JPH11252013A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JPH11252013A
JPH11252013A JP10051915A JP5191598A JPH11252013A JP H11252013 A JPH11252013 A JP H11252013A JP 10051915 A JP10051915 A JP 10051915A JP 5191598 A JP5191598 A JP 5191598A JP H11252013 A JPH11252013 A JP H11252013A
Authority
JP
Japan
Prior art keywords
optical
wavelength
signal light
intensity
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10051915A
Other languages
Japanese (ja)
Other versions
JP3523998B2 (en
Inventor
Hideki Maeda
英樹 前田
Makoto Murakami
誠 村上
Takamasa Imai
崇雅 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05191598A priority Critical patent/JP3523998B2/en
Publication of JPH11252013A publication Critical patent/JPH11252013A/en
Application granted granted Critical
Publication of JP3523998B2 publication Critical patent/JP3523998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize waveform degradation at the time of transmitting single wavelength light or wavelength multiplex signal light. SOLUTION: In an optical transmission means, signal light intensity-modulated by data signals and optical phase-modulated in synchronism with a clock frequency so as to make the optical frequency of an optical pulse first half part higher than an optical carrier frequency and to make the optical frequency of an optical pulse second half part lower than the optical carrier frequency is outputted. In the optical transmission means 10a, at the time of defining an optimum phase modulation degree for minimizing the waveform degradation when a signal light wavelength is the average zero dispersion wavelength λ0 of the entire transmission line as mopt , the phase modulation degree is set to be larger than mopt in the case that the signal light wavelength is shorter than λ0 and the phase modulation degree is set to be smaller than mopt in the case that the signal light wavelength is longer than λ0 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単一波長光または
波長多重信号光を伝送する光伝送システムに関する。特
に、単一波長光伝送での非線形効果である自己位相変調
と波長分散との複合効果による波形劣化と、光波長多重
伝送に特有な光ファイバの非線形効果(四光波混合、相
互位相変調)と波長分散との複合効果による波形劣化の
改善を図る技術に関する。
The present invention relates to an optical transmission system for transmitting single wavelength light or wavelength multiplexed signal light. In particular, waveform degradation due to the combined effect of self-phase modulation and chromatic dispersion, which are non-linear effects in single-wavelength optical transmission, and the non-linear effects of optical fibers (four-wave mixing, cross-phase modulation) unique to WDM transmission. The present invention relates to a technique for improving waveform deterioration due to a combined effect with chromatic dispersion.

【0002】[0002]

【従来の技術】光伝送系では、光ファイバの波長分散と
非線形効果の複合効果による波形劣化が問題となる。非
線形効果としては、単一波長光伝送における自己位相変
調、光波長多重伝送における四光波混合および相互位相
変調がある。
2. Description of the Related Art In an optical transmission system, there is a problem of waveform deterioration due to a combined effect of chromatic dispersion and nonlinear effect of an optical fiber. Non-linear effects include self-phase modulation in single wavelength optical transmission, four-wave mixing and cross-phase modulation in optical wavelength multiplex transmission.

【0003】自己位相変調は、光ファイバの屈折率が信
号光の強度に応じて変化することにより信号光自身に位
相変調が起こり、光パルスの立ち上がり部分の光周波数
が光キャリア周波数よりも低く、立ち下がり部分の光周
波数が高くなる現象である。四光波混合および相互位相
変調は、伝送路光ファイバ中を波長の異なる複数の信号
光が伝搬するときに、信号光間の相互作用により生じ
る。この相互作用により、それぞれの波長差に応じた信
号光成分が生成される現象が四光波混合であり、信号光
の位相変調が生じる現象が相互位相変調である。
In self-phase modulation, phase modulation occurs in the signal light itself when the refractive index of the optical fiber changes according to the intensity of the signal light, and the optical frequency at the rising portion of the optical pulse is lower than the optical carrier frequency. This is a phenomenon in which the optical frequency of the falling part increases. Four-wave mixing and cross-phase modulation are caused by the interaction between signal lights when a plurality of signal lights having different wavelengths propagate in the transmission line optical fiber. The phenomenon in which signal light components corresponding to the respective wavelength differences are generated by this interaction is four-wave mixing, and the phenomenon in which signal light undergoes phase modulation is cross-phase modulation.

【0004】このような光ファイバの非線形効果と波長
分散の複合効果による波形劣化を改善する手段として、
伝送路光ファイバの分散値を大きく設定するとともに、
一定距離ごとに伝送路光ファイバと逆の分散値をもつ分
散補償器を配置する方法が知られている(「分散マネジ
メントを用いた10Gbit/s/chWDM伝送システムの検
討」,信学技報,OCS96−57)。
As means for improving the waveform deterioration due to the combined effect of the nonlinear effect and the chromatic dispersion of such an optical fiber,
While setting the dispersion value of the transmission line optical fiber large,
A method is known in which a dispersion compensator having a dispersion value opposite to that of a transmission line optical fiber is disposed at every fixed distance ("Study of 10 Gbit / s / ch WDM transmission system using dispersion management", IEICE Technical Report, OCS 96-57).

【0005】また、相互位相変調を抑圧するには、信号
形式をRZ(Return-to-Zero)強度変調信号とする方法が
知られている。例えば、文献(「長距離光増幅中継伝送
系における信号波形最適化」,信学技報,OCS97−4
4)には、RZ強度変調信号のパルス占有率を変化さ
せ、相互位相変調による波形劣化を数値解析した例が示
されている。
In order to suppress cross-phase modulation, a method is known in which the signal format is an RZ (Return-to-Zero) intensity modulation signal. For example, see the literature (“Optimization of signal waveform in long-distance optical amplification relay transmission system”, IEICE Technical Report, OCS97-4
4) shows an example in which the pulse occupancy of the RZ intensity modulation signal is changed and the waveform deterioration due to the cross phase modulation is numerically analyzed.

【0006】[0006]

【発明が解決しようとする課題】従来は、分散補償間隔
および信号波形のパルス占有率を最適化し、波形劣化を
改善することが行われていたが、長距離伝送になると自
己位相変調および相互位相変調の影響が大きくなり、波
形劣化の改善に限界があった。また、短距離伝送におい
ても、信号光波長が伝送路全体の平均零分散波長と異な
る場合は、分散スロープにより生じる累積分散が大きく
なり、波形劣化が生じる。
Conventionally, the dispersion compensation interval and the pulse occupancy of the signal waveform have been optimized to improve the waveform deterioration. However, in long-distance transmission, self-phase modulation and cross-phase modulation have been performed. The influence of modulation became large, and there was a limit to the improvement of waveform deterioration. Also, in the short-distance transmission, when the signal light wavelength is different from the average zero dispersion wavelength of the entire transmission path, the accumulated dispersion caused by the dispersion slope becomes large, and the waveform is deteriorated.

【0007】本発明は、単一波長光または波長多重信号
光を伝送する際に、波形劣化を最小限に抑えることがで
きる光伝送システムを提供することを目的とする。
An object of the present invention is to provide an optical transmission system capable of minimizing waveform deterioration when transmitting single-wavelength light or wavelength-multiplexed signal light.

【0008】[0008]

【課題を解決するための手段】本発明の光伝送システム
は、光送信手段において、データ信号により強度変調
し、かつ光パルス前半部の光周波数が光キャリア周波数
よりも高く、光パルス後半部の光周波数が光キャリア周
波数よりも低くなるようにクロック周波数に同期して光
位相変調した信号光を出力することを特徴とする(請求
項1)。
According to an optical transmission system of the present invention, in an optical transmitting means, intensity modulation is performed by a data signal, an optical frequency of a first half of an optical pulse is higher than an optical carrier frequency, and an optical frequency of a second half of the optical pulse is increased. A signal light that is optically phase-modulated in synchronization with a clock frequency so that an optical frequency is lower than an optical carrier frequency is output (claim 1).

【0009】また、そのための光送信手段は、例えば強
度変調器、位相変調器、クロック信号源、位相器を含む
構成とする(請求項2)。強度変調器は、データ信号に
より強度変調した信号光を生成する。位相変調器は、こ
の強度変調信号光を位相変調する。位相器は、強度変調
信号光の光パルス前半部の光周波数が光キャリア周波数
よりも高く、光パルス後半部の光周波数が光キャリア周
波数よりも低くなるように、強度変調器における強度変
調と位相変調器における位相変調との間の相対位相差
(以下「強度−位相変調間の相対位相差」という)を調
整する。クロック信号源は、強度変調器および位相変調
器を同期して動作させるクロック信号を供給する。
The optical transmission means for that purpose includes, for example, an intensity modulator, a phase modulator, a clock signal source, and a phase shifter. The intensity modulator generates a signal light intensity-modulated by the data signal. The phase modulator phase-modulates the intensity-modulated signal light. The phase shifter controls the intensity modulation and phase in the intensity modulator so that the optical frequency of the first half of the optical pulse of the intensity modulated signal light is higher than the optical carrier frequency and the optical frequency of the second half of the optical pulse is lower than the optical carrier frequency. A relative phase difference between the modulator and the phase modulation (hereinafter, referred to as “relative phase difference between the intensity and the phase modulation”) is adjusted. The clock signal source supplies a clock signal for operating the intensity modulator and the phase modulator in synchronization.

【0010】また、光送信手段では、信号光波長が伝送
路全体の平均零分散波長λ0 であるときに波形劣化が最
小となる最適な位相変調度をmopt とすると、信号光波
長がλ0 より短波長の場合には位相変調度をmopt より
も大きく設定し、信号光波長がλ0 より長波長の場合に
は位相変調度をmopt よりも小さく設定することを特徴
とする(請求項3)。
In the optical transmission means, if the optimum phase modulation degree at which the waveform deterioration is minimized when the signal light wavelength is the average zero dispersion wavelength λ 0 of the entire transmission line is m opt , the signal light wavelength becomes λ When the wavelength is shorter than 0 , the phase modulation degree is set to be larger than m opt , and when the signal light wavelength is longer than λ 0 , the phase modulation degree is set to be smaller than m opt ( Claim 3).

【0011】また、上記の光伝送システムの構成は、波
長多重信号光を伝送するシステムにも適用することがで
きる。すなわち、光送信手段は、互いに波長が異なる複
数の強度変調信号光を出力する手段と、各強度変調信号
光に対してそれぞれ所定の位相変調度で光位相変調を行
い、光位相変調された各強度変調信号光を波長多重して
送信する手段とを備える。光受信手段は、波長多重信号
光を各波長の強度変調信号光に分波し、各波長の強度変
調信号光をそれぞれ分散補償して受信する手段を備える
(請求項4)。
Further, the configuration of the optical transmission system described above can be applied to a system for transmitting a wavelength multiplexed signal light. That is, the optical transmission unit outputs a plurality of intensity-modulated signal lights having different wavelengths from each other, and performs optical phase modulation on each of the intensity-modulated signal lights at a predetermined phase modulation degree. Means for wavelength-multiplexing and transmitting the intensity-modulated signal light. The optical receiving means includes means for splitting the wavelength multiplexed signal light into intensity-modulated signal light of each wavelength, and receiving the intensity-modulated signal light of each wavelength with dispersion compensation (claim 4).

【0012】また、伝送路光ファイバとして正分散(異
常分散)のものを用いると、信号光のパルス幅およびス
ペクトル幅が広がり、波形劣化の原因となって伝送距離
が制限される。このため、本発明の光伝送システムで
は、伝送路光ファイバとして平均波長分散値が負分散の
ものを用い、この伝送路光ファイバの所定の位置に、こ
の伝送路光ファイバの波長分散を補償する分散補償手段
を挿入する(請求項5)。なお、平均波長分散値が−1
ps/nm/km以下とすることにより、四光波混合による波形
劣化を改善することができる。分散補償手段としては、
例えば分散補償光ファイバまたは光ファイバグレーティ
ングを用いることができる。
Further, if a transmission line optical fiber having a normal dispersion (anomalous dispersion) is used, the pulse width and the spectrum width of the signal light are widened, and the transmission distance is restricted due to waveform deterioration. For this reason, in the optical transmission system of the present invention, a transmission line optical fiber having an average chromatic dispersion value of negative dispersion is used, and the chromatic dispersion of the transmission line optical fiber is compensated at a predetermined position of the transmission line optical fiber. Dispersion compensating means is inserted (claim 5). The average chromatic dispersion value is -1.
By setting the ratio to ps / nm / km or less, waveform deterioration due to four-wave mixing can be improved. As dispersion compensation means,
For example, a dispersion compensating optical fiber or an optical fiber grating can be used.

【0013】また、伝送路光ファイバの所定の位置に信
号光を増幅する光増幅器を挿入してもよい(請求項
6)。
Further, an optical amplifier for amplifying the signal light may be inserted at a predetermined position of the transmission line optical fiber.

【0014】[0014]

【発明の実施の形態】(第1の実施形態)図1は、本発
明の光伝送システムの第1の実施形態を示す。
(First Embodiment) FIG. 1 shows a first embodiment of the optical transmission system of the present invention.

【0015】ここに示すシステムは、光送信器10a
と、光伝送路20と、光受信器30aとにより構成され
る。光送信器10aでは、光源11から出力される波長
λのCW光(連続光)が、強度変調器12でランダムデ
ータ発信器14から出力される10Gbit/s NRZ(Non-
Return-to-Zero) ランダムパルス信号を用いて強度変調
され、さらに位相変調器13で位相変調される。ここ
で、強度変調器12および位相変調器14は、クロック
信号源15から出力される10GHzクロック信号に同期し
て動作し、強度−位相変調間の相対位相差は位相器16
で調整される。
The system shown here is an optical transmitter 10a
, An optical transmission line 20, and an optical receiver 30a. In the optical transmitter 10a, the CW light (continuous light) having the wavelength λ output from the light source 11 is converted into a 10 Gbit / s NRZ (Non-
(Return-to-Zero) The intensity is modulated using the random pulse signal, and further the phase is modulated by the phase modulator 13. Here, the intensity modulator 12 and the phase modulator 14 operate in synchronization with the 10 GHz clock signal output from the clock signal source 15, and the relative phase difference between the intensity-phase modulation is
It is adjusted by.

【0016】なお、実際の光伝送システムでは、CW光
を強度変調するデータ信号は外部から入力される音声や
映像の情報を含むディジタル信号である。本実施形態
は、このデータ信号の代わりに様々な信号パターンを模
擬できるランダムパルス信号を実験的に使用した構成に
なっている。
In an actual optical transmission system, a data signal for intensity-modulating CW light is a digital signal containing audio and video information input from the outside. In this embodiment, a random pulse signal capable of simulating various signal patterns is experimentally used instead of the data signal.

【0017】光伝送路20は、信号光を伝送する伝送路
光ファイバ21と、この伝送路光ファイバ21で伝送さ
れる信号光を増幅する光増幅器22と、この伝送路光フ
ァイバ21に挿入して伝送路光ファイバ21の波長分散
を補償する分散補償媒質23とにより構成される。分散
補償媒質23としては、例えば分散補償光ファイバまた
は光ファイバグレーティングを用いる。
The optical transmission line 20 includes a transmission line optical fiber 21 for transmitting the signal light, an optical amplifier 22 for amplifying the signal light transmitted by the transmission line optical fiber 21, and an optical amplifier 22 inserted into the transmission line optical fiber 21. And a dispersion compensating medium 23 for compensating the chromatic dispersion of the transmission line optical fiber 21. As the dispersion compensating medium 23, for example, a dispersion compensating optical fiber or an optical fiber grating is used.

【0018】図2は、単一波長伝送時において、強度−
位相変調間の相対位相差Ψに対する位相変調器13の位
相変調度mとアイ開口劣化との関係を数値解析した結果
を示す。各パラメータは、伝送路光ファイバ21の平均
波長分散値−1ps/nm/km、分散補償間隔 500km、光ファ
イバ損失0.21dB/km 、光増幅器中継間隔50km、受信光フ
ィルタの帯域1nmとした。また、信号光波長を伝送路
全体の平均零分散波長λ0(1558nm) 、光増幅器出力−3
dB/ch 、伝送距離6000kmとして評価を行った。
FIG. 2 shows the intensity-
The result of numerical analysis of the relationship between the phase modulation degree m of the phase modulator 13 and the eye opening deterioration with respect to the relative phase difference 間 の between the phase modulations is shown. The parameters were an average chromatic dispersion value of the transmission line optical fiber 21, -1 ps / nm / km, a dispersion compensation interval of 500 km, an optical fiber loss of 0.21 dB / km, an optical amplifier relay interval of 50 km, and a receiving optical filter band of 1 nm. Further, the signal light wavelength is set to the average zero dispersion wavelength λ 0 (1558 nm) of the entire transmission line, the optical amplifier output −3.
The evaluation was performed with dB / ch and a transmission distance of 6000 km.

【0019】ここで、アイ開口劣化は、図3(a) に示す
送信信号(ランダム信号)のアイパターンのアイ開口a
と、図3(b) の受信信号のアイパターンのアイ開口bと
の比(−20log(b/a)) として定義される。
Here, the eye opening deterioration is caused by the eye opening a of the eye pattern of the transmission signal (random signal) shown in FIG.
And the ratio (−20 log (b / a)) of the received signal of FIG. 3B to the eye opening b of the received signal.

【0020】強度−位相変調間の相対位相差Ψは、図4
(a) に示すように、強度変調信号光の光パルス前半部の
光周波数が光キャリア周波数よりも高く、光パルス後半
部の光周波数が光キャリア周波数よりも低くなるときに
0rad と定義する。図4(b)はΨ=π/2、図4(c) は
Ψ=π、図4(d) はΨ=3π/2の場合である。
The relative phase difference 間 の between the intensity-phase modulation is shown in FIG.
As shown in (a), when the optical frequency of the first half of the optical pulse of the intensity-modulated signal light is higher than the optical carrier frequency and the optical frequency of the second half of the optical pulse is lower than the optical carrier frequency, it is defined as 0 rad. 4 (b) shows the case where Ψ = π / 2, FIG. 4 (c) shows the case where Ψ = π, and FIG. 4 (d) shows the case where / = 3π / 2.

【0021】図2に示すように、アイ開口劣化が小さい
最適な相対位相差Ψは、位相変調度mにかかわらず0ra
d であった。これは、相対位相差Ψ=0において、位相
変調と伝送路光ファイバの波長分散によるパルス圧縮の
効果により、アイ開口が最大となるためである。また、
位相変調度m=π/4のときにアイ開口劣化が最小とな
るので、最適位相変調度mopt はπ/4である。なお、
位相変調度mは、クロック信号源15の振幅によって設
定される。
As shown in FIG. 2, the optimum relative phase difference が with small eye opening deterioration is 0ra regardless of the phase modulation degree m.
d. This is because when the relative phase difference Ψ = 0, the eye opening is maximized due to the effects of phase modulation and pulse compression due to chromatic dispersion of the transmission line optical fiber. Also,
When the phase modulation degree m = π / 4, the eye opening degradation is minimized, so the optimal phase modulation degree m opt is π / 4. In addition,
The phase modulation degree m is set by the amplitude of the clock signal source 15.

【0022】図5は、相対位相差Ψ=0において、位相
変調度mに対する信号光波長とアイ開口劣化との関係を
数値解析した結果を示す。なお、信号光波長は伝送路全
体の平均零分散波長λ0 からのずれ(λ−λ0 )で表
す。また、受信信号は、受信光フィルタ通過後、分散ス
ロープ(0.07ps/nm2/km)により生じる各信号光波長に対
する累積分散を補償した。
FIG. 5 shows the results of numerical analysis of the relationship between the signal light wavelength and the eye opening deterioration with respect to the phase modulation degree m when the relative phase difference Ψ = 0. Note that the signal light wavelength is represented by a deviation (λ−λ 0 ) from the average zero dispersion wavelength λ 0 of the entire transmission line. After passing through the reception optical filter, the received signal compensated for the accumulated dispersion for each signal light wavelength caused by the dispersion slope (0.07 ps / nm 2 / km).

【0023】各信号光波長におけるアイ開口劣化は、位
相変調度mに大きく依存することがわかる。信号光波長
λがλ0 より短波長の場合には、図2からわかる最適位
相変調度mopt =π/4よりも大きくしたとき(m=
π)に顕著な改善効果が得られた。これは、伝送路の負
の累積分散によりアイ開口劣化が起こるため、λ0 での
伝送時よりも過剰な位相変調を行うことにより、パルス
圧縮が一層効果的に起こり、波形劣化を改善できるため
である。
It can be seen that the eye opening deterioration at each signal light wavelength greatly depends on the phase modulation degree m. When the signal light wavelength λ is shorter than λ 0 , when the optimum phase modulation degree m opt = π / 4, which is understood from FIG.
π) has a remarkable improvement effect. This is because the eye opening deterioration occurs due to the negative cumulative dispersion of the transmission path, and the pulse compression occurs more effectively by performing excessive phase modulation than at the time of transmission at λ 0 , and the waveform deterioration can be improved. It is.

【0024】逆に、信号光波長λがλ0 より長波長の場
合には、最適位相変調度mopt =π/4よりも小さくし
たとき(m=π/8)に広い波長領域において改善効果
が得られた。これは、伝送路の正の累積分散によるパル
ス圧縮が生じるため、位相変調度を小さくしてもアイ開
口劣化の改善が得られるためである。
Conversely, when the signal light wavelength λ is longer than λ 0 , the improvement effect is obtained in a wide wavelength region when the optimum phase modulation degree m opt = π / 4 (m = π / 8). was gotten. This is because pulse compression due to the positive cumulative dispersion of the transmission line occurs, and thus even if the degree of phase modulation is reduced, deterioration of the eye opening can be obtained.

【0025】(第2の実施形態)図6は、本発明の光伝
送システムの第2の実施形態を示す。光波長多重送信端
局10bは、光源11a〜11dと、強度変調器12a
〜12dと、位相変調器13a,13bと、合波器17
a〜17cにより構成される。なお、図1に示すランダ
ムデータ発信器14、クロック信号源15、位相器16
は省略されている。
(Second Embodiment) FIG. 6 shows a second embodiment of the optical transmission system of the present invention. The optical wavelength multiplexing transmission terminal 10b includes light sources 11a to 11d and an intensity modulator 12a.
To 12d, phase modulators 13a and 13b,
a to 17c. The random data transmitter 14, clock signal source 15, and phase shifter 16 shown in FIG.
Has been omitted.

【0026】光源11a〜11dは、波長λ1 ,λ2
λ3 ,λ4 のCW光を出力する。各波長は、伝送路全体
の平均零分散波長λ0 を中心に等間隔(波長間隔1n
m)に配置される。ここで、λ1 ,λ2 はλ0 より短波
長、λ3 ,λ4 はλ0 より長波長とする。各波長のCW
光は、強度変調器12a〜12dで10Gbit/s NRZラ
ンダムパルス信号を用いて強度変調される。波長λ1
λ2 の強度変調信号光は合波器17aで合波され、位相
変調器13aで最適位相変調度mopt =π/4よりも大
きいπで位相変調される。波長λ3 ,λ4 の強度変調信
号光は合波器17bで合波され、位相変調器13bで最
適位相変調度mopt =π/4よりも小さいπ/8で位相
変調される。各位相変調器で位相変調された強度変調信
号光は、合波器17cで合波器される。
The light sources 11a to 11d have wavelengths λ 1 , λ 2 ,
The CW light of λ 3 and λ 4 is output. Each wavelength is equally spaced around the average zero dispersion wavelength λ 0 of the entire transmission line (wavelength interval 1n
m). Here, λ 1 and λ 2 have shorter wavelengths than λ 0 , and λ 3 and λ 4 have longer wavelengths than λ 0 . CW of each wavelength
The light is intensity-modulated by the intensity modulators 12a to 12d using a 10 Gbit / s NRZ random pulse signal. Wavelength λ 1 ,
The intensity-modulated signal light of λ 2 is multiplexed by the multiplexer 17a, and phase-modulated by the phase modulator 13a at π larger than the optimum phase modulation degree m opt = π / 4. The intensity-modulated signal lights of the wavelengths λ 3 and λ 4 are multiplexed by the multiplexer 17b, and phase-modulated by the phase modulator 13b at π / 8 smaller than the optimum phase modulation degree m opt = π / 4. The intensity-modulated signal light phase-modulated by each phase modulator is multiplexed by the multiplexer 17c.

【0027】なお、強度変調器12a〜12dおよび位
相変調器13a,13bは、図1と同様に10GHzクロッ
ク信号に同期して動作し、強度−位相変調間の相対位相
差Ψは0rad とした。
The intensity modulators 12a to 12d and the phase modulators 13a and 13b operate in synchronization with the 10 GHz clock signal as in FIG. 1, and the relative phase difference 強度 between the intensity-phase modulation is 0 rad.

【0028】光伝送路20は、波長多重信号光を伝送す
る伝送路光ファイバ21と、この波長多重信号光を増幅
する光増幅器22と、この伝送路光ファイバ21に一定
間隔で挿入して伝送路光ファイバ21の波長分散を補償
する分散補償媒質23とにより構成される。
The optical transmission line 20 includes a transmission line optical fiber 21 for transmitting a wavelength multiplexed signal light, an optical amplifier 22 for amplifying the wavelength multiplexed signal light, and a transmission line optical fiber 21 inserted into the transmission line optical fiber 21 at regular intervals. And a dispersion compensating medium 23 for compensating the chromatic dispersion of the optical path fiber 21.

【0029】光波長多重受信端局30bは、伝送された
波長多重信号光を各波長の信号光に分波する分波器31
と、各波長の信号光をそれぞれ分散補償する分散補償媒
質32a〜32dと、分散補償された各波長の信号光を
受信する光受信器33a〜33dとにより構成される。
The optical wavelength division multiplex receiving terminal 30b is a demultiplexer 31 for demultiplexing the transmitted wavelength division multiplex signal light into signal light of each wavelength.
And dispersion compensating media 32a to 32d for dispersion-compensating the signal light of each wavelength, and optical receivers 33a to 33d for receiving the dispersion-compensated signal light of each wavelength.

【0030】図7は、4波多重(波長間隔1nm)伝送
時において、位相変調度mに対する信号光波長とアイ開
口劣化との関係を数値解析した結果を示す。各種パラメ
ータは、第1の実施形態と同様である。■はλ0 よりも
短波長の2波長を位相変調度πで位相変調し、λ0 より
も長波長の2波長を位相変調度π/8で位相変調した場
合であり、○はm=π、△はm=π/8に固定した場合
である。この結果、四光波混合および相互位相変調が懸
念される光波長多重伝送においても、本光伝送システム
は、各チャネル同一の位相変調度で位相変調を行う場合
よりも、アイ開口劣化を 1.5dB以上改善することがで
き、単一波長伝送時とほぼ同様のアイ開口改善効果が得
られた。
FIG. 7 shows the result of numerical analysis of the relationship between the signal light wavelength and the eye opening deterioration with respect to the phase modulation m during four-wave multiplex (wavelength interval 1 nm) transmission. Various parameters are the same as in the first embodiment. (2) shows a case where two wavelengths shorter than λ 0 are phase-modulated with a phase modulation factor π, and two wavelengths longer than λ 0 are phase-modulated with a phase modulation factor π / 8. , △ are the cases where m = π / 8 is fixed. As a result, even in optical wavelength multiplexing transmission where there is concern about four-wave mixing and cross-phase modulation, the present optical transmission system reduces eye opening deterioration by 1.5 dB or more compared to the case where phase modulation is performed at the same phase modulation factor for each channel. Thus, an eye opening improvement effect almost similar to that at the time of single wavelength transmission was obtained.

【0031】図8は、8波多重(波長間隔1nm)伝送
時において、位相変調度mに対する信号光波長とアイ開
口劣化との関係を数値解析した結果を示す。各種パラメ
ータは、第1の実施形態と同様である。■はλ0 よりも
短波長の4波長を位相変調度πで位相変調し、λ0 より
も長波長の4波長を位相変調度π/8で位相変調した場
合であり、○はm=π、△はm=π/8に固定した場合
である。この結果、同様に各チャネル同一の位相変調度
で位相変調を行う場合よりも、 0.5dB以上のアイ開口
改善効果が確認できた。
FIG. 8 shows the results of numerical analysis of the relationship between the signal light wavelength and the eye opening deterioration with respect to the phase modulation m during eight-wave multiplex (wavelength interval 1 nm) transmission. Various parameters are the same as in the first embodiment. (2) shows a case where four wavelengths shorter than λ 0 are phase-modulated with a phase modulation factor of π, and four wavelengths longer than λ 0 are phase-modulated with a phase modulation factor of π / 8. , △ are the cases where m = π / 8 is fixed. As a result, an eye opening improvement effect of 0.5 dB or more was confirmed as compared with the case where the phase modulation was performed at the same phase modulation degree for each channel.

【0032】以上説明した実施形態では、データ信号が
NRZ信号の条件で説明したが、送信信号のパルス占有
率が変化しても、光パルス前半部の光周波数が光キャリ
ア周波数よりも高く、光パルス後半部の光周波数が光キ
ャリア周波数よりも低くなるように強度−位相変調間の
相対位相差(Ψ=0)を設定し、光位相変調を行えば同
様の効果を得ることができる。
In the above-described embodiment, the description has been made on the condition that the data signal is the NRZ signal. However, even if the pulse occupancy of the transmission signal changes, the optical frequency of the first half of the optical pulse is higher than the optical carrier frequency, and The same effect can be obtained by setting the relative phase difference between intensity and phase modulation (Ψ = 0) so that the optical frequency of the latter half of the pulse is lower than the optical carrier frequency, and performing optical phase modulation.

【0033】[0033]

【発明の効果】以上説明したように、本発明の光伝送シ
ステムは、光パルス前半部の光周波数が光キャリア周波
数よりも高く、光パルス後半部の光周波数が光キャリア
周波数よりも低くなるように光位相変調を行うことによ
り、波形劣化を改善することができる。
As described above, in the optical transmission system of the present invention, the optical frequency of the first half of the optical pulse is higher than the optical carrier frequency, and the optical frequency of the second half of the optical pulse is lower than the optical carrier frequency. By performing optical phase modulation on the waveform, waveform deterioration can be improved.

【0034】また、信号光波長が伝送路全体の平均零分
散波長λ0 より短波長の場合には位相変調度を平均零分
散波長伝送時の最適位相変調度mopt (=π/4)より
も大きく設定し、長波長の場合には小さく設定すること
により、波形劣化を改善することができる。
When the wavelength of the signal light is shorter than the average zero dispersion wavelength λ 0 of the entire transmission line, the phase modulation degree is determined by the optimum phase modulation degree m opt (= π / 4) at the time of transmission of the average zero dispersion wavelength. Is set to be large, and in the case of a long wavelength, it is set to be small, so that waveform deterioration can be improved.

【0035】また、本光伝送システムは、各信号光波長
が伝送路全体の平均零分散波長と異なる光波長多重伝送
において、波形劣化改善効果が大きい。
The present optical transmission system has a great effect of improving waveform deterioration in optical wavelength multiplex transmission in which each signal light wavelength is different from the average zero dispersion wavelength of the entire transmission line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光伝送システムの第1の実施形態を示
すブロック図。
FIG. 1 is a block diagram showing a first embodiment of an optical transmission system according to the present invention.

【図2】単一波長伝送におけるアイ開口劣化の位相変調
度依存性を示す図。
FIG. 2 is a diagram illustrating phase modulation degree dependency of eye opening deterioration in single wavelength transmission.

【図3】アイ開口劣化の定義を説明する図。FIG. 3 is a diagram illustrating the definition of eye opening deterioration.

【図4】強度−位相変調間の相対位相差Ψの定義を説明
する図。
FIG. 4 is a view for explaining the definition of a relative phase difference 間 の between intensity-phase modulation.

【図5】単一波長伝送におけるアイ開口劣化の信号光波
長依存性を示す図。
FIG. 5 is a diagram illustrating signal light wavelength dependence of eye opening deterioration in single wavelength transmission.

【図6】本発明の光伝送システムの第2の実施形態を示
すブロック図。
FIG. 6 is a block diagram showing a second embodiment of the optical transmission system of the present invention.

【図7】4波多重伝送におけるアイ開口劣化の信号光波
長依存性を示す図。
FIG. 7 is a diagram illustrating signal light wavelength dependence of eye opening deterioration in four-wave multiplex transmission.

【図8】8波多重伝送におけるアイ開口劣化の信号光波
長依存性を示す図。
FIG. 8 is a diagram showing signal light wavelength dependence of eye opening deterioration in eight-wave multiplex transmission.

【符号の説明】[Explanation of symbols]

10a 光送信器 10b 光波長多重送信端局 11,11a〜11d 光源 12,12a〜12d 強度変調器 13,13a〜13d 位相変調器 14 ランダムデータ発信器 15 クロック信号源 16 位相器 17a〜17c 合波器 20 光伝送路 21 伝送路光ファイバ 22 光増幅器 23 分散補償媒質 30a,33a〜33d 光受信器 30b 光波長多重受信端局 31 分波器 32,32a〜32d 分散補償媒質 Reference Signs List 10a Optical transmitter 10b Optical wavelength division multiplexing transmitting terminal station 11, 11a-11d Light source 12, 12a-12d Intensity modulator 13, 13a-13d Phase modulator 14 Random data transmitter 15 Clock signal source 16 Phaser 17a-17c Device 20 Optical transmission line 21 Transmission line optical fiber 22 Optical amplifier 23 Dispersion compensating medium 30a, 33a to 33d Optical receiver 30b Optical wavelength division multiplex receiving terminal 31 Demultiplexer 32, 32a to 32d Dispersion compensating medium

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04J 14/02 H04B 10/02 10/18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H04J 14/02 H04B 10/02 10/18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光送信手段から出力される信号光を伝送
路光ファイバを介して光受信手段に伝送する光伝送シス
テムにおいて、 前記光送信手段は、データ信号により強度変調し、かつ
光パルス前半部の光周波数が光キャリア周波数よりも高
く、光パルス後半部の光周波数が光キャリア周波数より
も低くなるようにクロック周波数に同期して光位相変調
した信号光を出力する構成であることを特徴とする光伝
送システム。
1. An optical transmission system for transmitting a signal light output from an optical transmitting means to an optical receiving means via a transmission line optical fiber, wherein the optical transmitting means modulates the intensity by a data signal and outputs the first half of an optical pulse. The optical frequency of the optical pulse is higher than the optical carrier frequency, and the optical phase modulated signal light is output in synchronization with the clock frequency so that the optical frequency of the latter half of the optical pulse is lower than the optical carrier frequency. Optical transmission system.
【請求項2】 光送信手段は、データ信号により強度変
調した信号光を生成する強度変調器と、この強度変調信
号光を位相変調する位相変調器と、前記強度変調信号光
の光パルス前半部の光周波数が光キャリア周波数よりも
高く、光パルス後半部の光周波数が光キャリア周波数よ
りも低くなるように、前記強度変調器における強度変調
と前記位相変調器における位相変調との間の相対位相差
を調整する位相器と、前記強度変調器および前記位相変
調器を同期して動作させるクロック信号を供給するクロ
ック信号源とを備えたことを特徴とする請求項1に記載
の光伝送システム。
2. An optical transmitter, comprising: an intensity modulator for generating signal light intensity-modulated by a data signal; a phase modulator for phase-modulating the intensity-modulated signal light; and a first half of an optical pulse of the intensity-modulated signal light. The relative position between the intensity modulation in the intensity modulator and the phase modulation in the phase modulator so that the optical frequency of the optical modulator is higher than the optical carrier frequency and the optical frequency of the latter half of the optical pulse is lower than the optical carrier frequency. The optical transmission system according to claim 1, further comprising: a phase shifter that adjusts a phase difference; and a clock signal source that supplies a clock signal for operating the intensity modulator and the phase modulator in synchronization.
【請求項3】 信号光波長が伝送路全体の平均零分散波
長λ0 であるときに波形劣化が最小となる最適な位相変
調度をmopt とすると、信号光波長がλ0 より短波長の
場合には位相変調度をmopt よりも大きく設定し、信号
光波長がλ0より長波長の場合には位相変調度をmopt
よりも小さく設定することを特徴とする請求項1または
請求項2に記載の光伝送システム。
3. When the optimal phase modulation degree that minimizes waveform degradation when the signal light wavelength is the average zero dispersion wavelength λ 0 of the entire transmission line is m opt , the signal light wavelength is shorter than λ 0 . In this case, the phase modulation degree is set to be larger than m opt , and when the signal light wavelength is longer than λ 0 , the phase modulation degree is set to m opt
The optical transmission system according to claim 1, wherein the optical transmission system is set to be smaller than the optical transmission system.
【請求項4】 光送信手段は、互いに波長が異なる複数
の強度変調信号光を出力する手段と、各強度変調信号光
に対してそれぞれ所定の位相変調度で光位相変調を行
い、光位相変調された各強度変調信号光を波長多重して
送信する手段とを備え、 光受信手段は、波長多重信号光を各波長の強度変調信号
光に分波し、各波長の強度変調信号光をそれぞれ分散補
償して受信する手段を備えたことを特徴とする請求項1
〜3のいずれかに記載の光伝送システム。
4. An optical transmission means comprising: means for outputting a plurality of intensity-modulated signal lights having different wavelengths; and optical phase modulation for each of the intensity-modulated signal lights at a predetermined phase modulation factor. Means for wavelength-multiplexing and transmitting each of the intensity-modulated signal lights obtained, wherein the optical receiving means demultiplexes the wavelength-multiplexed signal light into intensity-modulated signal lights of each wavelength, and separates the intensity-modulated signal light of each wavelength. 2. The apparatus according to claim 1, further comprising means for receiving dispersion-compensated data.
4. The optical transmission system according to any one of claims 1 to 3.
【請求項5】 伝送路光ファイバの平均波長分散値が負
分散であり、この伝送路光ファイバの所定の位置に、こ
の伝送路光ファイバの波長分散を補償する分散補償手段
を挿入した構成であることを特徴とする請求項1〜4の
いずれかに記載の光伝送システム。
5. A configuration in which the average chromatic dispersion value of the transmission line optical fiber is negative dispersion, and dispersion compensation means for compensating for the chromatic dispersion of the transmission line optical fiber is inserted at a predetermined position of the transmission line optical fiber. The optical transmission system according to claim 1, wherein:
【請求項6】 伝送路光ファイバの所定の位置に、信号
光を増幅する光増幅器を挿入した構成であることを特徴
とする請求項1〜5のいずれかに記載の光伝送システ
ム。
6. The optical transmission system according to claim 1, wherein an optical amplifier for amplifying signal light is inserted at a predetermined position of the transmission line optical fiber.
JP05191598A 1998-03-04 1998-03-04 Optical transmission system Expired - Fee Related JP3523998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05191598A JP3523998B2 (en) 1998-03-04 1998-03-04 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05191598A JP3523998B2 (en) 1998-03-04 1998-03-04 Optical transmission system

Publications (2)

Publication Number Publication Date
JPH11252013A true JPH11252013A (en) 1999-09-17
JP3523998B2 JP3523998B2 (en) 2004-04-26

Family

ID=12900180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05191598A Expired - Fee Related JP3523998B2 (en) 1998-03-04 1998-03-04 Optical transmission system

Country Status (1)

Country Link
JP (1) JP3523998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882802B2 (en) 2000-09-14 2005-04-19 Nec Corporation Modulator and method of modulating optical carrier with clock signal before or after the carrier is modulated with data pulse
JP2005159928A (en) * 2003-11-28 2005-06-16 Hitachi Communication Technologies Ltd Automatic dispersion compensating method
US7483639B2 (en) 2001-05-10 2009-01-27 Fujitsu Limited Method and system for transmitting information in an optical communication system using distributed amplification
CN109196416A (en) * 2016-05-26 2019-01-11 株式会社尼康 Pulsed light generating means, pulsed light generation method, the exposure device and check device for having pulsed light generating means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882802B2 (en) 2000-09-14 2005-04-19 Nec Corporation Modulator and method of modulating optical carrier with clock signal before or after the carrier is modulated with data pulse
US7483639B2 (en) 2001-05-10 2009-01-27 Fujitsu Limited Method and system for transmitting information in an optical communication system using distributed amplification
JP2005159928A (en) * 2003-11-28 2005-06-16 Hitachi Communication Technologies Ltd Automatic dispersion compensating method
CN109196416A (en) * 2016-05-26 2019-01-11 株式会社尼康 Pulsed light generating means, pulsed light generation method, the exposure device and check device for having pulsed light generating means
CN109196416B (en) * 2016-05-26 2021-12-17 株式会社尼康 Pulse light generating device, pulse light generating method, exposure device provided with pulse light generating device, and inspection device
US11303091B2 (en) 2016-05-26 2022-04-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11757247B2 (en) 2016-05-26 2023-09-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device

Also Published As

Publication number Publication date
JP3523998B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
JP3464867B2 (en) Optical transmitting apparatus, wavelength multiplexing optical transmitting apparatus and optical transmission system using the same
Leibrich et al. CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber
US5946119A (en) Wavelength division multiplexed system employing optimal channel modulation
JP3288023B2 (en) Optical transmission system
CA2419921C (en) Method and system for transmitting signals with spectrally enriched optical pulses
US20030090768A1 (en) Long haul optical communication system
JP4701192B2 (en) Transmission system and transmission method
JPH0946318A (en) Wavelength multiplexed optical transmission system and optical transmitter to be used for same
JP2003510890A (en) Method and system for reducing FWM loss in NRZWDM systems
JP2008532435A (en) Optical transmission system with dispersion gradient compensation
JPH08274715A (en) Optical transmission system using smf transmission line
JP4320573B2 (en) Optical receiving method, optical receiving apparatus and optical transmission system using the same
JP3625726B2 (en) Optical transmission device and optical transmission system
JP4900483B2 (en) Optical transmission apparatus, wavelength division multiplexing optical communication system, and optical transmission method
Chraplyvy et al. Terabit/second transmission experiments
Sharan et al. Design and simulation of CSRZ modulated 40 Gbps DWDM system in presence of Kerr Non linearity
JP3523998B2 (en) Optical transmission system
JP4056954B2 (en) WDM transmission system and WDM transmission method
US10069589B2 (en) Method and apparatus for increasing a transmission performance of a hybrid wavelength division multiplexing system
US7756423B2 (en) Wavelength division multiplexing optical transmission apparatus, wavelength division multiplexing optical transmission system and wavelength division multiplexing optical transmission method
JPH11275031A (en) Optical transmitter
EP1233562B1 (en) Modulation scheme and transmission system for NRZ signals with left and right side filtering
JP4251355B2 (en) Optical transmitter
JPH10242941A (en) Optical wavelength multiplex transmission device
JP2003060574A (en) Optical transmitter system, wavelength division multiplexer and method for dispersion compensation of wavelength division multiplexing transmission system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees