JPH11252789A - Protector against overvoltage - Google Patents

Protector against overvoltage

Info

Publication number
JPH11252789A
JPH11252789A JP6944298A JP6944298A JPH11252789A JP H11252789 A JPH11252789 A JP H11252789A JP 6944298 A JP6944298 A JP 6944298A JP 6944298 A JP6944298 A JP 6944298A JP H11252789 A JPH11252789 A JP H11252789A
Authority
JP
Japan
Prior art keywords
absorbing element
power supply
surge
temperature coefficient
surge absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6944298A
Other languages
Japanese (ja)
Inventor
Kuniharu Nanba
邦治 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6944298A priority Critical patent/JPH11252789A/en
Publication of JPH11252789A publication Critical patent/JPH11252789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protective circuit against overvoltage, which does not need replacement of protective circuit pats resulting from the action of protective circuit parts, by performing the protective action even in the case that the application of voltage is higher than the nominal voltage range of rating continues for a relatively long time. SOLUTION: This protector against overvoltage is installed on the power supply side of the power source receiving the power supply from the neutral line and high-potential line of a commercial power source, and this has a surge absorbing element 22 which is connected between a high potential line and a neutral line, a positive temperature coefficient thermistor 26 which is inserted in series to the high potential line on commercial power source side from a surge-absorbing element 22, and a heat-shrinkable tube 25 which properly conducts the heat generated in the surge-absorbing element 22 to the positive property thermistor 26 favorably. When an overvoltage is applied, the resistance value of the positive property temperature coefficient thermistor 26 rises through the heat generation of the surge absorbing element 22, and the current value drops from the rise in the resistance value of the positive temperature coefficient thermistor 26, and the heat generation of the surge absorbing element 22 is suppressed, and the heat generation (temperature rise) of the surge-absorbing element 22 means is limited to a point, where the heat generation of the surge-absorbing element 22 and the rise in the resistance value of the positive temperature coefficient thermistor 26 become balanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電源装置の過電圧
保護装置に関し、更に詳しくは、サージ吸収素子を利用
してサージ電流が流れた場合の温度上昇により過電圧の
保護を行う過電圧保護装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overvoltage protection device for a power supply device, and more particularly, to an overvoltage protection device that uses a surge absorbing element to protect an overvoltage by a rise in temperature when a surge current flows.

【0002】[0002]

【従来の技術】一般的に商用電源に接続される電源装置
では、その商用電源により供給される電圧に印加された
過電圧やサージ電圧等による電源装置のダメージを無く
するために、過電圧保護装置が電源装置の入力側に装着
されている。上記した過電圧とは、例えば、送電線によ
る電圧降下を考慮して、送電側では公称電圧よりも若干
高い電圧で送電を行う場合等で、送電線の末端では公称
電圧に近い電圧となるが、送電元に近い送電線から電圧
の供給を受ける場合には、公称電圧よりも高い過電圧の
供給を受けることになる。上記したサージ電圧が発生す
る場合とは、例えば、雷が送電線の近傍に落ちたことに
よる電磁誘導により送電線に瞬間的な高電圧のサージ成
分が重畳される場合である。ここで、従来の上記した過
電圧やサージ電圧に対する保護装置を図を用いて説明す
る。図4は、従来の過電圧保護装置の一例を示す図であ
り、サージ吸収素子2を電源装置3における商用電源の
入力側の線間に挿入して、更に、そのサージ吸収素子2
よりも商用電源の上流側の高電位線に直列に電流ヒュー
ズ1を挿入するようにしている。このサージ吸収素子2
としては、例えば、バリスタやアレスタ等が知られてお
り、サージ吸収素子2の定格以上の電圧が線間に供給さ
れるとこのサージ吸収素子2が短絡モードになり急激に
電流(過電流)がサージ吸収素子2を流れる。すると、
電流ヒューズ1にも定格以上の電流が流れることにな
り、電流ヒューズ1が切れて商用電源に対して下流側の
電源装置に過電圧(及び過電流)は供給されないので電
源装置の内部部品は破損から保護されることになる。こ
のサージ吸収素子2として、例えば、一般的に使用され
るバリスタの場合を説明すると、バリスタは、通常の電
圧範囲においてはほとんど電流を消費しないが、バリス
タ電圧以上の高電圧が印加されると、電圧をクランプし
てバリスタ自身で電流を消費するようになる。すると、
そのバリスタで消費される電流が電源供給側の回路に流
れることにより、電流ヒューズ1が溶断して電源装置へ
の電圧の印加(電流)が無くなり、結果的に電源装置が
保護される。
2. Description of the Related Art Generally, in a power supply device connected to a commercial power supply, an overvoltage protection device is provided to prevent damage to the power supply device due to an overvoltage or a surge voltage applied to a voltage supplied from the commercial power supply. Installed on the input side of the power supply. The above-mentioned overvoltage, for example, in consideration of the voltage drop due to the transmission line, in the case of transmitting power at a slightly higher voltage than the nominal voltage on the power transmission side, and at the end of the transmission line is a voltage close to the nominal voltage, When a voltage is supplied from a transmission line close to the transmission source, an overvoltage higher than the nominal voltage is supplied. The case where the above-described surge voltage occurs is, for example, a case where a momentary high-voltage surge component is superimposed on the transmission line due to electromagnetic induction due to lightning falling near the transmission line. Here, a conventional protection device against overvoltage and surge voltage will be described with reference to the drawings. FIG. 4 is a diagram showing an example of a conventional overvoltage protection device, in which a surge absorbing element 2 is inserted between a line on the input side of a commercial power supply in a power supply device 3 and the surge absorbing element 2 is further inserted.
The current fuse 1 is inserted in series with the high potential line on the upstream side of the commercial power supply. This surge absorbing element 2
For example, varistors and arresters are known. When a voltage higher than the rating of the surge absorbing element 2 is supplied between the lines, the surge absorbing element 2 enters a short-circuit mode, and a current (overcurrent) rapidly increases. It flows through the surge absorbing element 2. Then
The current exceeding the rated current also flows through the current fuse 1, and the current fuse 1 is blown, and the overvoltage (and overcurrent) is not supplied to the power supply on the downstream side of the commercial power supply. Will be protected. For example, a description will be given of a commonly used varistor as the surge absorbing element 2. The varistor hardly consumes current in a normal voltage range, but when a high voltage equal to or higher than the varistor voltage is applied, The varistor itself consumes current by clamping the voltage. Then
When the current consumed by the varistor flows to the circuit on the power supply side, the current fuse 1 is blown and the application of voltage (current) to the power supply device is eliminated, thereby protecting the power supply device.

【0003】図5は、従来の過電圧保護装置の図4に示
した例とは別の例を示す図であり、サージ吸収素子12
を電源装置3における商用電源の入力側の線間に挿入し
て、更に、そのサージ吸収素子12よりも商用電源の上
流側の高電位線に直列に温度ヒューズ14と電流ヒュー
ズ1を挿入し、そのサージ吸収素子12と温度ヒューズ
14については、例えば、熱的に結合するように近接配
置されたり、熱伝導が良いように両者を接触させたまま
熱収縮チューブ等で両者を固定するようにしている。図
5の場合には、サージ吸収素子12の定格以上の電圧が
線間に供給されるとこのサージ吸収素子12が短絡モー
ドになり急激に電流(過電流)がサージ吸収素子12を
流れるところまでは、図4の場合と同様であるが、この
サージ吸収素子12の短絡モードでは、電流ヒューズ1
が溶断するような定格電圧の数倍等の高電圧が印加され
た時の高電流ばかりでなく、定格電圧に対して数10%
高い電圧等の比較的低レベルの高電圧が印加された場合
にも電流が流れるようになっている。そして、その比較
的低レベルの高電圧が印加された場合には、短絡モード
の電流と電源電圧によるサージ吸収素子12の消費電力
はかなり大きいのでサージ吸収素子12発熱し、その発
熱による温度上昇で温度ヒューズ14が溶断することに
なり、比較的低レベルの高電圧が続く場合にも、商用電
源に対して下流側の電源装置にその過電圧は供給されな
いので電源装置の内部部品は破損から保護されることに
なる。この図5の場合を、図4の場合と同様にバリスタ
を用いた場合で説明すると、バリスタ電圧以上の高電圧
が印加されてバリスタで電流が消費されるようになって
も、電流ヒューズ1の電流容量がその時の電流値以上で
あることから、電流ヒューズ1が溶断しない場合におい
ても、バリスタで消費される電流(電力)によるバリス
タ(素子)の温度上昇により、温度ヒューズが溶断する
ので、電源装置が過電圧による部品の温度上昇や破損か
ら保護される。この図5の過電圧保護装置は、例えば、
上記したように送電線の送電元に近い場合や、電源事情
の良くない国のように変電所等が少なく送電元と送電末
端の距離が長い場合には、送電元の電圧が比較的高いこ
とから、比較的機能する機会が多くなる。この図5の過
電圧保護装置が図4の過電圧保護装置に対して有利な点
は、そのような公称電圧より比較的低レベルの高電圧が
長時間印加される場合等に有効である点である。そのよ
うな比較的低レベルの高電圧(過電圧)が印加される場
合には、サージ電圧のような瞬間的な(短時間の)過電
圧の印加では問題を起こさない場合でも、長時間にわた
りそのような過電圧が印加されると、電源内部の素子等
の温度が異常に上昇したり、その温度上昇により内部の
素子等が破損する場合がある。従って、そのような低レ
ベルの高電圧に対しても、この図5に示したような過電
圧保護装置を設置する必要がでてくる。
FIG. 5 is a diagram showing another example of the conventional overvoltage protection device different from the example shown in FIG.
Is inserted between the lines on the input side of the commercial power supply in the power supply device 3, and the temperature fuse 14 and the current fuse 1 are further inserted in series with the high potential line on the upstream side of the commercial power supply with respect to the surge absorbing element 12. The surge absorbing element 12 and the thermal fuse 14 are, for example, disposed close to each other so as to be thermally coupled, or are fixed by a heat-shrinkable tube or the like while the two are kept in contact so that heat conduction is good. I have. In the case of FIG. 5, when a voltage equal to or higher than the rating of the surge absorbing element 12 is supplied between the lines, the surge absorbing element 12 enters a short-circuit mode until a current (overcurrent) suddenly flows through the surge absorbing element 12. Is the same as that of FIG. 4, but in the short-circuit mode of the surge absorbing element 12, the current fuse 1
Not only a high current when a high voltage several times the rated voltage, etc., at which the fuse is blown, but also several tens of percent of the rated voltage
The current flows even when a relatively low level high voltage such as a high voltage is applied. When the relatively low level high voltage is applied, the power consumption of the surge absorbing element 12 due to the short-circuit mode current and the power supply voltage is considerably large, so that the surge absorbing element 12 generates heat. Even if the thermal fuse 14 is blown and a relatively low level of high voltage continues, the overvoltage is not supplied to the power supply unit on the downstream side of the commercial power supply, so that the internal components of the power supply unit are protected from damage. Will be. The case of FIG. 5 will be described in the case of using a varistor similarly to the case of FIG. 4. If a high voltage higher than the varistor voltage is applied and current is consumed by the varistor, the current fuse 1 Since the current capacity is equal to or greater than the current value at that time, even when the current fuse 1 does not blow, the temperature fuse of the varistor (element) is blown by the temperature rise of the varistor (element) due to the current (power) consumed by the varistor. The device is protected from overheating and damage to components due to overvoltage. The overvoltage protection device of FIG.
The voltage at the power source should be relatively high when the power source is close to the power source of the transmission line as described above, or when the distance between the power source and the power transmission terminal is long, such as in a country with poor power supply conditions, where there are few substations. Therefore, there are relatively many opportunities to function. An advantage of the overvoltage protection device of FIG. 5 over the overvoltage protection device of FIG. 4 is that it is effective when a high voltage having a relatively lower level than the nominal voltage is applied for a long time. . When such a relatively low level of high voltage (overvoltage) is applied, even if the application of an instantaneous (short-time) overvoltage such as a surge voltage does not cause a problem, such an overvoltage is applied for a long time. When an excessive overvoltage is applied, the temperature of the elements and the like inside the power supply may rise abnormally, or the internal elements and the like may be damaged by the rise in temperature. Therefore, it is necessary to install an overvoltage protection device as shown in FIG. 5 even for such a low-level high voltage.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
温度ヒューズを用いた過電圧保護回路の場合には、過電
圧が印加された場合に温度ヒューズが溶断するかサージ
吸収素子(バリスタ等)が破損するかして、電源装置の
内部回路は保護されて発煙や発火の危険は回避される
が、その後の、電源装置を復帰させる際には、温度ヒュ
ーズやバリスタ等を交換する必要があり、電源電圧は比
較的高いことからそのような交換作業には危険が伴い、
筐体の内部を露出しなければ交換できない場合も多いの
で、安全性のためにはその交換が頻繁に行われることは
好ましくない。特に、上記したような電源事情の良くな
い国等では、送電電圧が定格電圧より高い場合が多いの
で、温度ヒューズを用いた過電圧保護回路を電源装置に
設置してある場合には、頻繁にその電源装置の温度ヒュ
ーズやバリスタ等を交換する必要が出てきている。本発
明では、上記問題に鑑みて、定格の公称電圧範囲よりも
高い電圧の印加が比較的長時間続く場合に、保護回路部
品が動作したことによるその保護回路部品の交換の必要
が無い過電圧保護回路を提供することを目的とする。
However, in the case of a conventional overvoltage protection circuit using a thermal fuse, if an overvoltage is applied, the thermal fuse blows or a surge absorbing element (such as a varistor) is damaged. Then, the internal circuit of the power supply is protected and the danger of smoking or ignition is avoided, but when the power supply is restored later, it is necessary to replace the thermal fuse and varistor, etc. Because of the relatively high cost, such replacements are dangerous.
In many cases, replacement cannot be performed unless the inside of the housing is exposed, so that it is not preferable that the replacement be performed frequently for safety. In particular, in countries where power supply conditions are not favorable as described above, the transmission voltage is often higher than the rated voltage, so if an overvoltage protection circuit using a thermal fuse is installed in the power supply, the It has become necessary to replace thermal fuses, varistors, and the like of power supply devices. In view of the above problems, in the present invention, when application of a voltage higher than the rated nominal voltage range continues for a relatively long time, overvoltage protection that does not require replacement of the protection circuit component due to operation of the protection circuit component is performed. It is intended to provide a circuit.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の過電圧保護装置では、商用電源の中立線と
高電位線から電力供給を受ける電源の電力供給側に装備
される過電圧保護装置であって、前記高電位線と前記中
立線間に接続されるサージ吸収手段と、前記サージ吸収
手段より商用電源側の高電位線に直列に挿入される正特
性サーミスタ手段と、前記サージ吸収手段で発生した熱
を前記正特性サーミスタ手段に良好に伝える熱結合手段
とを有することを特徴とし、過電圧が印加された場合に
は、サージ吸収手段の発熱により正特性サーミスタの抵
抗値が上がり、その正特性サーミスタの抵抗値の上昇に
より電流値が下がってサージ吸収手段の発熱は抑圧さ
れ、最終的にサージ吸収手段の発熱と正特性サーミスタ
の抵抗値の上昇が平衡になるところまででサージ吸収手
段の発熱(温度上昇)は制限されることになる。
In order to achieve the above object, an overvoltage protection device according to the present invention comprises an overvoltage protection device provided on a power supply side of a power supply receiving power from a neutral line and a high potential line of a commercial power supply. A surge absorbing means connected between the high potential line and the neutral line; a positive temperature coefficient thermistor means inserted in series with a high potential line closer to the commercial power supply than the surge absorbing means; And a thermal coupling means that satisfactorily transmits the heat generated by the means to the positive temperature coefficient thermistor means.If an overvoltage is applied, the resistance value of the positive temperature coefficient thermistor increases due to heat generation of the surge absorbing means, As the resistance value of the positive temperature coefficient thermistor rises, the current value decreases, and the heat generation of the surge absorbing means is suppressed, and finally, the heat generation of the surge absorbing means and the rise of the resistance value of the positive temperature coefficient thermistor become flat. Heating (temperature rise) of the surge absorption means until it becomes will be limited.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態を図を
用いて説明する。図1は、本発明の一実施形態の構成を
示すブロック図である。尚、従来技術を示した図4と図
5で示した構成と同様な構成については、図1や図3に
おいても図4や図5と同じ番号を付してその説明は省略
する。図1において、電流ヒューズ1と電源3は、従来
技術の図5における電流ヒューズ及び電源3と同様であ
るので、同じ番号を付して説明は省略する。また、サー
ジ吸収素子22を電源装置3における商用電源の入力側
の線間に挿入される点も従来技術の図5におけるサージ
吸収素子12が線間に挿入される点と同様である。しか
し、そのサージ吸収素子22よりも商用電源の上流側の
高電位線に直列に挿入されるのは、温度ヒューズではな
く正特性サーミスタ26と電流ヒューズ1であり、その
サージ吸収素子22と熱的に結合するように近接配置さ
れたり、熱伝導が良いように接触させたまま熱収縮チュ
ーブ等で固定されるのは、正特性サーミスタ26であ
る。図1の場合の動作としては、サージ吸収素子22の
定格以上の電圧が線間に供給されるとこのサージ吸収素
子22が短絡モードになり、急激に電流(過電流)がサ
ージ吸収素子22を流れるようになり、このサージ吸収
素子22の短絡モードでは、電流ヒューズ1が溶断する
ような定格電圧の数倍等の高電圧が印加された時の高電
流ばかりでなく、定格電圧に対して数10%高い電圧等
の比較的低レベルの高電圧が印加された場合にも電流が
流れるようになっている。そして、その比較的低レベル
の高電圧が印加された場合には、短絡モードの電流と電
源電圧によるサージ吸収素子22の消費電力はかなり大
きいのでサージ吸収素子22が発熱するところまでは、
図5の従来技術の場合と同様である。そのサージ吸収素
子22の発熱による温度上昇で正特性サーミスタ26の
温度が上昇すると、正特性サーミスタ26では、温度が
上昇するに従ってその抵抗値が増加する素子であるの
で、入力電圧が一定で有れば、抵抗値の増加により正特
性サーミスタ26を流れる電流値は減少する。すると、
サージ吸収素子22を流れる電流値も減少するので、サ
ージ吸収素子22の消費電力が減少し、従って、サージ
吸収素子22の発熱量も減少する。その結果、正特性サ
ーミスタ26の温度上昇も抑制されるので、抵抗値の増
加も抑制され、その電流値が減少したサージ吸収素子2
2の発熱量と、サージ吸収素子22及び正特性サーミス
タ26部の放熱量が熱的に平衡(飽和均衡)したところ
で温度上昇が止まって、電源装置の内部部品は温度上昇
による破損から保護される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. 4 and 5 showing the prior art are denoted by the same reference numerals in FIGS. 1 and 3 as those in FIGS. 4 and 5, and description thereof is omitted. In FIG. 1, a current fuse 1 and a power supply 3 are the same as the current fuse and the power supply 3 in FIG. Further, the point where the surge absorbing element 22 is inserted between the lines on the input side of the commercial power supply in the power supply device 3 is the same as the point where the surge absorbing element 12 in FIG. However, it is not the thermal fuse but the positive temperature coefficient thermistor 26 and the current fuse 1 that are inserted in series with the high potential line on the upstream side of the commercial power supply with respect to the surge absorbing element 22. It is the positive temperature coefficient thermistor 26 that is arranged in close proximity so as to be connected to the above or fixed by a heat shrinkable tube or the like while being in contact with the heat conduction. In the operation in the case of FIG. 1, when a voltage higher than the rated voltage of the surge absorbing element 22 is supplied between the lines, the surge absorbing element 22 enters a short-circuit mode, and a current (overcurrent) rapidly drops the surge absorbing element 22. In the short-circuit mode of the surge absorbing element 22, not only a high current when a high voltage several times as high as the rated voltage at which the current fuse 1 is blown, but also a several Current flows even when a relatively low level high voltage such as a 10% higher voltage is applied. When the relatively low level high voltage is applied, the power consumption of the surge absorbing element 22 due to the short-circuit mode current and the power supply voltage is considerably large.
This is the same as the case of the prior art in FIG. When the temperature of the positive temperature coefficient thermistor 26 rises due to the temperature rise due to the heat generation of the surge absorbing element 22, the positive temperature coefficient thermistor 26 is an element whose resistance value increases as the temperature rises. For example, the current value flowing through the positive temperature coefficient thermistor 26 decreases due to the increase in the resistance value. Then
Since the value of the current flowing through the surge absorbing element 22 also decreases, the power consumption of the surge absorbing element 22 decreases, and accordingly, the calorific value of the surge absorbing element 22 also decreases. As a result, the temperature rise of the positive temperature coefficient thermistor 26 is also suppressed, so that the resistance value is also suppressed from increasing, and the surge absorbing element 2 whose current value is reduced is suppressed.
When the heat generation amount of No. 2 and the heat radiation amount of the surge absorbing element 22 and the positive temperature coefficient thermistor 26 are thermally balanced (saturation equilibrium), the temperature rise stops, and the internal components of the power supply device are protected from damage due to the temperature rise. .

【0007】次に、電源装置に印加される電圧が上記し
たように過電圧状態から通常状態(例えば、商用電源の
定格電圧の範囲)に戻った場合には、サージ吸収素子2
2には電流がほとんど流れなくなるので発熱しなくな
り、温度が下がる。すると、サージ吸収素子22と熱的
に結合している正特性サーミスタ26の温度も下がるの
で、正特性サーミスタ26の抵抗値は下がり、電流が流
れて電源装置は自動的に復帰することになる。上記のよ
うに、本実施形態の場合には、過電圧状態が続いても保
護され、その過電圧状態から通常状態に戻った時に、電
源装置の使用を中止して内部部品の交換等を行う必要が
無く、電源部の部品の交換による危険な処理を行う必要
が無くなる。
Next, when the voltage applied to the power supply returns from the overvoltage state to the normal state (for example, the range of the rated voltage of the commercial power supply) as described above, the surge absorbing element 2
Since almost no current flows through 2, no heat is generated, and the temperature drops. Then, the temperature of the positive temperature coefficient thermistor 26 thermally coupled to the surge absorbing element 22 also decreases, so that the resistance value of the positive temperature coefficient thermistor 26 decreases, and a current flows, so that the power supply device automatically returns. As described above, in the case of the present embodiment, the protection is performed even if the overvoltage state continues, and when the overvoltage state returns to the normal state, it is necessary to stop using the power supply and replace the internal parts. Therefore, it is not necessary to perform dangerous processing by replacing parts of the power supply unit.

【0008】図2は、図1のサージ吸収素子と正特性サ
ーミスタの熱伝導が良好であるように近接させて固定し
た状態の実施形態を示す斜視図である。図2において、
サージ吸収素子22と正特性サーミスタ26は、熱伝導
が良好であるように隣接して最も接触面積が広くなるよ
うに固定されている。固定手段としては、熱収縮チュー
ブ25をサージ吸収素子22と正特性サーミスタ26の
両者が収まるように被せて、その熱収縮チューブ25に
熱を与えて収縮させて固定したものである。この熱収縮
チューブ25の代わりに、例えば、複数の配線材をまと
めたり配線材を固定するのに用いられる結束バンドを用
いて、サージ吸収素子22と正特性サーミスタ26の両
者を結束するように固定することでも同様な降下を得る
ことができる。また、熱収縮チューブ25で固定する代
わりに、例えば、熱伝導率の良好な接着剤や樹脂等でサ
ージ吸収素子22と正特性サーミスタ26の両者を接続
固定したり、サージ吸収素子22と正特性サーミスタ2
6のリード端子等に接触しないようにしてクリップやバ
インダのような部材を用いたり、絶縁を確保してアルミ
箔等を両者に巻き付けて固定すること等でも同様な降下
を得ることができる。
FIG. 2 is a perspective view showing an embodiment in which the surge absorbing element and the positive temperature coefficient thermistor of FIG. 1 are fixed close to each other so that heat conduction is good. In FIG.
The surge absorbing element 22 and the positive temperature coefficient thermistor 26 are fixed adjacent to each other so that the heat conduction is good and the contact area is maximized. As the fixing means, the heat-shrinkable tube 25 is covered so that both the surge absorbing element 22 and the positive temperature coefficient thermistor 26 can be accommodated, and the heat-shrinkable tube 25 is shrunk by applying heat and fixed. Instead of the heat-shrinkable tube 25, for example, a binding band used to collect a plurality of wiring members or fix the wiring members is used to fix both the surge absorbing element 22 and the positive temperature coefficient thermistor 26 so as to bind them. A similar descent can be obtained. Instead of fixing with the heat shrinkable tube 25, for example, both the surge absorbing element 22 and the positive temperature coefficient thermistor 26 are connected and fixed with an adhesive or resin having good thermal conductivity, or the surge absorbing element 22 and the positive temperature coefficient thermistor 26 are connected. Thermistor 2
A similar drop can be obtained by using a member such as a clip or a binder so as not to contact the lead terminal 6 or the like, or by wrapping and fixing an aluminum foil or the like around both to secure insulation.

【0009】図3は、図1の電源を複数にした実施形態
を示すブロック図である。図3において、電流ヒューズ
1は、従来技術の図5における電流ヒューズと同様であ
るので、同じ番号を付して説明は省略する。また、図3
におけるサージ吸収素子32と正特性サーミスタ36、
及び、その両者が熱伝導が良いように接触させたまま固
定する熱収縮チューブ35については、図1の実施形態
のサージ吸収素子22と正特性サーミスタ26、及び、
熱収縮チューブ25と同様である。図3と図1の異なる
点は、図3では、電源33と43が複数であり、商用電
源側から見て過電圧保護装置の下流側にその複数の電源
が並列に設置されている点である。この図3のように設
置することで、異なる2次電圧出力等の理由から複数に
なった電源装置を、1つの過電圧保護回路によ保護する
ことができる。上記のように構成して動作させること
で、電源装置に過電圧が印加された場合には、サージ吸
収素子の発熱により正特性サーミスタの抵抗値が上が
り、その正特性サーミスタの抵抗値の上昇により電流値
が下がってサージ吸収素子の発熱は抑圧され、最終的に
サージ吸収素子の発熱と正特性サーミスタの抵抗値の上
昇が平衡になるところまででサージ吸収素子の発熱(温
度上昇)は制限されるので、定格の公称電圧範囲よりも
高い電圧の印加が比較的長時間続く場合であっても、保
護回路部品が動作して、電圧の正常電圧への復旧時にそ
の保護回路部品の交換の必要が無い過電圧保護回路を提
供することができる。
FIG. 3 is a block diagram showing an embodiment in which a plurality of power supplies are provided in FIG. In FIG. 3, the current fuse 1 is the same as the current fuse in FIG. 5 of the prior art, so the same number is assigned and the description is omitted. FIG.
, The surge absorbing element 32 and the positive temperature coefficient thermistor 36,
In addition, as for the heat-shrinkable tube 35 that is fixed while keeping both of them in good contact with each other, the surge absorbing element 22 and the positive temperature coefficient thermistor 26 of the embodiment of FIG.
It is the same as the heat-shrinkable tube 25. The difference between FIG. 3 and FIG. 1 is that in FIG. 3, a plurality of power supplies 33 and 43 are provided, and the plurality of power supplies are installed in parallel on the downstream side of the overvoltage protection device when viewed from the commercial power supply side. . By installing the power supply device as shown in FIG. 3, a plurality of power supply devices can be protected by one overvoltage protection circuit due to different secondary voltage outputs or the like. By configuring and operating as described above, when an overvoltage is applied to the power supply device, the resistance value of the positive temperature coefficient thermistor increases due to the heat generated by the surge absorbing element, and the current increases due to the increase in the resistance value of the positive temperature coefficient thermistor. As the value decreases, the heat generation of the surge absorbing element is suppressed, and the heat generation (temperature rise) of the surge absorbing element is limited until the heat generation of the surge absorbing element and the increase in the resistance value of the positive temperature coefficient thermistor are finally balanced. Therefore, even when a voltage higher than the rated nominal voltage range continues for a relatively long time, the protection circuit components operate and it is necessary to replace the protection circuit components when the voltage returns to the normal voltage. It is possible to provide a zero overvoltage protection circuit.

【0010】[0010]

【発明の効果】上記のように本発明では、過電圧が印加
された場合には、サージ吸収素子の発熱により正特性サ
ーミスタの抵抗値が上がり、その正特性サーミスタの抵
抗値の上昇により電流値が下がってサージ吸収素子の発
熱は抑圧され、最終的にサージ吸収素子の発熱と正特性
サーミスタの抵抗値の上昇が平衡になるところまででサ
ージ吸収素子の発熱(温度上昇)は制限されることで、
定格の公称電圧範囲よりも高い電圧の印加が比較的長時
間続く場合等であっても、保護回路部品が動作したこと
によってその保護回路部品の交換の必要が無い過電圧保
護回路を提供することができる。また、電源装置の使用
を中止してサービスセンター等へ持ち込んだり、部品を
取り寄せる必要が無く、保護回路部品の交換時の危険性
が無い電源装置を簡単で低コストな回路で実現すること
ができる。
As described above, according to the present invention, when an overvoltage is applied, the resistance value of the positive temperature coefficient thermistor increases due to the heat generated by the surge absorbing element, and the current value increases due to the increase in the resistance value of the positive temperature coefficient thermistor. The heat generation of the surge absorbing element is suppressed, and the heat generation (temperature rise) of the surge absorbing element is limited until the heat generation of the surge absorbing element and the increase of the resistance value of the positive temperature coefficient thermistor are finally balanced. ,
Even if the application of a voltage higher than the rated nominal voltage range continues for a relatively long time, etc., it is possible to provide an overvoltage protection circuit that does not require replacement of the protection circuit component due to the operation of the protection circuit component. it can. In addition, there is no need to stop using the power supply and bring it to a service center or the like, or to order parts, and a power supply that does not have a danger when replacing protection circuit parts can be realized with a simple and low-cost circuit. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の過電圧保護装置の一実施形態の構成を
示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of an embodiment of an overvoltage protection device according to the present invention.

【図2】図1のサージ吸収素子と正特性サーミスタの熱
伝導が良好であるように近接させて固定した状態の実施
形態を示す斜視図である。
FIG. 2 is a perspective view showing an embodiment in which the surge absorbing element and the positive temperature coefficient thermistor of FIG. 1 are fixed close to each other so that heat conduction is good.

【図3】図1の電源を複数にした一実施形態を示すブロ
ック図である。
FIG. 3 is a block diagram showing an embodiment in which a plurality of power supplies of FIG. 1 are used.

【図4】従来の過電圧保護装置の一例の構成を示すブロ
ック図である。
FIG. 4 is a block diagram showing a configuration of an example of a conventional overvoltage protection device.

【図5】従来の過電圧保護装置の図4の例とは異なる一
例の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of an example of a conventional overvoltage protection device different from the example of FIG. 4;

【符号の説明】[Explanation of symbols]

1・・・電流ヒューズ、2、12、22、32・・・サ
ージ吸収素子、3、33、43・・・電源、14・・・
温度ヒューズ、15、25、35・・・熱収縮チュー
ブ、26、36・・・正特性サーミスタ
DESCRIPTION OF SYMBOLS 1 ... Current fuse, 2, 12, 22, 32 ... Surge absorption element, 3, 33, 43 ... Power supply, 14 ...
Thermal fuse, 15, 25, 35 ... heat shrinkable tube, 26, 36 ... positive temperature coefficient thermistor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 商用電源の中立線と高電位線から電力供
給を受ける電源の電力供給側に装備される過電圧保護装
置であって、前記高電位線と前記中立線間に接続される
サージ吸収手段と、前記サージ吸収手段より商用電源側
の高電位線に直列に挿入される正特性サーミスタ手段
と、前記サージ吸収手段で発生した熱を前記正特性サー
ミスタ手段に良好に伝える熱結合手段と、を有すること
を特徴とする過電圧保護装置。
An overvoltage protection device provided on a power supply side of a power supply that receives power supply from a neutral line and a high potential line of a commercial power supply, wherein a surge absorbing device is connected between the high potential line and the neutral line. Means, a positive temperature coefficient thermistor means inserted in series from the surge absorbing means to the high potential line on the commercial power supply side, and a thermal coupling means for well transmitting heat generated by the surge absorbing means to the positive temperature coefficient thermistor means, An overvoltage protection device comprising:
【請求項2】 前記熱結合手段は、前記サージ吸収手段
と前記正特性サーミスタ手段を熱伝導が良好であるよう
に近接した状態で固定する固定手段であることを特徴と
する請求項1に記載の過電圧保護装置。
2. The thermal coupling means according to claim 1, wherein said thermal coupling means is a fixing means for fixing said surge absorbing means and said positive temperature coefficient thermistor means close to each other so that heat conduction is good. Overvoltage protection device.
【請求項3】 前記電源は、複数の独立した電源の集合
であり、前記商用電源と前記複数の独立した電源間にお
いて前記複数の各電源に共用されるように1つの前記過
電圧保護装置が接続されることを特徴とする請求項1に
記載の過電圧保護装置。
3. The power supply is a set of a plurality of independent power supplies, and one overvoltage protection device is connected between the commercial power supply and the plurality of independent power supplies so as to be shared by the plurality of power supplies. The overvoltage protection device according to claim 1, wherein:
JP6944298A 1998-03-04 1998-03-04 Protector against overvoltage Pending JPH11252789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6944298A JPH11252789A (en) 1998-03-04 1998-03-04 Protector against overvoltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6944298A JPH11252789A (en) 1998-03-04 1998-03-04 Protector against overvoltage

Publications (1)

Publication Number Publication Date
JPH11252789A true JPH11252789A (en) 1999-09-17

Family

ID=13402768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6944298A Pending JPH11252789A (en) 1998-03-04 1998-03-04 Protector against overvoltage

Country Status (1)

Country Link
JP (1) JPH11252789A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526981A (en) * 2003-06-04 2006-11-24 ベル−フューズ・インク Telecommunications circuit protection device
US20130195479A1 (en) * 2012-01-30 2013-08-01 Brother Kogyo Kabushiki Kaisha Heating device and image forming apparatus
JPWO2015133538A1 (en) * 2014-03-07 2017-04-06 Littelfuseジャパン合同会社 Protective device
DE102017010556A1 (en) * 2017-11-15 2019-05-16 Gentherm Gmbh Contactor device
DE102021122089A1 (en) 2021-08-26 2023-03-02 Audi Aktiengesellschaft Automobile engine with a power terminal protective cover and automobile with an automobile engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526981A (en) * 2003-06-04 2006-11-24 ベル−フューズ・インク Telecommunications circuit protection device
JP4708338B2 (en) * 2003-06-04 2011-06-22 ベル−フューズ・インク Telecommunications circuit protection device
US20130195479A1 (en) * 2012-01-30 2013-08-01 Brother Kogyo Kabushiki Kaisha Heating device and image forming apparatus
JP2013157202A (en) * 2012-01-30 2013-08-15 Brother Ind Ltd Heating device and image formation device
US9084294B2 (en) 2012-01-30 2015-07-14 Brother Kogyo Kabushiki Kaisha Heating device and image forming apparatus
JPWO2015133538A1 (en) * 2014-03-07 2017-04-06 Littelfuseジャパン合同会社 Protective device
EP3116013A4 (en) * 2014-03-07 2017-11-22 Littelfuse Japan G.K. Protective device
US10395877B2 (en) 2014-03-07 2019-08-27 Littelfuse, Inc. Protective device
DE102017010556A1 (en) * 2017-11-15 2019-05-16 Gentherm Gmbh Contactor device
DE102021122089A1 (en) 2021-08-26 2023-03-02 Audi Aktiengesellschaft Automobile engine with a power terminal protective cover and automobile with an automobile engine

Similar Documents

Publication Publication Date Title
US6282073B1 (en) Environmentally insensitive surge suppressor apparatus and method
US4459632A (en) Voltage-limiting circuit
KR20100134133A (en) Input protection circuit
US9768589B2 (en) Triggering circuit of the overvoltage protection
US7558032B2 (en) Protection system for medium-voltage potential transformers
US5321574A (en) Circuit breaker/surge arrestor package in which the arrestor uses an MOV that is thermally de-coupled from the breaker's thermal trip circuit
US5247273A (en) Surge absorber for protection of communication equipment connected to communication lines
JPH11252789A (en) Protector against overvoltage
AU2013101333A4 (en) Design Of The Triggering Circuit Of The Overvoltage Protection
JP5295635B2 (en) Surge protection device
JP7110404B2 (en) Multistage protective device for overcurrent and overvoltage protected transmission of electrical energy
JPH0279722A (en) Overvoltage protective circuit
US20030043519A1 (en) Over-voltage protection and disconnect circuit apparatus and method
US6992874B2 (en) Dual stage current limiting surge protector system
JP6936547B1 (en) Current breaker
US11146061B2 (en) Overvoltage protection device with thermal overload protection device
JPH11341677A (en) Protective circuit and protector
CN220527692U (en) On-board surge protection device
AU2019100388A4 (en) Protection circuit
JP4146063B2 (en) Circuit breaker for wiring
US20020196592A1 (en) Positive temperature coefficient resistivity protected power transformer
JP3092926B2 (en) Contact protection circuit
JP2004080970A (en) Protective circuit for lightning surge
KR970001863Y1 (en) Overcurrent protection device
KR100713341B1 (en) Electrical protection device for maintaining constant voltage and breaking overcurrent