JPH11253549A - Hemorephoretic mechanism for dialyzer - Google Patents

Hemorephoretic mechanism for dialyzer

Info

Publication number
JPH11253549A
JPH11253549A JP10056587A JP5658798A JPH11253549A JP H11253549 A JPH11253549 A JP H11253549A JP 10056587 A JP10056587 A JP 10056587A JP 5658798 A JP5658798 A JP 5658798A JP H11253549 A JPH11253549 A JP H11253549A
Authority
JP
Japan
Prior art keywords
amount
blood
recirculation
change
dialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10056587A
Other languages
Japanese (ja)
Inventor
Fumitaka Asano
文隆 浅野
Mitsutaka Ueda
満隆 上田
Toyohiro Daruma
豊弘 達摩
Hiroshi Matsumoto
洋 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRAM KK
Nissho Corp
Original Assignee
GRAM KK
Nissho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRAM KK, Nissho Corp filed Critical GRAM KK
Priority to JP10056587A priority Critical patent/JPH11253549A/en
Publication of JPH11253549A publication Critical patent/JPH11253549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely and precisely mensurate a blood re-circulation amount without receiving external influences. SOLUTION: This hemorephoretic mechanism includes a light source 2 which casts a near infrared ray to a blood circuit 1 on the artery side, a light amount mensuration means (an absorbence meter) 3 to mensurate the luminous energy which has permeated the blood circuit 1, a controller 7, and a rephoretic amount calculating means (an arithmetic and logic unit) 6 which calculates a hemorephoretic amount from a period of time since the changing of a water- removing amount to the change of the luminous energy having permeated when the water-removing amount is changed in steps during a dialysis by the control device 7, and the variation amount of the permeated luminous energy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透析患者から血液
を取り出し血液浄化器で浄化して再び体内に戻す際に、
一旦体内に戻した血液が体内の各種臓器を通らずに再び
血液浄化器に戻ってくる量を計測する透析装置の血液再
循環量計測機構に関するものである。
The present invention relates to a method for removing blood from a dialysis patient, purifying the blood with a blood purifier, and returning the blood to the body again.
The present invention relates to a blood recirculation amount measuring mechanism of a dialysis device for measuring an amount of blood once returned to the body and returning to a blood purifier without passing through various organs in the body.

【0002】[0002]

【従来の技術】透析治療においては、一旦体内に戻した
血液の一部は、体内の各種臓器を通らずに再び血液浄化
器に戻ってくる。この戻ってくる血液の量を血液再循環
量という。この血液再循環量を図2に基づいて説明する
と次のようになる。患者の心肺20からの血液は各種臓
器30へ行くものと透析器40へのアクセス(Blood Ac
cess)10に行くものに分かれる。ここでBlood Access
10の出口と入口の間で循環が生じるものをACR(Ac
cess Recirculation)といい、Blood Access10に流れ
る血液流量以上に体外に血液を取り出すと生じるもので
あり、体外に取り出せる血液流量の目安となるものであ
る。一方、透析器40から体内に戻った血液が心肺20
を通って再びBlood Access10から体外に出て行くもの
をCPR(Cardiopulmonary Recirculation )といい、
透析治療の方法に起因する本質的なものであり、透析効
率に影響し、特に短時間透析を行う場合に重要な指標と
なるものである。
2. Description of the Related Art In dialysis treatment, a part of blood once returned to the body returns to the blood purifier again without passing through various organs in the body. This returned blood volume is called the blood recirculation volume. This blood recirculation amount will be described below with reference to FIG. The blood from the patient's cardiopulmonary 20 goes to various organs 30 and to the dialyzer 40 (Blood Ac
cess) Divide into 10 going. Here Blood Access
A circulation (CCR) between the outlet and the inlet
This is generated when blood is taken out of the body beyond the blood flow flowing to the Blood Access 10 and serves as a measure of the blood flow that can be taken out of the body. On the other hand, the blood returned from the dialyzer 40 into the body
The thing that goes out of the body again from Blood Access 10 through is called CPR (Cardiopulmonary Recirculation),
It is essential due to the method of dialysis treatment, affects dialysis efficiency, and is an important index especially when performing short-time dialysis.

【0003】近年、できるだけ血液流量を多く取り透析
時間を短くする努力が種々行われているが、血液の再循
環が生じると、透析効率が低下し、原因がわからないま
ま透析不足で種々のトラブルを生じることがある。従っ
て、適切な透析時間を知るために再循環量の把握は不可
欠であり、簡単な手法で確実に再循環量を知る方法の開
発が望まれている。そこで近年、透析液の温度をステッ
プ状に変化させ、血液回路の動脈側でその温度変化を検
出して再循環量を計測する装置が実用化されている。し
かしながら、生体の温度に対する反応は非常に複雑であ
りかつ短時間で応答するものであり、また、抹消の局所
の温度変化が全身の温度を大きく変化させることから、
体内に戻した血液の温度変化は単純に稀釈されて戻って
くるものとは異なる。また、透析液の温度を変化させて
も熱容量を持った部分が種々存在するため、体内に戻す
血液の温度変化は緩やかで変化の時間精度を挙げること
が困難であり、更には外的な環境温度の影響も受ける。
従って、血液の再循環量特にCPRを計測することは困
難である。また、薬物の変化量を計測することにより血
液再循環量を計測する方法が提案されているが、一般的
には各患者の血液再循環量を正確に把握する方法が確立
されていないというのが現状である。
In recent years, various efforts have been made to increase the blood flow rate as much as possible to shorten the dialysis time. However, when blood is recirculated, the dialysis efficiency is reduced, and various problems are caused by insufficient dialysis without knowing the cause. May occur. Therefore, it is indispensable to grasp the amount of recirculation in order to know an appropriate dialysis time, and it is desired to develop a method for surely knowing the amount of recirculation by a simple method. Therefore, in recent years, a device that changes the temperature of the dialysate stepwise, detects the temperature change on the arterial side of the blood circuit, and measures the amount of recirculation has been put to practical use. However, the response to the temperature of the living body is very complicated and responds in a short time, and since the local temperature change of the peripheral greatly changes the temperature of the whole body,
The change in temperature of the blood returned to the body is different from the one that is simply diluted and returned. In addition, even if the temperature of the dialysate is changed, there are various portions having heat capacity, so that the temperature change of the blood returned to the body is gradual and it is difficult to improve the time accuracy of the change. It is also affected by temperature.
Therefore, it is difficult to measure the amount of blood recirculation, especially CPR. In addition, although a method of measuring the amount of blood recirculation by measuring the amount of change in drug has been proposed, it is generally said that a method of accurately grasping the amount of blood recirculation of each patient has not been established. Is the current situation.

【0004】[0004]

【発明が解決しようとする課題】本発明は、如上の事情
に鑑みてなされたもので、外的な影響を受けることがな
く、血液再循環量を確実かつ精度良く計測することので
きる透析装置の血液再循環量計測機構を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is capable of reliably and accurately measuring the amount of blood recirculation without being externally affected. It is an object of the present invention to provide a blood recirculation amount measuring mechanism.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するために鋭意検討の結果、人体内で水分が移
動する速度と恒常性維持の働きは比較的ゆっくりしてお
り、また、除水量を変化させた場合、その変化は体外に
出ている血液量に依存するのみであり、しかも変化が速
く外的な影響も受けないことから、除水量を変化させて
血液の水分量を変化させ、その血液の水分量の変化を光
の透過量の変化として検出することにより、血液再循環
量を精度良く計測することができることに想到し、本発
明を完成した。すなわち、本発明は、透析中の患者の動
脈側の血液回路に近赤外光を照射する光源と、前記血液
回路を透過した光量を測定する光量測定手段と、制御装
置および、該制御装置により透析中に除水量をステップ
状に変化させた時に、除水量を変化させてから透過した
光量が変化するまでの時間と該透過光量の変化量から血
液再循環量を算出する再循環量算出手段を含んでなる透
析装置の血液再循環量計測機構である。ここで、光源と
してはレーザーダイオードが好適である。血液の脈流に
より生ずる透過光量の変動による影響を除去するため
に、脈流の一周期間の透過光量の平均値を算出し、該平
均透過光量の変化量を透過光量の変化量として採用する
ようにするのが好ましい。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, the speed of movement of water in the human body and the function of maintaining homeostasis are relatively slow. In addition, when the water removal amount is changed, the change depends only on the amount of blood that has exited the body, and since the change is rapid and is not affected externally, the water removal amount is changed by changing the water removal amount. By changing the amount and detecting the change in the amount of water in the blood as a change in the amount of transmitted light, the present inventors have conceived that the amount of blood recirculation can be accurately measured, and thus completed the present invention. That is, the present invention provides a light source that irradiates near-infrared light to a blood circuit on the artery side of a patient undergoing dialysis, a light amount measuring unit that measures the amount of light transmitted through the blood circuit, a control device, and the control device. When the water removal amount is changed stepwise during dialysis, a recirculation amount calculating means for calculating a blood recirculation amount from a time from a change in the water removal amount to a change in transmitted light amount and a change amount of the transmitted light amount. Is a mechanism for measuring the amount of blood recirculation of a dialysis device comprising: Here, a laser diode is suitable as the light source. In order to remove the influence of the fluctuation of the transmitted light amount caused by the blood pulsation, an average value of the transmitted light amount during one cycle of the pulse flow is calculated, and the change amount of the average transmitted light amount is adopted as the change amount of the transmitted light amount. It is preferred that

【0006】[0006]

【発明の実施の形態】次に本発明の実施例について図面
に基づいて説明する。図1は本発明に係る血液再循環量
計測機構の一実施例を示すブロック図である。図1に示
すように、本発明の血液再循環量計測機構は、動脈側の
血液回路1に近赤外光を照射する光源2と、血液回路1
を透過した光量を測定する光量測定手段(吸光度計)3
と、除水量制御装置7および、この除水量制御装置7に
より透析中に除水量をステップ状に変化させた時に、除
水量を変化させてから透過した光量が変化するまでの時
間と該透過光量の変化量から血液再循環量を算出する再
循環量算出手段(演算装置)6を含んでなる。以下、本
発明の血液再循環量計測機構について詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of a blood recirculation amount measuring mechanism according to the present invention. As shown in FIG. 1, a blood recirculation amount measuring mechanism of the present invention includes a light source 2 for irradiating near-infrared light to a blood circuit 1 on an artery side, and a blood circuit 1.
Light amount measuring means (absorbance meter) 3 for measuring the amount of light transmitted through
And the amount of transmitted light and the amount of transmitted light when the amount of water removed is changed stepwise during dialysis by the amount of transmitted water and the amount of transmitted light is changed. And a recirculation amount calculating means (arithmetic device) 6 for calculating a blood recirculation amount from the change amount of the blood flow. Hereinafter, the blood recirculation amount measuring mechanism of the present invention will be described in detail.

【0007】透析は除水量を一定にして行っている場合
が多く、従って動脈側の吸光度は徐々に増加するのが普
通である。但し、食事や体位の変化、薬液の注入等によ
り変動を生じることがあるので、患者の状態が安定した
ところで血液再循環量の測定の指示が行われる。指示が
あったら、先ず動脈側の血液回路1に光源2から近赤外
光を照射し、次いで除水量制御装置7を操作して除水ポ
ンプ5による除水量を例えば1L/分に3〜5分保ち、
続いて除水量を例えば0L/分に3〜5分保つ。すると
除水量を1L/分から0L/分に切り換えた時間を基準
にして、動脈側の吸光度が変化するまでの時間と吸光度
計3で測定された吸光度の変化量から演算装置6により
血液再循環量が算出される。この場合、除水量の値およ
び変化させる順序は変更しても構わない。
[0007] In many cases, dialysis is performed with a constant water removal amount, so that the absorbance on the artery side gradually increases. However, since a change may occur due to a change in a diet, a change in a body position, injection of a drug solution, or the like, an instruction to measure a blood recirculation amount is issued when a patient's condition is stabilized. When instructed, the blood circuit 1 on the arterial side is first irradiated with near-infrared light from the light source 2 and then the water removal amount control device 7 is operated to reduce the water removal amount by the water removal pump 5 to 3 to 5 L / min, for example. Hold for a minute,
Subsequently, the water removal amount is kept at, for example, 0 L / min for 3 to 5 minutes. Then, based on the time when the water removal rate was switched from 1 L / min to 0 L / min, the amount of blood recirculation was calculated by the arithmetic unit 6 from the time until the absorbance on the artery side changed and the change in the absorbance measured by the absorbance meter 3. Is calculated. In this case, the value of the water removal amount and the order of change may be changed.

【0008】除水量の設定を変更してから体内に戻る血
液濃度が完全に変化するまで30秒程度必要であるが、
ACRでは1分以内に動脈側に吸光度の変化が生じる。
一方、CPRでは除水量の設定を変更してから1分以上
経過してから動脈側に吸光度の変化が生じる。近赤外光
の吸光度はヘマトクリット値と略相関するので、吸光度
の変化をヘマトクリット値の変化量に換算して体重から
患者の全血液量を推定すれば、単純なプールモデルとし
て血液再循環量を計算することができる。この場合、吸
光度の変化は3〜5分程度で終了するので体細胞から血
液中に移動する水分の影響は無視して差し支えない。
尚、血液回路1に照射される光源2としては、単波長と
しては比較的ヘマトクリット値と相関の高い光を出すレ
ーザーダイオードが好ましく、波長760〜800nm
のレーザーダイオードをコリメータレンズと組み合わせ
て用いると、単波長の平行光線を比較的容易に得ること
ができる。
[0008] It takes about 30 seconds until the blood concentration returning to the body completely changes after the setting of the water removal amount is changed.
In ACR, a change in absorbance occurs on the artery side within one minute.
On the other hand, in the case of CPR, a change in absorbance occurs on the artery side after a lapse of one minute or more after changing the setting of the water removal amount. Since the absorbance of near-infrared light substantially correlates with the hematocrit value, if the change in the absorbance is converted to the change in hematocrit value and the total blood volume of the patient is estimated from the body weight, the blood recirculation volume can be calculated as a simple pool model. Can be calculated. In this case, since the change in absorbance is completed in about 3 to 5 minutes, the effect of water moving from the somatic cells into the blood can be ignored.
The light source 2 for irradiating the blood circuit 1 is preferably a laser diode that emits light having a relatively high correlation with a hematocrit value as a single wavelength, and has a wavelength of 760 to 800 nm.
When the laser diode described above is used in combination with a collimator lens, a parallel light beam having a single wavelength can be obtained relatively easily.

【0009】動脈側において血液の濃度を近赤外光の透
過量で測定する場合、血液ポンプ4による脈動により透
過量が変動するが、特にCPRによって生じる透過量の
変化はごく僅かであるため、血液ポンプ4による影響は
大きい。そこで血液ポンプ4による影響を除去するた
め、血液ポンプ4のローラーによる脈流の一周期または
複数周期、あるいは血液ポンプ4の回転周期における平
均透過光量を吸光度計3による吸光度の平均値から求
め、この平均透過光量の変化量を透過光量の変化量とし
て用いるのが好ましい。吸光度を平均する方法として
は、上記周期の期間を一定時間間隔でアナログ/デジタ
ル変換して、周期内に得られたデータを加算してデータ
数で割算すればよい。また、上記周期の期間カウントし
た値を、V/Fコンバータを用いて、周期の時間から一
定時間当りのカウント数に変換して用いる方法もある。
血液ポンプ4による脈流の周期は通常1回/秒程度であ
るため、このような平均化を行っても測定の妨げとはな
らない。
When the blood concentration is measured on the arterial side by the transmission amount of near-infrared light, the transmission amount fluctuates due to the pulsation by the blood pump 4, but the change in the transmission amount caused by CPR is very small. The effect of the blood pump 4 is large. Then, in order to remove the influence of the blood pump 4, the average transmitted light amount in one or more cycles of the pulsating flow by the rollers of the blood pump 4 or the rotation cycle of the blood pump 4 is obtained from the average value of the absorbance by the absorbance meter 3. It is preferable to use the amount of change in the average amount of transmitted light as the amount of change in the amount of transmitted light. As a method of averaging the absorbance, the period of the above cycle may be converted from analog to digital at regular time intervals, and data obtained during the cycle may be added and divided by the number of data. There is also a method in which the value counted during the period of the cycle is converted from the time of the cycle to the number of counts per fixed time using a V / F converter and used.
Since the cycle of the pulsating flow by the blood pump 4 is usually about once / second, such averaging does not hinder the measurement.

【0010】尚、再循環量を測定するタイミングは、患
者の状態を把握した上で行うのが望ましく、管理者が測
定の指示を行えるよう操作スイッチ8を設けるようにし
てもよい。また、計測結果を表示器9に表示して、AC
Rについては血液ポンプ4の流量を再循環が生じない流
量まで低下させるようにしてもよく、またCPRについ
ては透析管理の指標として利用できるようにしてもよ
い。
The timing of measuring the amount of recirculation is desirably determined after grasping the condition of the patient, and an operation switch 8 may be provided so that the administrator can instruct measurement. In addition, the measurement result is displayed on the display 9 and the AC
For R, the flow rate of the blood pump 4 may be reduced to a flow rate at which recirculation does not occur. For CPR, the flow rate may be used as an index for dialysis management.

【0011】[0011]

【発明の効果】以上説明してきたことから明らかなよう
に、本発明の血液再循環量計測機構を採用することによ
り、外的な影響を受けることがなく、血液再循環量を確
実かつ精度良く計測することができるので、透析効率の
低下による透析不足に起因するトラブルを未然に防止す
ることができる。
As is apparent from the above description, by adopting the blood recirculation amount measuring mechanism of the present invention, the blood recirculation amount can be reliably and accurately measured without being affected by external influences. Since measurement can be performed, troubles caused by insufficient dialysis due to a decrease in dialysis efficiency can be prevented beforehand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る血液再循環量計測機構の一実施例
を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a blood recirculation amount measuring mechanism according to the present invention.

【図2】透析治療中に発生するACRおよびCPRを説
明するための図である。
FIG. 2 is a diagram for explaining ACR and CPR generated during dialysis treatment.

【符号の説明】[Explanation of symbols]

1 動脈側の血液回路 2 光源 3 吸光度計(光量測定手段) 4 血液ポンプ 5 除水ポンプ 6 再循環量算出手段(演算装置) 7 制御装置 8 操作スイッチ 9 表示装置 DESCRIPTION OF SYMBOLS 1 Arterial blood circuit 2 Light source 3 Absorbance meter (light quantity measuring means) 4 Blood pump 5 Water removal pump 6 Recirculation amount calculating means (arithmetic device) 7 Control device 8 Operation switch 9 Display device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 達摩 豊弘 大阪市北区豊崎3丁目3番13号 株式会社 ニプロ内 (72)発明者 松本 洋 大阪市北区豊崎3丁目3番13号 株式会社 ニプロ内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toyohiro Tatsuma 3-3-1-13 Toyosaki, Kita-ku, Osaka-shi Inside Nipro Corporation (72) Inventor Hiroshi Matsumoto 3-3-1-3, Toyosaki, Kita-ku, Osaka Nipro Corporation Inside

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透析中の患者の動脈側の血液回路に近赤
外光を照射する光源と、前記血液回路を透過した光量を
測定する光量測定手段と、制御装置および、該制御装置
により透析中に除水量をステップ状に変化させた時に、
除水量を変化させてから透過した光量が変化するまでの
時間と該透過光量の変化量から血液再循環量を算出する
再循環量算出手段を含んでなる透析装置の血液再循環量
計測機構。
1. A light source for irradiating near-infrared light to a blood circuit on the artery side of a patient undergoing dialysis, a light amount measuring unit for measuring a light amount transmitted through the blood circuit, a control device, and a dialysis by the control device. When changing the amount of water removal in steps,
A blood recirculation amount measuring mechanism of a dialysis device, comprising a recirculation amount calculating means for calculating a blood recirculation amount from a time until a transmitted light amount changes after changing a water removal amount and a change amount of the transmitted light amount.
【請求項2】 光源がレーザーダイオードである請求項
1に記載の血液再循環量計測機構。
2. The blood recirculation amount measuring mechanism according to claim 1, wherein the light source is a laser diode.
【請求項3】 血液の脈流により生ずる透過光量の変動
による影響を除去するために、脈流の一周期間の透過光
量の平均値を算出し、該平均透過光量の変化量を透過光
量の変化量として採用するようにした請求項2または3
に記載の血液再循環量計測機構。
3. An apparatus for calculating the average value of the transmitted light amount during one cycle of the pulsating flow in order to eliminate the influence of the fluctuation of the transmitted light amount caused by the pulsating flow of blood, and calculating the change amount of the average transmitted light amount. 4. The method according to claim 2, wherein the amount is adopted.
The blood recirculation amount measuring mechanism according to 4.
JP10056587A 1998-03-09 1998-03-09 Hemorephoretic mechanism for dialyzer Pending JPH11253549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10056587A JPH11253549A (en) 1998-03-09 1998-03-09 Hemorephoretic mechanism for dialyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10056587A JPH11253549A (en) 1998-03-09 1998-03-09 Hemorephoretic mechanism for dialyzer

Publications (1)

Publication Number Publication Date
JPH11253549A true JPH11253549A (en) 1999-09-21

Family

ID=13031324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10056587A Pending JPH11253549A (en) 1998-03-09 1998-03-09 Hemorephoretic mechanism for dialyzer

Country Status (1)

Country Link
JP (1) JPH11253549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025084A1 (en) * 2007-08-22 2009-02-26 Nikkiso Company Limited Blood purifier
JP2009136704A (en) * 2009-02-09 2009-06-25 Nipro Corp Dialyzing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025084A1 (en) * 2007-08-22 2009-02-26 Nikkiso Company Limited Blood purifier
JP2009045307A (en) * 2007-08-22 2009-03-05 Nikkiso Co Ltd Blood purifying apparatus
JP4573860B2 (en) * 2007-08-22 2010-11-04 日機装株式会社 Blood purification equipment
JP2009136704A (en) * 2009-02-09 2009-06-25 Nipro Corp Dialyzing system

Similar Documents

Publication Publication Date Title
US6258027B1 (en) Method and device for calculating dialysis efficiency
JP4077034B2 (en) Automated method and apparatus for obtaining cross-compartment transfer coefficients for equilibrium samples and two-pool dynamics
US6187199B1 (en) Process and device for determining hemodialysis parameters
Petitclerc et al. A model for non-invasive estimation of in vivo dialyzer performances and patient's conductivity during hemodialysis
JP7322055B2 (en) Devices, sensors and processes for determining at least one parameter of blood circulating in an extracorporeal blood circuit
EP1396274B1 (en) Controller for a blood treatment equipment
JP2885373B2 (en) Artificial kidney
US6537240B2 (en) Method for determining the recirculation of blood in a vascular access and a system for implementing same
EP1946782B1 (en) Blood purification apparatus for computing the recirculation rate
Daugirdas et al. Automated monitoring of hemodialysis adequacy by dialysis machines: potential benefits to patients and cost savings
JP2008055180A (en) Process and device for determining pulse transition time and extracorporeal hemotherapeutic arrangement with such device
Krivitski et al. Cardiac output and central blood volume during hemodialysis: methodology
JPH06500946A (en) Dialysis method and means
US20080103427A1 (en) Blood purification device
JP4905475B2 (en) Dialysis machine
JP4225196B2 (en) Hemodialysis machine with simple control means
DE59207599D1 (en) Device and method for determining cardiac output
CN111225694B (en) Blood purification device
JP4311242B2 (en) Dialysis machine
Petitclerc et al. Optimization of sodium balance during hemodialysis by routine implementation of kinetic modeling: technical aspects and preliminary clinical study
JPH11253549A (en) Hemorephoretic mechanism for dialyzer
JP2001218837A (en) Method for determing parameter indicating progress of extracorporeal blood treatment
JP2010063644A (en) Blood purifying apparatus
JP2009247724A (en) Hemodialyzer
Visotti et al. A differential optical sensor for non-invasive real-time monitoring of ultrafiltration rate in hemofiltration therapies

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees