JPH11253976A - Method and apparatus for treating organic matter - Google Patents

Method and apparatus for treating organic matter

Info

Publication number
JPH11253976A
JPH11253976A JP7652198A JP7652198A JPH11253976A JP H11253976 A JPH11253976 A JP H11253976A JP 7652198 A JP7652198 A JP 7652198A JP 7652198 A JP7652198 A JP 7652198A JP H11253976 A JPH11253976 A JP H11253976A
Authority
JP
Japan
Prior art keywords
air
organic matter
oxygen
microorganisms
matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7652198A
Other languages
Japanese (ja)
Inventor
Shinji Hiroe
愼治 廣江
Yoshio Kamogawa
喜郎 加茂川
Tomio Niimi
富男 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KANKYO GIJUTSU KENKYUSHO
TOYO KANKYO GIJUTSU KENKYUSHO KK
Kankyo Kagaku Kogyo KK
Original Assignee
TOYO KANKYO GIJUTSU KENKYUSHO
TOYO KANKYO GIJUTSU KENKYUSHO KK
Kankyo Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KANKYO GIJUTSU KENKYUSHO, TOYO KANKYO GIJUTSU KENKYUSHO KK, Kankyo Kagaku Kogyo KK filed Critical TOYO KANKYO GIJUTSU KENKYUSHO
Priority to JP7652198A priority Critical patent/JPH11253976A/en
Publication of JPH11253976A publication Critical patent/JPH11253976A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To rapidly perform the biological decomposition of org. waste such as garbage, a Shochu(a low class Japanese alcoholic drink) waste soln., livestock excretion or the like by biologically decomposing an org. matter having a specific particle size in a mixed soln. containing air bubbles having a specific particle size and microorganisms. SOLUTION: Raw water 4 containing a solid org. matter 2 is coarsely crushed by a disposer 8 to be sent to a raw water tank 10 and a suspension containing the coarsely crushed solid org. matter is supplied to a static mixer 20. Oxygen or air from an oxygen generator 20 is compressed by a compressor 26 to be sent to the static mixer 20 and the solid org. matter is ground into a particle size of 10-50 μm herein along with oxygen or air. The mixed soln. having the solid org. matter ground by the static mixer 20, oxygen or air, microorganisms or the like suspended therein is subsequently sent into the bottom part of a reaction tower 30 through a cooler/heater 28 to be biologically decomposed. Since cells of the solid org. matter are destructed and an intracellular soln. flows out to the outside herein, biological decomposition can be rapidly advanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物の処理方法
に関し、更に詳述すれば、生ごみ、焼酎廃液、家畜糞尿
等の有機性廃棄物の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic matter, and more particularly, to a method for treating organic waste such as garbage, shochu waste liquid, and livestock manure.

【0002】[0002]

【従来の技術】近年、産業が急速に発展し都市へ人口が
集中するとともに、生活様式や農業形態が変化してき
た。それに伴って、廃棄物は多量に、且つ、集中的に発
生するようになった。産業や生活から発生する廃水や廃
棄物の発生量が自然の浄化力を超えたとき、人間の健康
及び環境保全上の種々の問題が生じ、そのために廃水処
理や廃棄物処理を行うようになった。このうち、廃棄物
処理については、大都市を中心に最終処分量を減少する
ため、主として焼却を行っている。
2. Description of the Related Art In recent years, industries have rapidly developed and the population has concentrated in cities, and lifestyles and agricultural forms have changed. As a result, wastes have been generated in large amounts and intensively. When the amount of wastewater and waste generated from industry and daily life exceeds the purification ability of nature, various problems on human health and environmental conservation occur, and as a result, wastewater treatment and waste treatment have been performed. Was. Of these, waste is mainly incinerated to reduce the final disposal volume, especially in large cities.

【0003】一方、有機物を含む廃水処理は、微生物に
よる分解処理、即ち生分解処理が一般的に行われてい
る。この処理は焼却による大気汚染等の二次汚染の虞が
ないこと等の特長がある。しかし、処理すべき対象の廃
棄物が液状物である必要があるので、廃水中に固形物を
含む場合(例えば生ごみ)は、一般的にミキサーやディ
スポーザーで粉砕した後、生分解処理装置にかけられ
る。また、この粉砕して液状にした廃水を処理するにし
ても、又は例えば焼酎廃液等の最初から既に液状の廃水
を処理するにしても、従来の生分解処理は有機物処理の
効率が低いものであった。
On the other hand, in the treatment of wastewater containing organic substances, decomposition treatment by microorganisms, that is, biodegradation treatment is generally performed. This treatment has the advantage that there is no risk of secondary pollution such as air pollution due to incineration. However, since the waste to be treated needs to be a liquid, if the wastewater contains solids (for example, garbage), it is generally crushed with a mixer or disposer and then passed through a biodegradation treatment device. Can be In addition, even if the wastewater that has been pulverized to a liquid state is treated, or even if the wastewater that is already liquid is treated from the beginning, for example, shochu waste liquid, the conventional biodegradation treatment has a low efficiency of organic matter treatment. there were.

【0004】[0004]

【発明が解決しようとする課題】生分解処理により有機
物の処理を行う場合においては、用いられる微生物の種
類によって有機物の分解速度や処理方式が異なる。用い
られる微生物が好気性微生物の場合には、嫌気性微生物
の場合よりも有機物の分解速度が速いので、有機物処理
の微生物として適している。処理方式としては、好気性
微生物が用いられる場合は、ブロアやコンプレッサによ
り圧縮された空気が散気管を通じて反応槽に送り込ま
れ、これにより有機物の分解反応が促進される。
When an organic substance is treated by biodegradation, the decomposition rate and treatment method of the organic substance differ depending on the type of microorganism used. When the microorganism used is an aerobic microorganism, the decomposition rate of organic substances is higher than that of an anaerobic microorganism. When an aerobic microorganism is used as a treatment method, air compressed by a blower or a compressor is sent into a reaction tank through an air diffuser, thereby promoting a decomposition reaction of organic substances.

【0005】好気性微生物が順調に増殖して活性化して
行くためには、有機物としての好気性微生物の餌が十分
存在し、更に溶液中の溶存酸素量、溶液温度、pH等い
くつかの条件を適正化する必要がある。これらの条件を
適正化するには特に次の(1)及び(2)の二つの条件、特
に(1)の条件が重要であることが解った。
[0005] In order for aerobic microorganisms to grow and activate smoothly, there is a sufficient amount of aerobic microorganism feed as an organic substance, and there are several conditions such as the amount of dissolved oxygen in the solution, the solution temperature, and the pH. Need to be optimized. It has been found that the following two conditions (1) and (2), particularly the condition (1), are particularly important in optimizing these conditions.

【0006】(1) 微生物が生分解しやすい状態になっ
ていること。そのためには、廃水中の固形有機物の大き
さが十分に小さいことが望ましい。
(1) The microorganisms are in a state of being easily biodegraded. For that purpose, it is desirable that the size of the solid organic matter in the wastewater is sufficiently small.

【0007】(2) 廃水中の溶存酸素量が大きいこと。
そのためには、廃水に供給する空気泡の粒子径が十分に
小さいことが望ましい。
(2) The amount of dissolved oxygen in the wastewater is large.
For that purpose, it is desirable that the particle size of the air bubbles supplied to the wastewater is sufficiently small.

【0008】しかし、上記の二つの条件には、それぞれ
次のような問題があり、これらの条件を充すことは困難
であった。
However, the above two conditions have the following problems, respectively, and it has been difficult to satisfy these conditions.

【0009】(1)の条件については、生ごみ等の固形有
機物の粉砕には大きな剪断力を必要とし、工業上採用で
きる実用的な従来の粉砕方法は、せいぜい200〜50
0μmが下限であった。
Regarding the condition (1), a large shearing force is required to pulverize solid organic matter such as garbage, and a practical conventional pulverization method that can be employed industrially is at most 200 to 50.
0 μm was the lower limit.

【0010】(2)の条件については、廃水へ酸素を供給
するために散気管を用いる場合、空気泡の粒子径を小さ
くすると、散気管に掛かる圧力が増加し、圧力損失の観
点から全体の装置効率が低下してしまう。このため、せ
いぜい200μm程度の空気の粒子径を作ることが限界
であった。
Regarding the condition (2), when a diffuser is used to supply oxygen to the wastewater, if the particle size of the air bubbles is reduced, the pressure applied to the diffuser increases, and from the viewpoint of pressure loss, the overall pressure increases. The device efficiency will be reduced. For this reason, it has been a limit to produce an air particle diameter of at most about 200 μm.

【0011】以上のように、(1)及び(2)の何れの条件
についても、従来の方法では、機械技術的に限界があ
り、この廃水処理技術の分野においては、固形有機物及
び空気泡について、従来技術の限界を超えて粒子径を小
さくすることを推し進めようという動きも見られず、考
えられることもなかった。このような状況を反映して、
この技術分野では、理想から考えると極めて効率の悪い
設備システムしか採用されていないのが現状であった。
As described above, in any of the conditions (1) and (2), the conventional method has a limit in mechanical technology, and in the field of wastewater treatment technology, solid organic matter and air bubbles are limited. However, no attempt was made to push the reduction of the particle diameter beyond the limit of the conventional technology, and no attempt was made. Reflecting this situation,
At present, in the technical field, only equipment systems that are extremely inefficient when considered from an ideal point of view are employed.

【0012】本発明者らは上記問題を解決するために種
々検討した結果、特定の混合器を用い、微生物を含む固
形有機物懸濁液を粉砕すると、固形有機物の粒子径を、
従来の方法では限界とされていた粒子径よりも遥かに小
さくすることができ、しかも、この有機物の粒子径を小
さくした、微生物を含む有機物懸濁液を生分解すると、
分解速度が極めて速くなること、並びに、特定の混合器
を用い、微生物を含む有機物懸濁液を空気と共に同時粉
砕すると、有機物及び空気泡の何れの粒子径も、従来の
方法では限界とされていた粒子径よりも遥かに小さくす
ることができ、しかも、この有機物及び空気泡の粒子径
を小さくした、微生物を含む有機物懸濁液を生分解する
と、更に分解速度が極めて速くなることを知得し、本発
明を完成するに至ったもので、その目的とするところ
は、上記問題を解決した有機物の処理方法を提供するこ
とにある。
The present inventors have conducted various studies to solve the above problems, and as a result, when a specific organic mixer is used to pulverize a solid organic substance suspension containing microorganisms, the particle diameter of the solid organic substance is reduced.
In the conventional method, the particle diameter can be made much smaller than the limit, and the particle diameter of the organic substance is reduced.
When the decomposition rate is extremely high, and when an organic suspension containing microorganisms is simultaneously pulverized with air using a specific mixer, the particle diameters of both organic substances and air bubbles are limited by conventional methods. It can be understood that the biodegradation of the organic substance suspension containing microorganisms, in which the particle diameters of the organic substance and the air bubbles are reduced, can be further greatly reduced. Then, the present invention has been completed, and an object of the present invention is to provide a method for treating an organic substance which has solved the above-mentioned problems.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、〔1〕 粒子径10〜50μmの空気泡
と微生物とを有する混合液中で粒子径50μm以下の有
機物を生分解することを特徴とする有機物の処理方法、
〔2〕 粒子径10〜50μmの空気泡と微生物とを有
する混合液中で粒子径10〜50μmの有機物を生分解
することを特徴とする有機物の処理方法、並びに、並び
に、〔3〕 微生物と有機物とを含む懸濁液を空気と共
に粉砕して有機物及び空気泡の何れも粒子径10〜50
μmにすると共に生分解することを特徴とする有機物の
処理方法を提案するものであって、〔4〕 前記〔3〕
において、微生物と有機物とを含む懸濁液を空気と共に
行う粉砕を、スタティックミキサーにより行うことを含
み、〔5〕 前記〔1〕乃至〔4〕の何れかにおいて、
微生物に好気性微生物を用いることを含み、〔6〕 前
記〔1〕乃至〔5〕の何れかにおいて、空気の代わりに
純酸素を用いることを含む。
In order to achieve the above object, the present invention provides [1] biodegradation of organic substances having a particle diameter of 50 μm or less in a mixed solution containing air bubbles having a particle diameter of 10 to 50 μm and microorganisms. A method of treating organic matter,
[2] a method for treating an organic substance, which is characterized by biodegrading an organic substance having a particle diameter of 10 to 50 μm in a mixed solution having air bubbles having a particle diameter of 10 to 50 μm and microorganisms, and [3] The suspension containing the organic matter is pulverized together with air, and both the organic matter and the air bubbles have a particle size of 10 to 50.
The present invention proposes a method for treating an organic substance, wherein the method comprises the steps of:
In the method, pulverizing the suspension containing microorganisms and organic matter together with air, including performing by a static mixer, [5] In any of [1] to [4],
[6] Any of the above [1] to [5] includes using pure oxygen instead of air.

【0014】また、本発明は、〔7〕 酸素又は空気を
供給する酸素供給部と、粗砕した固形有機物と微生物と
を含む懸濁水を受け入れて前記酸素供給部から供給され
る酸素又は空気と共にスタティックミキサーに送り前記
固形有機物と空気又は酸素とを10〜50μmの粒子及
び気泡を含有する混合液にする気液混合部と、前記混合
液を受け入れ生分解すると共に生分解中の混合液の一部
を前記気液混合部の上流側の懸濁水に返送する手段とを
備えた反応部とから成る有機物の処理装置、並びに、
〔8〕 酸素又は空気を供給する酸素供給部と、固形有
機物を粗砕して粗砕固形有機物を得る第1原水事前処理
部と、前記粗砕固形有機物を微粉砕して粒子径10μm
以下の微粉砕固形有機物を得る第2原水事前処理部と、
前記微粉砕固形有機物と微生物とを含む懸濁水を受け入
れて前記酸素供給部から供給される酸素又は空気と共に
スタティックミキサーに送り前記固形有機物と空気又は
酸素とを10μm以下の粒子及び10〜50μmの気泡
を含有する混合液にする気液混合部と、前記混合液を受
け入れ生分解すると共に生分解中の混合液の一部を前記
気液混合部の上流側の懸濁水に返送する手段とを備えた
反応部とから成る有機物の処理装置を提案するものであ
る。
The present invention also provides [7] an oxygen supply unit for supplying oxygen or air, and a suspension water containing crushed solid organic matter and microorganisms, together with oxygen or air supplied from the oxygen supply unit. A gas-liquid mixing section which sends the solid organic matter and air or oxygen to a mixed liquid containing particles and bubbles of 10 to 50 μm, and a mixed liquid which receives the mixed liquid and is biodegraded, and And a reaction unit comprising means for returning the unit to the suspension water on the upstream side of the gas-liquid mixing unit; and
[8] an oxygen supply unit for supplying oxygen or air, a first raw water pretreatment unit for crushing solid organic matter to obtain a crushed solid organic matter, and a finely crushing the crushed solid organic matter to a particle diameter of 10 μm
A second raw water pretreatment section for obtaining the following finely divided solid organic matter,
Suspended water containing the finely divided solid organic matter and microorganisms is received and sent to a static mixer together with oxygen or air supplied from the oxygen supply unit, and the solid organic matter and air or oxygen are dispersed in particles of 10 μm or less and bubbles of 10 to 50 μm. And a means for receiving and biodegrading the mixed solution and returning a part of the mixed solution undergoing biodegradation to the suspension water upstream of the gas-liquid mixing unit. And an apparatus for treating organic matter comprising a reaction section.

【0015】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0016】[0016]

【発明の実施の形態】本発明の有機物の処理方法は、粒
子径50μm以下又は10〜50μmの固形有機物と粒
子径10〜50μmの空気泡と微生物とで生分解して有
機物の処理をするものである。有機物及び空気泡の粒子
径をそれぞれ10〜50μmにするには、微生物を含む
有機物懸濁液を空気と共に同時に粉砕することが望まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The method for treating organic substances according to the present invention is a method for treating organic substances by biodegrading solid organic substances having a particle diameter of 50 μm or less or 10 to 50 μm, air bubbles having a particle diameter of 10 to 50 μm, and microorganisms. It is. In order to make the particle diameters of the organic matter and the air bubbles respectively 10 to 50 μm, it is desirable to simultaneously pulverize the organic matter suspension containing microorganisms together with air.

【0017】有機物の分解速度は、有機物の粒子径が小
さい程、速くなる傾向にあるが、有機物の粒子径は50
μm以下又は10〜50μmが好ましい。有機物の粒子
径が50μmを超える場合には、有機物の分解速度が遅
くなるので好ましくない。また、微生物と固形有機物を
同時に粉砕する場合には、粒子径10μm未満に微粉砕
する場合、微生物まで粉砕し破壊してしまう虞があり、
好ましくない。但し、予め固形有機物を粒子径10μm
未満に微粉砕して微粉砕固形有機物を得、この微粉砕固
形有機物と微生物とを混合する場合は、有機物の分解速
度が一層速くなり、好ましいものである。
The decomposition rate of the organic substance tends to increase as the particle diameter of the organic substance decreases.
μm or less or 10 to 50 μm is preferred. When the particle diameter of the organic substance exceeds 50 μm, the decomposition rate of the organic substance becomes slow, which is not preferable. In addition, when simultaneously crushing microorganisms and solid organic matter, when finely crushing to a particle diameter of less than 10 μm, there is a risk that the microorganisms may be crushed and destroyed,
Not preferred. However, the solid organic matter should be in advance with a particle diameter of 10 μm.
When the finely pulverized solid organic matter is obtained by pulverizing the finely divided pulverized powder to a smaller amount and the microorganism is mixed with the finely pulverized solid organic matter, the decomposition rate of the organic matter is further increased, which is preferable.

【0018】処理すべき対象の有機物は、処理すべきも
のなら有機性廃棄物に限られないが、近年、特に人間の
健康及び環境保全が重要視されており、この面からも有
機性廃棄物を処理することは重要なことである。その有
機性廃棄物のうちでも、固形のもの(例えば生ごみ)
は、例えば焼酎廃液等の最初から既に液状のものと比べ
従来の方法では液状物にするのでさえ困難であったこと
からも、固形の有機性廃棄物を処理することは更に重要
なことである。また、この固形の有機性廃棄物のうちで
も生野菜のような固い細胞壁を有する有機物、即ち粉砕
に大きな剪断力を必要とする固形有機物がある。本発明
の処理方法は、粒子径50μm以下又は10〜50μm
に粉砕した固形有機物を処理するものであるが、この場
合野菜等の固形有機物は、細胞壁が機械的に破壊され
て、細胞壁内にある溶質が流出している。微生物は、こ
の流出した溶質の生分解に専念することができ、細胞壁
の破壊には殆ど労力を費やさずに済むので、固形有機物
の分解反応が著しく促進されるものである。これに対し
て、従来の方法は、粉砕の限界が、せいぜい200〜5
00μmである。前記の細胞壁は殆ど破壊されていな
い。このため、微生物は、細胞壁を破壊することに労力
の大半を費やしてしまい、細胞壁内の溶質を生分解する
ためには長時間を要する。
The organic matter to be treated is not limited to organic waste as long as it is to be treated. In recent years, however, human health and environmental preservation have been particularly emphasized. Processing is important. Solid organic waste (eg, garbage)
It is even more important to treat solid organic waste, for example, because it was difficult even in the conventional method to make a liquid compared with a liquid that was already liquid from the beginning, such as shochu waste liquid. . Further, among the solid organic wastes, there are organic substances having hard cell walls, such as raw vegetables, that is, solid organic substances that require a large shearing force for pulverization. The treatment method of the present invention may be applied to a particle diameter of 50 μm or less or 10 to 50 μm.
In this case, solid organic matter such as vegetables is mechanically destroyed in cell walls, and solutes in the cell walls flow out. Microorganisms can concentrate on the biodegradation of the effluent solutes and require very little effort to destroy the cell wall, thereby significantly promoting the decomposition reaction of solid organic matter. In contrast, the conventional method has a pulverization limit of 200 to 5 at most.
00 μm. The cell wall is hardly destroyed. For this reason, microorganisms spend most of their effort in destroying the cell wall, and it takes a long time to biodegrade solutes in the cell wall.

【0019】以上のように、微生物による生分解が起こ
り易い粒子径に有機物を微粉砕するということは、従来
行われていなかったが、本発明者らは、所定の粒子径に
固形有機物を粉砕することにより、従来にない効率の良
い生分解ができることを見出した。固形有機物の粉砕は
何れの方法によっても良い。しかし、例えばスタティッ
クミキサー等の特定の混合器を用いることによって固形
有機物を微粉砕できる。
As described above, it has not heretofore been practiced to finely pulverize an organic substance to a particle diameter at which biodegradation is likely to occur by microorganisms. However, the present inventors pulverize a solid organic substance to a predetermined particle diameter. By doing so, it has been found that biodegradation can be performed with higher efficiency than ever before. The solid organic matter may be pulverized by any method. However, solid organic matter can be pulverized by using a specific mixer such as a static mixer.

【0020】スタティックミキサーは、機械的に回転駆
動される攪拌機を持たず、機械的可動部分を持たない静
止型混合器である。この混合器の機構は、基本的には
「分割−位置移動−重ね合せ」からなっており、混合器
管内には蝶ネクタイ状のエレメント群が内臓されてい
る。この内臓するエレメントの数が20のとき、分割層
数は約105万(1.05×106)になる。ここで、
分割層数とは、スタティックミキサー等の混合器の性能
を表す指標として使用されるものである。このスタティ
ックミキサーは開発された当初、産業界に強烈な衝撃は
与えたものの、前記分割層数が105万程度では、ま
だ、混合器の性能としては不足していた。しかし、最近
開発されたラモンド・スーパーミキサー「環境科学工業
株式会社製 RM09A070L」なる商品名のスタテ
ィックミキサーでは、前記分割層数が6ユニットで4.
5×1024と桁違いのものが得られた。ここで、1ユニ
ットとは、中心から入った流体が半径方向を円周に向か
って放射状に広がる増殖拡散側と、その裏側で逆に円周
から中心に向う集合側の一対で構成されるものであり、
新しい混合原理に基づくものである。
The static mixer is a static mixer having no mechanically driven agitator and no mechanically movable part. The mechanism of this mixer basically consists of "division-position movement-superposition", and a bow tie-like element group is built in the mixer tube. When the number of built-in elements is 20, the number of divided layers is about 1.05 million (1.05 × 10 6 ). here,
The number of divided layers is used as an index indicating the performance of a mixer such as a static mixer. When this static mixer was first developed, it caused a strong impact on the industrial world, but the performance of the mixer was still insufficient when the number of divided layers was about 1.05 million. However, in a recently developed static mixer having a trade name of "Rummon Super Mixer RM09A070L" manufactured by Environmental Science and Technology Co., Ltd., the number of the divided layers is 6 units and 4.
An order of magnitude of 5 × 10 24 was obtained. Here, one unit is composed of a pair of a proliferation and diffusion side in which the fluid entering from the center radially spreads radially toward the circumference, and a collection side on the back side oppositely directed from the circumference to the center. And
It is based on a new mixing principle.

【0021】空気については、空気泡の粒子径が小さい
程、液中の溶存酸素量が増加し、更には空気泡の浮上速
度が緩やかとなり、液中の溶存酸素量の増加が一層加速
され、有機物の分解速度が速くなる傾向にある。一方、
前述のように、本発明においては、微生物による生分解
が起こり易い粒子径に固形有機物を微粉砕しているの
で、従来の散気管による空気泡でも、速い有機物の分解
速度が得られる。しかし、更に有機物の分解速度を速く
するには、空気泡の粒子径を10〜50μmにすること
が好ましい。空気泡の粒子径が50μmを超える場合に
は、液中の溶存酸素量が減少し有機物の分解速度が遅く
なるので好ましくない。また、本発明の方法では、条件
によっては空気泡の粒子径はサブミクロンまで小さくす
ることができるが、空気泡の粒子径が10μm未満の場
合には、微生物まで粉砕し破壊してしまう虞があり好ま
しくない。なお、本発明の方法によれば液中の溶存酸素
量を多くするためには空気でも十分達成できるが、空気
の代わりに純酸素を用いる場合には、より容易に液中の
酸素量が増加し有機物の分解速度がより速くなるので、
より好ましい。
With respect to air, the smaller the particle size of the air bubbles, the higher the dissolved oxygen amount in the liquid, the slower the air bubble floating speed, and the more the dissolved oxygen amount in the liquid is accelerated. The decomposition rate of organic matter tends to increase. on the other hand,
As described above, in the present invention, since solid organic matter is finely pulverized to a particle size that is likely to undergo biodegradation by microorganisms, a high rate of organic matter decomposition can be obtained even with air bubbles using a conventional air diffuser. However, in order to further increase the decomposition rate of the organic substance, it is preferable that the particle size of the air bubbles is 10 to 50 μm. If the particle size of the air bubbles exceeds 50 μm, the amount of dissolved oxygen in the liquid decreases, and the rate of decomposition of organic substances is undesirably reduced. Further, in the method of the present invention, the particle diameter of the air bubbles can be reduced to submicron depending on the conditions, but if the particle diameter of the air bubbles is less than 10 μm, there is a possibility that the microorganisms may be crushed and destroyed. There is not preferred. According to the method of the present invention, air can be sufficiently achieved to increase the amount of dissolved oxygen in the liquid, but when pure oxygen is used instead of air, the amount of oxygen in the liquid increases more easily. The decomposition rate of organic matter is faster,
More preferred.

【0022】本発明においては、任意の方法で固形有機
物及び空気泡の粒子径を50μm以下又は10〜50μ
mにしても良いものである。しかし、前述のスタティッ
クミキサー等の混合器を用いることによって、空気泡の
粒子径も固形有機物の粉砕と同様に容易に小さくするこ
とができる。
In the present invention, the particle diameter of the solid organic matter and air bubbles is reduced to 50 μm or less or 10 to 50 μm by any method.
m. However, by using a mixer such as the above-described static mixer, the particle size of the air bubbles can be easily reduced as in the case of pulverizing solid organic matter.

【0023】固形有機物及び空気泡何れの粒子径もそれ
ぞれ50μm以下又は10〜50μmにするには、微生
物を含む有機物懸濁液を空気と共に同時に、前述のスタ
ティックミキサー等の混合器で粉砕することによって、
達成できるので、この方法は望ましいものである。
In order to make the particle diameters of the solid organic matter and the air bubbles to be 50 μm or less or 10 to 50 μm, respectively, the organic matter suspension containing the microorganisms is simultaneously pulverized with air in a mixer such as the aforementioned static mixer. ,
This method is desirable because it can be achieved.

【0024】微生物は、好気性微生物を用いる。本発明
の方法によるときには、有機物処理中において、微生物
の濃度は、多少の変動はあるものの、ほぼ一定であるの
で、有機物懸濁液に含まれる微生物は、補充とか抜き出
しとか殆どすることなく、繰り返し循環させて使用する
ことができる。また、固形有機物は、微生物の培養液と
共に、ミキサーやディスポーザー等の簡易な混合器によ
って予備粉砕し、得られた予備粉砕混合物を系内の循環
している有機物懸濁液中に仕込むことができる。更に、
仕込物中の有機物の量と、該有機物を処理している間
に、循環している有機物懸濁液から蒸散する物質の量と
が、ほぼ同量になる場合がある。その場合は、微生物の
培養液の系内への追加補充や、循環している有機物懸濁
液の系内からの抜き出し等は殆どする必要がなく、所定
量の前記予備粉砕混合物を、所定時間毎に系内の循環し
ている有機物懸濁液中に仕込むことで、有機物の処理を
連続して行うことができる。このことは、系内を循環し
ている混合液中に微生物の濃度及び液量が殆ど一定で、
系内に仕込んだ有機物の分のみが生分解され系内から蒸
散したことを意味する。
As the microorganism, an aerobic microorganism is used. According to the method of the present invention, the concentration of microorganisms is almost constant during the organic matter treatment, though there are some fluctuations, so that the microorganisms contained in the organic matter suspension are repeatedly replenished or hardly extracted or removed. It can be used by circulating. Further, the solid organic matter can be pre-pulverized by a simple mixer such as a mixer or a disposer together with the culture liquid of the microorganism, and the obtained pre-pulverized mixture can be charged into a circulating organic substance suspension in the system. . Furthermore,
In some cases, the amount of organic matter in the charge and the amount of substance evaporating from the circulating organic matter suspension during the processing of the organic matter are substantially the same. In that case, additional supplementation of the culture solution of the microorganisms into the system or extraction of the circulating organic suspension from the system is almost unnecessary, and a predetermined amount of the pre-ground mixture is allowed to flow for a predetermined time. Each time, the organic material can be continuously treated by charging the organic material in the circulating organic material suspension in the system. This means that the concentration and volume of microorganisms in the mixture circulating in the system are almost constant,
It means that only the organic matter charged in the system was biodegraded and evaporated from the system.

【0025】以下、図面を参照して本発明を説明する。The present invention will be described below with reference to the drawings.

【0026】図1は、本発明の有機物の処理装置の一例
を示すフロー図である。図1中、Iは原水事前処理部
で、固形有機物2を含む原水4は廃棄物投入ホッパー6
に投入される。また、このホッパー6には、後述する反
応部から送られる混合液の一部も供給される。なお、前
記混合液は、その中に微生物を含むものである。前記原
水はまず、ディスポーザー8に送られ、ここで粗砕され
る。前記粗砕された固形有機物を含む懸濁液は、原水タ
ンク10に送られる。この原水タンクに送られた懸濁液
は、必要に応じて前記廃棄物投入ホッパーに戻される。
この戻された懸濁液は再度ディスポーザーに送られ更に
粗砕される。この粗砕操作を繰り返し1mm程度の粒子
に粗砕された固形有機物を含む懸濁液は、原水タンクか
ら、ストレーナー12を通り、気液混合部IIに送られ
る。即ち、前記懸濁液は、第1切替弁14、流量計17
を取り付けた第2切替弁16、第3切替弁18を順次通
り、気液混合部IIのスタティックミキサー20に供給
される。
FIG. 1 is a flow chart showing an example of the organic substance processing apparatus of the present invention. In FIG. 1, I is a raw water pretreatment unit, and raw water 4 containing solid organic matter 2 is a waste input hopper 6
It is thrown into. The hopper 6 is also supplied with a part of a mixed solution sent from a reaction section described later. The mixed liquid contains microorganisms therein. The raw water is first sent to a disposer 8, where it is crushed. The suspension containing the crushed solid organic matter is sent to the raw water tank 10. The suspension sent to the raw water tank is returned to the waste input hopper as needed.
This returned suspension is sent again to the disposer and further crushed. This crushing operation is repeated, and the suspension containing the solid organic matter crushed into particles of about 1 mm is sent from the raw water tank through the strainer 12 to the gas-liquid mixing section II. That is, the suspension is supplied to the first switching valve 14, the flow meter 17
The gas is supplied to the static mixer 20 of the gas-liquid mixing section II sequentially through the second switching valve 16 and the third switching valve 18 to which is attached.

【0027】IIIは酸素供給部で、酸素発生器22の
酸素若しくは空気は、第4切替弁24を通り、コンプレ
ッサー26で加圧された後、第3切替弁18に送られ、
ここで前記懸濁液と混合された後、混合液と一緒に前記
スタティックミキサー20に送られ、ここで固形有機物
と、酸素又は空気とは10〜50μmの粒径に粉砕され
るものである。なお、微生物は10μmよりも小さいの
で、このミキサー20では粉砕されないものである。
Reference numeral III denotes an oxygen supply unit. Oxygen or air from the oxygen generator 22 passes through a fourth switching valve 24, is pressurized by a compressor 26, and then sent to a third switching valve 18.
Here, after being mixed with the suspension, the mixture is sent to the static mixer 20 together with the mixed liquid, where the solid organic matter and oxygen or air are pulverized to a particle size of 10 to 50 μm. Since the microorganisms are smaller than 10 μm, they are not pulverized by the mixer 20.

【0028】IVは、反応部で、前記ミキサー20で粉
砕された固形有機物、酸素又は空気、微生物等を懸濁さ
せた混合液は、次いで反応部IVの冷却/加熱器28を
通り、反応塔30の底部から反応塔内に送られ、ここで
生分解がなされる。
IV is a reaction section, and a mixed liquid in which solid organic matter, oxygen or air, microorganisms and the like pulverized by the mixer 20 are suspended is then passed through the cooling / heating device 28 of the reaction section IV to form a reaction tower. From the bottom of 30, it is sent into the reaction tower where it undergoes biodegradation.

【0029】反応塔30内における生分解反応は、固形
有機物の細胞が破壊され、細胞内液が外部に流出してい
るので、極めて迅速に進行するものである。更に、空
気、又は酸素も微細気泡状態であるので、混合液中の上
昇速度が遅く、このため酸素を充分に混合液に供給する
ことができるものである。
The biodegradation reaction in the reaction tower 30 proceeds very quickly because the cells of solid organic matter are destroyed and the intracellular fluid flows out. Further, since air or oxygen is also in a state of fine bubbles, the rate of rise in the mixed liquid is low, so that oxygen can be sufficiently supplied to the mixed liquid.

【0030】なお、32は反応塔内を撹拌する撹拌器、
34は反応塔30内の混合液の状態を検出するセンサ
ー、36は脱臭器、38は第3開閉弁、40は第4開閉
弁、42は第5開閉弁、44は反応塔の重量を測定する
ロードセルである。 前記反応塔30内の混合液の一部
は、反応中常時、若しくは断続的に、第2開閉弁46、
第5切替弁48を通り、第1切替弁14に送られ、第2
切替弁16、第3切替弁18を通り、更に気液混合部I
Iのスタティックミキサー20、冷却/加熱器28を通
り、反応塔30の底部から反応塔30内に送られる循環
経路を繰り返し循環させられる。上記循環中に、混合液
は気液混合部IIのスタティックミキサー20を通る毎
に、不完全に破砕され残っていた固形有機物が更に破砕
され、更に微細な空気若しくは酸素の気泡が充分供給さ
れ、反応塔30内における生分解が確実に行われるよう
になっている。
Here, 32 is a stirrer for stirring the inside of the reaction tower,
34 is a sensor for detecting the state of the mixed liquid in the reaction tower 30, 36 is a deodorizer, 38 is a third on-off valve, 40 is a fourth on-off valve, 42 is a fifth on-off valve, and 44 measures the weight of the reaction tower. Load cell. A part of the mixed solution in the reaction tower 30 is constantly or intermittently maintained during the reaction,
It is sent to the first switching valve 14 through the fifth switching valve 48,
The gas passes through the switching valve 16 and the third switching valve 18 and further passes through the gas-liquid mixing section I.
After passing through the static mixer 20 of I and the cooling / heating device 28, the circulation route sent from the bottom of the reaction tower 30 into the reaction tower 30 is repeatedly circulated. During the circulation, each time the mixed liquid passes through the static mixer 20 of the gas-liquid mixing section II, the solid organic matter remaining incompletely crushed is further crushed, and fine air or oxygen bubbles are sufficiently supplied. Biodegradation in the reaction tower 30 is ensured.

【0031】なお、前記第5切替弁48は、これを切り
替えることにより、反応塔30内の混合液を投入ホッパ
ー6に供給でき、これによりディスポーザー8における
固形有機物の粉砕を容易にすることができるものであ
る。
The fifth switching valve 48 can supply the mixture in the reaction tower 30 to the charging hopper 6 by switching the fifth switching valve 48, thereby facilitating the pulverization of the solid organic matter in the disposer 8. Things.

【0032】図2は、本発明の有機物の処理装置の別の
一例を示すフロー図である。図2の処理装置において、
気液混合部II、の酸素供給部III及び反応部IVに
ついては、図1の装置と同様である。図1の処理装置に
おける原水事前処理部Iについては、図2の処理装置で
は、第1原水事前処理部I−Aと、第2原水事前処理部
I−Bとから構成される。第1原水事前処理部I−Aで
は、図1の処理装置における原水事前処理部Iと同様
に、処理対象物である固形有機物は、1mm程度の粒子
に粗砕され、粗砕された固形有機物を含む懸濁液とし
て、第2原水事前処理部I−Bに送られる。即ち、前記
懸濁液は、第2原水事前処理部I−Bのスタティックミ
キサー13に供給され、10μm以下の粒子に微粉砕さ
れる。前記微粉砕された固形有機物を含む懸濁液は、気
液混合部IIに送られ、以下、図1の処理装置と同様に
操作処理される。
FIG. 2 is a flowchart showing another example of the apparatus for treating organic matter according to the present invention. In the processing apparatus of FIG.
The oxygen supply section III and the reaction section IV of the gas-liquid mixing section II are the same as those in the apparatus shown in FIG. The raw water pre-processing section I in the processing apparatus of FIG. 1 includes a first raw water pre-processing section IA and a second raw water pre-processing section IB in the processing apparatus of FIG. In the first raw water pretreatment section IA, as in the raw water pretreatment section I in the treatment apparatus of FIG. 1, the solid organic matter to be treated is coarsely crushed into particles of about 1 mm, and the coarsely crushed solid organic matter Is sent to the second raw water pretreatment section IB. That is, the suspension is supplied to the static mixer 13 of the second raw water pretreatment section IB, and is finely pulverized into particles of 10 μm or less. The suspension containing the finely pulverized solid organic matter is sent to the gas-liquid mixing section II, and is thereafter subjected to the same operation and processing as the processing apparatus in FIG.

【0033】[0033]

【実施例】以下、本発明を実施例により、具体的且つ詳
細に説明するが、本発明は実施例により限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be described specifically and in detail with reference to examples, but the present invention is not limited to the examples.

【0034】各物性値は、以下の方法で測定した。Each physical property value was measured by the following method.

【0035】溶存酸素量(DO):東亜電波工業株式会
社製 ポータブル溶存酸素計DO−14Pを用いて測定
した。
Dissolved oxygen content (DO): Measured using a portable dissolved oxygen meter DO-14P manufactured by Toa Denpa Kogyo KK

【0036】全有機炭素濃度(TOC):島津製作所株
式会社製 TOC−5000を用いて測定した。
Total organic carbon concentration (TOC): Measured using TOC-5000 manufactured by Shimadzu Corporation.

【0037】TOC(GF):0.22μmのグラスフ
ィルタで濾過したときの濾液中の有機炭素量。この中に
は微生物は含まれず、微生物以外の有機炭素量を表す。
TOC (GF): The amount of organic carbon in the filtrate when filtered through a 0.22 μm glass filter. This does not include microorganisms, and indicates the amount of organic carbon other than microorganisms.

【0038】アンモニア態窒素濃度:AIIオリオン社
製 複合電極9307BN型を用いて測定した。
Ammonia nitrogen concentration: measured using a composite electrode type 9307BN manufactured by AII Orion.

【0039】硝酸態窒素濃度:AIIオリオン社製 膜
電極95−12BN型を用いて測定した。
Nitrate nitrogen concentration: Measured using a membrane electrode 95-12BN manufactured by AII Orion.

【0040】試験例1 水5Lを5分間煮沸し、溶存酸素量を2.3mg/Lに
した後、この煮沸後の水5L全量を、ラモンド・スーパ
ーミキサーRM09A070L(環境科学工業株式会社
製)に通過させた。この通過運転条件は、空気流量1L
/min、全流量(空気流量を含む)12.5L/mi
n、ポンプ圧力10kg/cm2であり、全量通過する
のに29.4秒かかった。この通過液を「1回目通過
液」として溶存酸素量を測定した。次いで、「1回目通
過液」全量を再び前記ラモンド・スーパーミキサーに通
過させ、「2回目通過液」を得、この「2回目通過液」
の溶存酸素量を測定した。更にこの「2回目通過液」を
同様にして前記ラモンド・スーパーミキサーに通過さ
せ、「3回目通過液」を得、この「3回目通過液」の溶
存酸素量を測定した。それぞれの「通過液」についての
測定結果を表1に示す。
Test Example 1 5 L of water was boiled for 5 minutes to adjust the dissolved oxygen content to 2.3 mg / L, and the whole amount of 5 L of the boiled water was transferred to a Ramond Super Mixer RM09A070L (manufactured by Environmental Science Industry Co., Ltd.). Let it pass. This passing operation condition is that the air flow rate is 1 L
/ Min, total flow rate (including air flow rate) 12.5 L / mi
n, the pump pressure was 10 kg / cm 2 , and it took 29.4 seconds to pass the entire amount. The amount of dissolved oxygen was measured using this passing liquid as the “first passing liquid”. Next, the whole amount of the “first pass liquid” is again passed through the above-mentioned Ramond super mixer to obtain a “second pass liquid”, and the “second pass liquid” is obtained.
Was measured for dissolved oxygen content. Further, the “second pass liquid” was similarly passed through the above-mentioned Lamond supermixer to obtain a “third pass liquid”, and the dissolved oxygen amount of the “third pass liquid” was measured. Table 1 shows the measurement results for each “passing liquid”.

【0041】表1の結果から、前記ラモンド・スーパー
ミキサーに煮沸後の水を1回通過させただけで飽和に近
い溶存酸素量に達することが解った。
From the results shown in Table 1, it was found that the amount of dissolved oxygen approaching saturation was reached by passing the boiling water once through the above-mentioned Ramond supermixer.

【0042】[0042]

【表1】 試験例2 微生物培養液5Lを、試験例1と同様の通過運転条件で
前記ラモンド・スーパーミキサーに3回通過させ、「1
〜3回目通過液」を得、それぞれの通過液について、溶
存酸素量、全有機炭素濃度等を測定し、その結果を表2
に示す。
[Table 1] Test Example 2 5 L of the microbial culture solution was passed three times through the above-mentioned Lamond supermixer under the same passing operation conditions as in Test Example 1, and "1.
~ 3rd passage liquid ", the dissolved oxygen amount, the total organic carbon concentration, etc. were measured for each passage liquid.
Shown in

【0043】表2の結果から、前記ラモンド・スーパー
ミキサーに微生物培養液を1回通過させただけで微生物
が溶存酸素を多量消費するにも拘らず飽和の半分程度の
溶存酸素量に達することが解った。また、微生物は粉砕
されることなく、生きていることが確認できた。
From the results shown in Table 2, it can be seen that the microorganisms can reach a dissolved oxygen amount of about half of saturation even though the microorganisms consume a large amount of dissolved oxygen by passing the microorganism culture solution only once through the Ramond supermixer. I understand. In addition, it was confirmed that the microorganism was alive without being crushed.

【0044】[0044]

【表2】 原液調製 白菜1.5kg、ほうれん草0.5kg、計2kgの野
菜と、微生物培養液4kgを、ディスポーザーに10回
(10秒/回)、ミキサーに1回(30秒/回)かけ、
1〜2mmに粉砕し、有機物原液を得た。この有機物原
液を前記ラモンド・スーパーミキサーに8分間繰り返し
循環して通過させ、2分毎にサンプリングし、それぞれ
のサンプルについて、全有機炭素濃度等を測定し、その
結果を表3に示す。
[Table 2] Undiluted solution preparation 1.5 kg of Chinese cabbage, 0.5 kg of spinach, 2 kg of vegetables, and 4 kg of microbial culture solution were applied to the disposer 10 times (10 seconds / time) and the mixer once (30 seconds / time).
It was pulverized to 1-2 mm to obtain an organic stock solution. This undiluted organic substance solution was repeatedly circulated through the above-mentioned Lamond supermixer for 8 minutes, sampled every 2 minutes, and the total organic carbon concentration of each sample was measured. The results are shown in Table 3.

【0045】[0045]

【表3】 実施例1 図1に示す有機物処理装置に、前記有機物原液2Lと前
記微生物培養液9Lとの混合物を混合液として仕込み、
該混合液を空気と共に前記ラモンド・スーパーミキサー
に繰り返し循環して通過させた。このとき同時に前記ラ
モンド・スーパーミキサーを通過させ空気流量1L/m
inで曝気を行い、所定時間毎にサンプリングし、それ
ぞれのサンプルについて、全有機炭素濃度等を測定し、
その結果を表4に示す。
[Table 3] Example 1 A mixture of 2 L of the organic stock solution and 9 L of the microorganism culture solution was charged as a mixture into the organic matter treatment apparatus shown in FIG.
The mixture was repeatedly circulated and passed through the Ramond Supermixer with air. At this time, the air flow rate was 1 L / m through the above-mentioned Lamond super mixer.
in aeration, sampling every predetermined time, measuring the total organic carbon concentration, etc. for each sample,
Table 4 shows the results.

【0046】表4の結果から、前記混合液を空気と共に
前記ラモンド・スーパーミキサーに繰り返し循環して通
過させ有機物と空気泡のそれぞれの粒子径を同時に小さ
くすることで、後述比較例1の反応塔底部の散気管から
の曝気の場合よりも、遥かに速く生分解が進み、全有機
物炭素濃度やTOC(GF)は瞬時にして減少し、溶存
酸素量も約4.5時間後には5mg/L以上になり、仕
込んだ有機物の生分解処理は終了したものと認められ
る。
From the results shown in Table 4, the mixed liquid and the air were repeatedly circulated and passed through the Ramond supermixer to reduce the particle diameters of the organic substances and the air bubbles at the same time. Biodegradation proceeds much faster than in the case of aeration from the bottom diffuser, the total organic carbon concentration and TOC (GF) decrease instantaneously, and the dissolved oxygen content also becomes 5 mg / L after about 4.5 hours. As described above, it is recognized that the biodegradation treatment of the charged organic matter has been completed.

【0047】[0047]

【表4】 比較例1 ラモンド・スーパーミキサーを通過させた空気による曝
気ではなく、反応塔底部の散気管から曝気した以外は、
実施例1と同様の有機物処理装置に、前記有機物原液
3.8Lと前記微生物培養液17.1Lとの混合物を混
合液として仕込み、該混合液を前記ラモンド・スーパー
ミキサーに繰り返し循環して通過させ、同時に前記反応
塔底部の散気管により空気流量23L/minで曝気し
た。実施例1と同様に、所定時間毎にサンプリングし、
それぞれのサンプルについて、全有機炭素濃度等を測定
し、その結果を表5に示す。
[Table 4] Comparative Example 1 Rather than aerating with air passed through a Lamond supermixer, but aerating from a diffuser at the bottom of the reactor,
A mixture of 3.8 L of the organic stock solution and 17.1 L of the microorganism culture solution was charged as a mixture into the same organic matter treatment apparatus as in Example 1, and the mixture was repeatedly circulated and passed through the Ramond supermixer. At the same time, aeration was performed at an air flow rate of 23 L / min by a diffuser at the bottom of the reaction tower. As in the first embodiment, sampling is performed at predetermined time intervals,
For each sample, the total organic carbon concentration and the like were measured, and the results are shown in Table 5.

【0048】表5の結果から、前記混合液を前記ラモン
ド・スーパーミキサーに繰り返し循環して通過させるこ
とで、前記反応塔底部の散気管からの曝気でも、全有機
物炭素濃度やTOC(GF)は後述する比較例2のラモ
ンド・スーパーミキサーを一切使用しない場合に比べ
て、速い速度で減少した。しかし、溶存酸素量が5mg
/L以上になり、仕込んだ有機物の生分解処理が終了し
たものと認められるようになるには、約12時間かかっ
た。
From the results shown in Table 5, by repeatedly circulating and passing the mixture through the Ramond supermixer, the total organic carbon concentration and TOC (GF) can be maintained even with the aeration from the aeration tube at the bottom of the reaction tower. It decreased at a higher speed than in the case where the almond super mixer of Comparative Example 2 described later was not used at all. However, the dissolved oxygen amount is 5mg
/ L or more, and it took about 12 hours for the biodegradation treatment of the charged organic matter to be recognized as completed.

【0049】[0049]

【表5】 比較例2 反応塔に、前記有機物原液と同様の方法によって作製し
た有機物原液3Lと前記微生物培養液18Lとの混合物
を仕込み、前記反応塔底部の散気管により空気流量50
L/minで曝気を行い、所定時間毎にサンプリング
し、それぞれのサンプルについて、全有機炭素濃度等を
測定し、その結果を表6に示す。
[Table 5] Comparative Example 2 A mixture of 3 L of an organic stock solution and 18 L of the microorganism culture solution prepared by the same method as that for the above-mentioned organic stock solution was charged into a reaction tower, and an air flow rate of 50 L was supplied through a diffuser at the bottom of the reaction tower.
Aeration was performed at L / min, sampling was performed at predetermined time intervals, and the total organic carbon concentration and the like were measured for each sample. The results are shown in Table 6.

【0050】表6の結果から、前記反応塔底部の散気管
からの曝気だけで、ラモンド・スーパーミキサーを使用
しない場合は、全有機物炭素濃度やTOC(GF)が減
少するのも、溶存酸素量が5mg/L以上になるのも、
時間がかかった。仕込んだ有機物の生分解処理が終了し
たものと認められのは、約24時間後であった。このこ
とは、前述のように、微生物が細胞壁を破壊することに
多くの労力を消費し、細胞壁内の溶質の生分解を開始す
るまでに長時間を要したものと解釈することができる。
また、散気管から曝気する空気の粒子径が300〜50
0μmと大きく、酸素の利用効率が低くなったことも加
わり、処理時間を増大させることとなった。
From the results shown in Table 6, when only the aeration from the aeration tube at the bottom of the reaction tower was used and the Ramond Supermixer was not used, the total organic carbon concentration and TOC (GF) decreased, and the amount of dissolved oxygen also decreased. Is more than 5mg / L,
It took time. It was about 24 hours after the completion of the biodegradation treatment of the charged organic matter. This can be interpreted as that, as described above, microorganisms consumed a lot of effort to destroy the cell wall, and it took a long time to start biodegradation of solutes in the cell wall.
Further, the particle size of the air to be aerated from the air diffuser is 300 to 50.
It was as large as 0 μm, and in addition to the low oxygen utilization efficiency, the processing time was increased.

【0051】[0051]

【表6】 表1〜6の各データを比較して実施例1並びに比較例1
及び2について、まとめると表7のようになる。表7か
ら明らかなように空気効率で比較すると実施例1及び比
較例1の条件での効果、特に実施例1の条件での効果が
絶大であることが解る。
[Table 6] Example 1 and Comparative Example 1 by comparing each data of Tables 1 to 6
Table 7 summarizes Tables 2 and 3. As is clear from Table 7, when compared by air efficiency, the effect under the conditions of Example 1 and Comparative Example 1, particularly the effect under the conditions of Example 1, is remarkable.

【0052】[0052]

【表7】 *1 野菜投入比…微生物培養液(L)÷処理対象物(kg) *2 空気流量比…空気流量(L/分)÷処理対象物(kg) *3 空気効率比…下式に定義する空気効率係数を各実施例又は比較例毎に求 め、比較例2を基準として即ち1として相対比率を算出したもの また、実施例1の条件で前記混合液の処理を292分行
ったときの、炭素除去率及び蒸散率等の結果を表8に示
す。また、この結果の経時変化を図3に示す。
[Table 7] * 1 Vegetable input ratio: Microbial culture liquid (L) ÷ treatment target (kg) * 2 Air flow ratio: Air flow (L / min) ÷ treatment target (kg) * 3 Air efficiency ratio: Defined by the following formula The air efficiency coefficient is determined for each example or comparative example, and the relative ratio is calculated with reference to comparative example 2, that is, as 1 Table 8 shows the results of the carbon removal rate and the transpiration rate when the treatment of the mixed liquid was performed under the conditions of Example 1 for 292 minutes. FIG. 3 shows the change with time of the result.

【0053】この結果において、図3に示すように、前
記混合液の処理中、泡が大量に発生し、泡の量の測定及
び泡のサンプリングは誤差を生じ易いので、特に蒸散率
の算出は±5%程度の誤差を生じるが、処理時間が約5
時間と短いにも拘らず、炭素除去率も蒸散率も100%
前後の結果を得た。
In this result, as shown in FIG. 3, a large amount of bubbles are generated during the processing of the mixed liquid, and the measurement of the amount of the bubbles and the sampling of the bubbles are likely to cause errors. An error of about ± 5% occurs, but the processing time is about 5%.
Despite the short time, both carbon removal rate and transpiration rate are 100%
Before and after results were obtained.

【0054】以上の結果から炭素除去率及び蒸散率が1
00%前後になるようなときには、微生物培養液の系内
への追加補充や、循環している混合液の系内からの抜き
出し等は殆どする必要がなく、所定量の前記予備粉砕混
合物を、所定時間毎に系内の循環している混合液中に仕
込むことで、有機物の処理を連続して行うことができ
る。
From the above results, the carbon removal rate and the transpiration rate were 1
When it is about 00%, there is almost no need to additionally replenish the microbial culture solution into the system or withdraw the circulating mixture from the system. By charging the mixture in the circulating mixture in the system at predetermined time intervals, the treatment of organic substances can be performed continuously.

【0055】[0055]

【表8】 [Table 8]

【0056】[0056]

【発明の効果】本発明によれば、生分解において、固形
有機物及び供給する酸素又は空気の気泡の粒子径を50
μm以下又は10〜50μmにしたので、極めて迅速に
生分解処理を行うことができる。特定の混合器である、
スタティックミキサー、特にそのスタティックミキサー
のうちでも混合性能が高いラモンド・スーパーミキサー
を用いる場合は、微生物を含む固形有機物懸濁液を空気
と共に同時に粉砕することによって、有機物及び空気泡
の何れの粒子径も、従来の方法では限界とされていた粒
子径よりも遥かに小さくすることを可能する。そして、
この小さくした有機物及び空気泡を含む有機物混合液を
生分解するので、分解速度は極めて速いものである。
According to the present invention, in biodegradation, the particle diameter of solid organic matter and the oxygen or air bubbles to be supplied is reduced to 50%.
Since the thickness is set to not more than μm or 10 to 50 μm, the biodegradation treatment can be performed very quickly. A specific mixer,
In the case of using a static mixer, especially a Ramond super mixer having a high mixing performance among the static mixers, the particle size of both organic matter and air bubbles is reduced by simultaneously crushing a solid organic matter suspension containing microorganisms together with air. In addition, it is possible to make the particle diameter much smaller than the particle size which has been regarded as a limit in the conventional method. And
The biodegradation of the mixed organic material containing the reduced organic material and air bubbles is extremely fast.

【0057】また、本発明においては、有機物処理中に
おいて、微生物の濃度は、ほぼ一定である。即ち、固形
有機物は水と炭酸ガスとに完全に分解され、余剰スラッ
ジ等の発生もないものである。
In the present invention, the concentration of microorganisms is substantially constant during the treatment with organic substances. That is, the solid organic matter is completely decomposed into water and carbon dioxide, and does not generate excess sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機物の処理装置の一例を示すフロー
図である。
FIG. 1 is a flowchart showing an example of an organic substance processing apparatus of the present invention.

【図2】本発明の有機物の処理装置の別の一例を示すフ
ロー図である。
FIG. 2 is a flowchart showing another example of the organic substance processing apparatus of the present invention.

【図3】実施例1における、炭素濃度及び泡の量等の測
定値の経時変化を示すグラフである。
FIG. 3 is a graph showing time-dependent changes in measured values such as the carbon concentration and the amount of bubbles in Example 1.

【符号の説明】[Explanation of symbols]

I 原水事前処理部 I−A 第1原水事前処理部 2 固形有機物 4 原水 6 廃棄物投入ホッパー 8 ディスポーザー 10 原水タンク 11 第1開閉弁 12 ストレーナー I−B 第2原水事前処理部 13 スタティックミキサー II 気液混合部 14 第1切替弁 16 第2切替弁 17 流量計 18 第3切替弁 19 流量計 20 スタティックミキサー III 酸素供給部 22 酸素発生器 24 第4切替弁 26 コンプレッサー IV 反応部 28 冷却/加熱器 30 反応塔 32 撹拌器 34 センサー 35 ORP/pH計/温度計/ほか諸計器 36 脱臭器 38 第3開閉弁 40 第4開閉弁 42 第5開閉弁 44 ロードセル 46 第2開閉弁 48 第5切替弁 I Raw water pretreatment section IA First raw water pretreatment section 2 Solid organic matter 4 Raw water 6 Waste input hopper 8 Disposer 10 Raw water tank 11 First open / close valve 12 Strainer IB Second raw water pretreatment section 13 Static mixer II Air Liquid mixing unit 14 First switching valve 16 Second switching valve 17 Flow meter 18 Third switching valve 19 Flow meter 20 Static mixer III Oxygen supply unit 22 Oxygen generator 24 Fourth switching valve 26 Compressor IV reaction unit 28 Cooling / heating unit 30 reaction tower 32 stirrer 34 sensor 35 ORP / pH meter / thermometer / other instruments 36 deodorizer 38 third on-off valve 40 fourth on-off valve 42 fifth on-off valve 44 load cell 46 second on-off valve 48 fifth switching valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加茂川 喜郎 京都府京都市中京区堺町通二条下ル杉屋町 628番地2 株式会社東洋環境技術研究所 内 (72)発明者 新美 富男 愛知県名古屋市北区志賀南通2丁目2番地 2 環境科学工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiro Kamokawa 628-2, Sugiyacho, Nijo Shimojo, Sakaimachi, Nakagyo-ku, Kyoto, Kyoto Prefecture Toyo Environmental Research Institute, Inc. (72) Inventor Tomio Niimi Nagoya, Aichi 2-2, Shiga-Nantori, Kita-ku, Yokohama 2 Environmental Science & Technology Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒子径10〜50μmの空気泡と微生物
とを有する混合液中で粒子径50μm以下の有機物を生
分解することを特徴とする有機物の処理方法。
1. A method for treating an organic substance, wherein an organic substance having a particle diameter of 50 μm or less is biodegraded in a mixed liquid containing air bubbles having a particle diameter of 10 to 50 μm and microorganisms.
【請求項2】 粒子径10〜50μmの空気泡と微生物
とを有する混合液中で粒子径10〜50μmの有機物を
生分解することを特徴とする有機物の処理方法。
2. A method for treating an organic substance, comprising biodegrading an organic substance having a particle diameter of 10 to 50 μm in a mixed liquid having air bubbles having a particle diameter of 10 to 50 μm and microorganisms.
【請求項3】 微生物と有機物とを含む懸濁液を空気と
共に粉砕して有機物及び空気泡の何れも粒子径10〜5
0μmにすると共に生分解することを特徴とする有機物
の処理方法。
3. A suspension containing microorganisms and organic matter is pulverized together with air, and the organic matter and air bubbles have a particle size of 10 to 5 times.
A method for treating organic matter, wherein the organic matter is reduced to 0 μm and biodegraded.
【請求項4】 微生物と有機物とを含む懸濁液を空気と
共に行う粉砕を、スタティックミキサーにより行う請求
項3に記載の有機物の処理方法。
4. The method for treating an organic substance according to claim 3, wherein the pulverization of the suspension containing the microorganisms and the organic substance together with air is performed by a static mixer.
【請求項5】 微生物に好気性微生物を用いる請求項1
乃至4の何れかに記載の有機物の処理方法。
5. The method according to claim 1, wherein the microorganism is an aerobic microorganism.
5. The method for treating an organic substance according to any one of claims 1 to 4.
【請求項6】 空気の代わりに純酸素を用いる請求項1
乃至5の何れかに記載の有機物の処理方法。
6. The method according to claim 1, wherein pure oxygen is used instead of air.
6. The method for treating an organic substance according to any one of claims 1 to 5.
【請求項7】 酸素又は空気を供給する酸素供給部と、
粗砕した固形有機物と微生物とを含む懸濁水を受け入れ
て前記酸素供給部から供給される酸素又は空気と共にス
タティックミキサーに送り前記固形有機物と空気又は酸
素とを10〜50μmの粒子及び気泡を含有する混合液
にする気液混合部と、前記混合液を受け入れ生分解する
と共に生分解中の混合液の一部を前記気液混合部の上流
側の懸濁水に返送する手段とを備えた反応部とから成る
有機物の処理装置。
7. An oxygen supply unit for supplying oxygen or air,
Suspended water containing crushed solid organic matter and microorganisms is received and sent to a static mixer together with oxygen or air supplied from the oxygen supply unit. The solid organic matter and air or oxygen contain particles and bubbles of 10 to 50 μm. A reaction unit comprising: a gas-liquid mixing unit that forms a mixed solution; and a unit that receives and biodegrades the mixed solution and returns a part of the mixed solution undergoing biodegradation to suspended water upstream of the gas-liquid mixing unit. An organic matter processing device comprising:
【請求項8】 酸素又は空気を供給する酸素供給部と、
固形有機物を粗砕して粗砕固形有機物を得る第1原水事
前処理部と、前記粗砕固形有機物を微粉砕して粒子径1
0μm以下の微粉砕固形有機物を得る第2原水事前処理
部と、前記微粉砕固形有機物と微生物とを含む懸濁水を
受け入れて前記酸素供給部から供給される酸素又は空気
と共にスタティックミキサーに送り前記固形有機物と空
気又は酸素とを10μm以下の粒子及び10〜50μm
の気泡を含有する混合液にする気液混合部と、前記混合
液を受け入れ生分解すると共に生分解中の混合液の一部
を前記気液混合部の上流側の懸濁水に返送する手段とを
備えた反応部とから成る有機物の処理装置。
8. An oxygen supply unit for supplying oxygen or air,
A first raw water pretreatment section for crushing the solid organic matter to obtain a crushed solid organic matter;
A second raw water pretreatment section for obtaining finely divided solid organic matter of 0 μm or less, and receiving the suspension water containing the finely divided solid organic matter and microorganisms, feeding the suspension water with oxygen or air supplied from the oxygen supply section to a static mixer, Organic matter and air or oxygen are 10 μm or less particles and 10 to 50 μm
A gas-liquid mixing section that converts the mixed liquid into a mixed liquid containing air bubbles, and a means for receiving and biodegrading the mixed liquid and returning a part of the mixed liquid undergoing biodegradation to the suspension water upstream of the gas-liquid mixing section. And a reaction unit provided with the organic substance.
JP7652198A 1998-03-10 1998-03-10 Method and apparatus for treating organic matter Pending JPH11253976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7652198A JPH11253976A (en) 1998-03-10 1998-03-10 Method and apparatus for treating organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7652198A JPH11253976A (en) 1998-03-10 1998-03-10 Method and apparatus for treating organic matter

Publications (1)

Publication Number Publication Date
JPH11253976A true JPH11253976A (en) 1999-09-21

Family

ID=13607596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7652198A Pending JPH11253976A (en) 1998-03-10 1998-03-10 Method and apparatus for treating organic matter

Country Status (1)

Country Link
JP (1) JPH11253976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038857B2 (en) 2004-03-09 2011-10-18 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038857B2 (en) 2004-03-09 2011-10-18 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8507111B2 (en) 2004-03-09 2013-08-13 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8773628B2 (en) 2004-03-09 2014-07-08 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes

Similar Documents

Publication Publication Date Title
Nah et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process
US6444124B1 (en) System and method for improved treatment of wastewater
CN101905935B (en) Method for treating high-concentration garbage percolate by catalysis and supercritical water oxidation
EP1878706A1 (en) Method for biological disposal of organic wastewaer and biological disposal apparatus
CN108046516A (en) A kind of OCO activated sludge modified technique and device for being used to strengthen urban wastewater treatment
JP3483917B2 (en) Sewage treatment method
KR100778543B1 (en) Recycling method of organic livestock excretion and apparatus thereof
JPH1128445A (en) Waste treatment
JP2007044572A (en) Method and system for treating organic waste
JPH11253976A (en) Method and apparatus for treating organic matter
DK1361198T3 (en) A method for water treatment and processing facility
JP3163294B2 (en) Waste chemical and biological treatment system
JP4488794B2 (en) Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
JP2004041981A (en) Organic waste water treatment method and its system
JP3575668B2 (en) Organic matter treatment method
Zapf-Gilje et al. Temperature effects on biostabilization of leachate
CN108328894A (en) A method of promoting residual sludge reduction
Asadgol et al. Sludge stabilization using ozonation: a pre-treatment method for composting waste activated sludge
JP2006212537A (en) Treatment method of organic material
Rana et al. Extended aeration activated sludge process of pharmaceutical wastewater
EP1437335A1 (en) Method for treating organic liquid using ozone gas and apparatus for ozone treatment of organic liquid for use in said method
Kumar et al. Cultivation of Aerobic Granular Sludge Using Chitosan as A Nucleating Agent for Wastewater Treatment
JP2005087853A (en) Method and apparatus for treating methane fermentation waste liquid
JP2000051883A (en) Method for treating activated sludge of drainage
Baker et al. Nitrification in suspended growth bioreactor for treating seafood wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216