation (4).
【0029】ここで、加減速による圧下位置の補正制御
が行われていたとすると、溶接点通過処理終了前にライ
ンが加速した場合、加減速等による位置変更量ΔSxが
−0.5mmであれば、(5)式より、最終位置変更量
ΔS′を−0.186mmに補正することによって、常
時位置制御で目標の荷重を得ることができ、加減速補償
も可能となる。Here, assuming that the rolling-down position correction control by acceleration / deceleration has been performed, if the line accelerates before the welding point passing process is completed, if the position change amount ΔSx due to acceleration / deceleration is −0.5 mm, From equation (5), by correcting the final position change amount ΔS ′ to −0.186 mm, a target load can always be obtained by position control, and acceleration / deceleration can be compensated.
【0030】[0030]
【発明の効果】本発明によれば、溶接点通過時も、常時
圧下位置制御を行うようにしたので、溶接点通過処理中
であっても、加減速による圧下位置の変更が可能とな
り、次の材料の圧延荷重を設定圧延荷重と一致させるこ
とが可能となる。According to the present invention, the rolling position control is always performed even when the welding point is passed, so that the rolling position can be changed by acceleration / deceleration even during the welding point passing process. It is possible to match the rolling load of the material with the set rolling load.
【図1】本発明の実施形態の処理手順を示す流れ図FIG. 1 is a flowchart showing a processing procedure according to an embodiment of the present invention.
【図2】前記実施形態で用いられている圧下位置変更量
を計算するための演算器の構成を示すブロック線図FIG. 2 is a block diagram showing a configuration of a calculator for calculating a rolling position change amount used in the embodiment.
【図3】本発明が適用される調質圧延機の全体構成を示
す構成図FIG. 3 is a configuration diagram showing an overall configuration of a temper rolling mill to which the present invention is applied;
【図4】前記調質圧延機で用いられている従来の演算器
の構成を示すブロック線図FIG. 4 is a block diagram showing a configuration of a conventional arithmetic unit used in the temper rolling mill.
【図5】従来の問題点を説明するための、溶接点通過前
後の圧下位置及び圧延荷重の変化状態の例を示す線図FIG. 5 is a diagram illustrating an example of a change in a rolling position and a rolling load before and after passing through a welding point, for explaining a conventional problem.
【図6】図5のVI部拡大図FIG. 6 is an enlarged view of a part VI in FIG. 5;
8…鋼板 10…調質圧延機 12…油圧圧下装置 14…油圧シリンダ S…圧下位置 16…ロードセル P…圧延荷重 18…演算器 18C…加算器 ΔS′…圧下位置変更量 8 ... Steel plate 10 ... Temper rolling mill 12 ... Hydraulic rolling down device 14 ... Hydraulic cylinder S ... Rolling down position 16 ... Load cell P ... Rolling load 18 ... Computing unit 18C ... Adder [Delta] S '... Rolling down position change amount
Claims (5)
れる調質圧延機において、 溶接点通過時の圧延荷重設定値から求めた圧下位置を目
標とすることにより、溶接点通過時も圧下位置制御を行
うことを特徴とする調質圧延機の油圧圧下制御方法。In a temper rolling mill in which roll reduction is controlled by a hydraulic reduction device, a reduction position determined from a rolling load set value at the time of passing a welding point is set as a target, so that the reduction position is maintained even when the welding point is passed. A method for controlling a hydraulic pressure reduction of a temper rolling mill, comprising performing control.
御方法において、 溶接点通過時に、前記油圧圧下装置により制御される圧
下位置を、溶接点通過前の圧下位置から、溶接点通過時
の圧下位置に変更し、 溶接点通過後に、溶接点通過後の圧下位置に変更するこ
とを特徴とする調質圧延機の油圧圧下制御方法。2. The hydraulic pressure reduction control method for a temper rolling mill according to claim 1, wherein, when the welding point is passed, the rolling position controlled by the hydraulic pressure reduction device is changed from the rolling position before passing the welding point to the welding point. A hydraulic pressure reduction control method for a temper rolling mill, comprising: changing to a reduction position at the time of passing, and changing to a reduction position after passing the welding point after passing the welding point.
御方法において、圧下位置変更量を、圧下位置変更前の
実績圧延荷重と圧下位置変更後の圧延荷重設定値の差
と、ミル定数とから求めることを特徴とする調質圧延機
の油圧圧下制御方法。3. The method of controlling a hydraulic pressure reduction of a temper rolling mill according to claim 2, wherein the amount of change in the reduction position is determined by a difference between an actual rolling load before the reduction position is changed and a set value of the rolling load after the reduction position is changed. A hydraulic pressure reduction control method for a temper rolling mill, which is obtained from a mill constant.
圧下制御方法において、前記圧下位置に、加減速による
圧下位置補償量を加えることを特徴とする調質圧延機の
油圧圧下制御方法。4. The hydraulic rolling reduction method for a temper rolling mill according to claim 2, wherein a reduction position compensation amount by acceleration / deceleration is added to said rolling position. Control method.
えた調質圧延機の油圧圧下制御装置において、 前記油圧圧下装置に、溶接点通過時の圧下位置変更量と
加減速による圧下位置補償量の和を入力する手段を設け
たことを特徴とする調質圧延機の油圧圧下制御装置。5. A hydraulic pressure reduction control device for a temper rolling mill provided with a hydraulic pressure reduction device for controlling the reduction of a roll. A hydraulic pressure reduction control device for a temper rolling mill, comprising means for inputting the sum of the amounts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05961698A JP3352383B2 (en) | 1998-03-11 | 1998-03-11 | Hydraulic reduction control method and apparatus for temper rolling mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05961698A JP3352383B2 (en) | 1998-03-11 | 1998-03-11 | Hydraulic reduction control method and apparatus for temper rolling mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11254017A true JPH11254017A (en) | 1999-09-21 |
JP3352383B2 JP3352383B2 (en) | 2002-12-03 |
Family
ID=13118369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05961698A Expired - Fee Related JP3352383B2 (en) | 1998-03-11 | 1998-03-11 | Hydraulic reduction control method and apparatus for temper rolling mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3352383B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011224595A (en) * | 2010-04-16 | 2011-11-10 | Nippon Steel Engineering Co Ltd | Temper rolling method |
WO2016035505A1 (en) * | 2014-09-01 | 2016-03-10 | Jfeスチール株式会社 | Control device and control method for tempering mill |
JP2016049553A (en) * | 2014-09-01 | 2016-04-11 | Jfeスチール株式会社 | Device for and method of controlling temper rolling mill |
JP2016049552A (en) * | 2014-09-01 | 2016-04-11 | Jfeスチール株式会社 | Device for and method of controlling temper rolling mill |
-
1998
- 1998-03-11 JP JP05961698A patent/JP3352383B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011224595A (en) * | 2010-04-16 | 2011-11-10 | Nippon Steel Engineering Co Ltd | Temper rolling method |
WO2016035505A1 (en) * | 2014-09-01 | 2016-03-10 | Jfeスチール株式会社 | Control device and control method for tempering mill |
JP2016049553A (en) * | 2014-09-01 | 2016-04-11 | Jfeスチール株式会社 | Device for and method of controlling temper rolling mill |
JP2016049552A (en) * | 2014-09-01 | 2016-04-11 | Jfeスチール株式会社 | Device for and method of controlling temper rolling mill |
Also Published As
Publication number | Publication date |
---|---|
JP3352383B2 (en) | 2002-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030089431A1 (en) | Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device | |
KR100604503B1 (en) | Method and apparatus for controlling sheet shape in sheet rolling | |
JP3352383B2 (en) | Hydraulic reduction control method and apparatus for temper rolling mill | |
JP4323273B2 (en) | Load distribution control device for continuous rolling mill | |
JPH06190422A (en) | Temper rolling method | |
JPH04182019A (en) | Device for controlling sheet thickness on rolling mill | |
JP2019098370A (en) | Estimation method of gage meter plate thickness error, plate thickness control method, manufacturing method of rolled material and plate thickness controller | |
JP3868249B2 (en) | Steel plate shape straightening device | |
JP2006095592A (en) | Extension rate control method in temper rolling mill | |
JP3743253B2 (en) | Elongation rate control method of temper rolling mill | |
JP3241585B2 (en) | Plate thickness control device | |
JPS626710A (en) | Roll setup method for multistep rolling mill | |
JP2005125407A (en) | Method of shape control in temper rolling mill | |
JPS60231514A (en) | Sheet flatness detector for rolling mill | |
JPH04305305A (en) | Method for controlling elongation percentage of skinpass rolling mill | |
JP3506098B2 (en) | Shape control method and apparatus in sheet rolling | |
JP3539311B2 (en) | Method and apparatus for controlling tension between stands of tandem rolling mill | |
KR100514093B1 (en) | control method for buckle and meandering prevention in annealing furnace | |
JPS61154709A (en) | Device for controlling thickness profile of sheet stock | |
JPH08141615A (en) | Thickness controller for rolling mill | |
JP2017030035A (en) | Refining rolling device and refining rolling method | |
JPH03138002A (en) | Wet rolling method | |
JPH08117828A (en) | Method for controlling sheet thickness for hot finish rolling mill | |
JPS63132712A (en) | Monitoring and automatically controlling method for plate thickness in rolling mill | |
JPH04333317A (en) | Optimum monitor automatic plate thickness controlling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |