JPH11251133A - Manufacture of superconducting coil - Google Patents

Manufacture of superconducting coil

Info

Publication number
JPH11251133A
JPH11251133A JP5346698A JP5346698A JPH11251133A JP H11251133 A JPH11251133 A JP H11251133A JP 5346698 A JP5346698 A JP 5346698A JP 5346698 A JP5346698 A JP 5346698A JP H11251133 A JPH11251133 A JP H11251133A
Authority
JP
Japan
Prior art keywords
coil
outside
resin
reinforcing cylinder
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5346698A
Other languages
Japanese (ja)
Inventor
Shigeru Murai
成 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5346698A priority Critical patent/JPH11251133A/en
Publication of JPH11251133A publication Critical patent/JPH11251133A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting coil which is stable for cooling and electromagnetic force of it while easy to manufacture. SOLUTION: A superconducting body is wound, by specified turns, outside a cylindrical bobbin 1 which is possible to be divided into plural sections in radial direction to form a coil 2, then, a reinforcing cylinder 3, wherein, of a material whose thermal expansion factor is equal to or higher than the coil 2, outside diameter is worked to a dimension slightly larger than the outside diameter of the coil 2, is coaxially provided outside the coil 2, and the gaps are filled with a resin of normal-temperature setting type for integral for impregnation and setting, and then a bobbin 1 is removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は粒子線検出用超電導
磁石、結晶引上装置用超電導磁石等に使用されるコイル
内側に支持体のない超電導コイルの製造方法に関する。
The present invention relates to a method of manufacturing a superconducting coil having no support inside a coil used for a superconducting magnet for detecting a particle beam, a superconducting magnet for a crystal pulling apparatus, and the like.

【0002】[0002]

【従来の技術】近年各分野での超電導電磁石の利用が進
んでいる。特に極めて高い超電導安定性と省エネルギー
という特徴を十分に生かした使い方がされるようにな
り、種々の用途に応じてはさらに軽量コンパクト化が要
求されている。
2. Description of the Related Art In recent years, superconducting electromagnets have been increasingly used in various fields. In particular, it has come to be used in a way that makes full use of the features of extremely high superconducting stability and energy saving, and further reduction in weight and size is required for various applications.

【0003】これらの目的のために、超電導コイルの材
料にアルミを多用する等の理由からコイル内側に支持体
のない構造、所謂内巻コイルが必要とされてきている。
即ち、コイルにアルミ材を多用しているために電磁力支
持体としてコイルの外側に補強円筒を設けると共に、こ
の補強円筒とコイル間の熱伝導によってコイルの冷却を
行うものである。
For these purposes, a structure without a support inside the coil, that is, a so-called inner-wound coil has been required for the reason that aluminum is frequently used as a material of the superconducting coil.
That is, since a coil is made of aluminum material, a reinforcing cylinder is provided outside the coil as an electromagnetic force support, and the coil is cooled by heat conduction between the reinforcing cylinder and the coil.

【0004】この補強円筒の冷却方式としては冷却管を
補強円筒表面に設置する強制間接冷却、或いは補強円筒
の一端にリザーバタンクを設置する静的間接冷却がある
が、何ずれにしてもコイルと補強円筒との密着性が強固
で、かつ製作中や運転中における剥離が発生しないこと
が必要である。
[0004] As a method of cooling the reinforcing cylinder, there are forced indirect cooling in which a cooling pipe is installed on the surface of the reinforcing cylinder or static indirect cooling in which a reservoir tank is installed at one end of the reinforcing cylinder. It is necessary that the adhesion to the reinforcing cylinder is strong and that no peeling occurs during production or operation.

【0005】従来、この種のコイルの製造方法として
は、図5に示すように超電導導体を巻回して構成された
超電導コイル1と補強円筒2とを上記補強円筒の内径寸
法を該超電導コイルの外径寸法より小さく加工し、補強
円筒とコイルに温度差を発生させて、所謂焼嵌めの方法
で、補強円筒とコイルとを一体化させる方法がある。
Conventionally, as a method for manufacturing this type of coil, as shown in FIG. 5, a superconducting coil 1 formed by winding a superconducting conductor and a reinforcing cylinder 2 are formed by adjusting the inner diameter of the reinforcing cylinder to the size of the superconducting coil. There is a method in which the reinforcing cylinder and the coil are integrated by a so-called shrink-fitting method in which the reinforcing cylinder and the coil are processed so as to be smaller than the outer diameter and a temperature difference is generated between the reinforcing cylinder and the coil.

【0006】この種のコイルで通常採用される間接冷却
においては、超電導コイルが真空中に設置されるため、
コイルと補強円筒の界面は樹脂等により接着状態にされ
ることが望ましく、嵌め合い面にはエポキシ樹脂などを
真空含浸する等の工法が採用されていた。即ち、図5に
示すように超電導コイルと補強円筒はある有限の間隙を
保って同軸に配置される。しかる後、この間隙に樹脂、
或いは含浸樹脂4を注入充填し、樹脂は加熱硬化により
超電導コイルと補強円筒2とを一体に固定させて内巻コ
イルを製作する方法がある。
[0006] In the indirect cooling usually employed in this type of coil, since the superconducting coil is placed in a vacuum,
It is desirable that the interface between the coil and the reinforcing cylinder be bonded with a resin or the like, and a method of vacuum impregnation with an epoxy resin or the like is used for the fitting surface. That is, as shown in FIG. 5, the superconducting coil and the reinforcing cylinder are coaxially arranged with a certain finite gap. Then, the resin in this gap,
Alternatively, there is a method in which the impregnated resin 4 is injected and filled, and the resin is heated and hardened to integrally fix the superconducting coil and the reinforcing cylinder 2 to form an inner winding coil.

【0007】しかし、このような方法で超電導コイルを
製作すると、樹脂層は補強円筒と超電導コイルとの間に
あって厚さ方向の寸法が大きく、冷熱サイクル若しくは
電磁力によるストレスを強く受けた時に樹脂層自体の割
れ、または界面での剥離を生じ易い。また、樹脂層の厚
さに比例してコイルと補強円筒の間の熱伝達が低下す
る。
However, when the superconducting coil is manufactured by such a method, the resin layer has a large dimension in the thickness direction between the reinforcing cylinder and the superconducting coil, and when the resin layer is strongly subjected to a stress caused by a cooling / heating cycle or an electromagnetic force, Cracking of itself or separation at the interface is likely to occur. Further, the heat transfer between the coil and the reinforcing cylinder decreases in proportion to the thickness of the resin layer.

【0008】一方、嵌め合い寸法を締まり嵌め側に設定
する方法があるが、この場合は補強円筒とコイルの温度
が同じになった段階で、補強円筒からコイルにプリスト
レスが発生し、コイルの超電導導体を固定する力が強固
になる。
On the other hand, there is a method in which the fitting dimension is set to the tight fitting side. In this case, when the temperature of the reinforcing cylinder and that of the coil become the same, prestress is generated from the reinforcing cylinder to the coil, and The force for fixing the superconducting conductor becomes stronger.

【0009】しかしながら、エポキシ樹脂含浸の工程で
は通常エポキシの硬化を促進するために120℃程度に
加熱しているため、この時点でアルミの補強円筒と巻線
治具にテンション巻されている超電導コイルの間に再び
間隙が形成される。従って、この間隙に含浸されている
レジンの硬化の過程では化学反応による硬化収縮により
通常2%程度発生するので、完成後のコイルの補強円筒
との接着力の低下の可能性があった。
However, in the step of impregnating the epoxy resin, the epoxy resin is usually heated to about 120 ° C. in order to accelerate the curing of the epoxy. At this point, the superconducting coil wound around the aluminum reinforcing cylinder and the winding jig is tensioned. A gap is formed again between the two. Therefore, in the process of curing the resin impregnated in the gap, since the curing shrinkage due to the chemical reaction usually generates about 2%, there is a possibility that the adhesive strength between the completed coil and the reinforcing cylinder is reduced.

【0010】また、締まり嵌めにした状態で常温硬化型
のエポキシ樹脂を含浸する方法もあったが、コイルと補
強円筒間の高い圧力によって樹脂の含浸が困難な上、短
時間で含浸工程が完了しないと樹脂の硬化が進み、含浸
不良となる恐れがあり、補強円筒とソレノイドコイルの
長手方向に巻線治具との熱収縮率の相違による剪断応力
が発生したとき、接着強度が不足して割れる。
[0010] There is also a method of impregnating a room-temperature-curable epoxy resin in an interference-fit state, but impregnation of the resin is difficult due to high pressure between the coil and the reinforcing cylinder, and the impregnation step is completed in a short time. Otherwise, the curing of the resin will proceed and impregnation failure may occur, and when shear stress occurs due to the difference in heat shrinkage between the reinforcing cylinder and the winding jig in the longitudinal direction of the solenoid coil, the adhesive strength is insufficient. Crack.

【0011】[0011]

【発明が解決しようとする課題】このように従来の超電
導コイルの製造方法においては、内巻コイルの製作時に
超電導コイルと補強円筒の間隙を120℃程度に加熱し
て樹脂接着する必要があるので、冷却運転の過程で割れ
や剥がれの可能性を最小限にすることが困難であった。
As described above, in the conventional method of manufacturing a superconducting coil, it is necessary to heat the gap between the superconducting coil and the reinforcing cylinder to about 120 ° C. and bond the resin to the resin when the inner coil is manufactured. It has been difficult to minimize the possibility of cracking or peeling during the cooling operation.

【0012】本発明は上記のような問題点を解消するた
め、超電導コイルの冷却及び電磁力に対する安定性が良
好で、製作の容易な超電導コイルの製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a superconducting coil which has good stability for cooling and electromagnetic force of the superconducting coil and is easy to manufacture, in order to solve the above problems.

【0013】[0013]

【課題を解決するための手段】請求項1に対応する発明
は、径方向に複数に分割可能な円筒状の巻枠の外側に超
電導導体を所定回数巻回してコイルを形成し、その後該
コイルの外側に外径が該コイルの外径寸法より若干大き
い寸法に加工され、且つ熱膨脹係数がコイルと同等以上
の材料よりなる補強円筒を同軸的に設け、これらの間隙
に常温硬化型の樹脂を満たして一体に含浸硬化した後、
前記巻枠を除去する。
According to a first aspect of the present invention, a coil is formed by winding a superconducting conductor a predetermined number of times around a cylindrical bobbin which can be divided into a plurality of pieces in a radial direction, and thereafter forming the coil. A coaxial reinforcing cylinder made of a material whose outer diameter is slightly larger than the outer diameter of the coil and whose coefficient of thermal expansion is equal to or greater than that of the coil is coaxially provided on the outside of the coil. After filling and integrally impregnating and curing,
The bobbin is removed.

【0014】請求項2に対応する発明は、径方向に複数
に分割可能な円筒状の巻枠の外側に超電導導体を所定回
数巻回してコイルを形成し、その後該コイルの外側に外
径が該コイルの外径寸法より若干大きい寸法に加工さ
れ、且つ熱膨脹係数がコイルと同等以上の材料よりなる
補強円筒を常温状態で嵌め込む際に、前記コイルと前記
補強円筒の間隙が満たされるように樹脂を逐次塗布しな
がら嵌め込み、前記間隙に満たされた樹脂が硬化した
後、前記巻枠を除去する。
According to a second aspect of the present invention, a coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical bobbin which can be divided into a plurality of pieces in the radial direction, and thereafter, an outer diameter is formed outside the coil. When a reinforcing cylinder made of a material having a slightly larger outer diameter than the coil and having a thermal expansion coefficient equal to or larger than that of the coil is fitted at room temperature, the gap between the coil and the reinforcing cylinder is filled. The resin is filled in while sequentially applying the resin, and after the resin filled in the gap is cured, the reel is removed.

【0015】請求項3に対応する発明は、径方向に複数
に分割可能な円筒状の巻枠の外側に超電導導体を所定回
数巻回してコイルを形成し、その後該コイルの外側に外
径が該コイルの外径寸法より若干大きい寸法に加工さ
れ、且つ熱膨脹係数がコイルと同等以上の材料よりなる
補強円筒を常温状態で嵌め込み、前記コイルと前記補強
円筒の間隙を封止すると共に真空圧とした状態で、前記
間隙に常温硬化型の含浸樹脂を導入し、間隙に満された
樹脂が硬化した後、前記巻枠を除去する。
According to a third aspect of the present invention, a coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical bobbin that can be divided into a plurality of pieces in the radial direction, and thereafter, an outer diameter is formed outside the coil. A reinforcing cylinder made of a material having a size slightly larger than the outer diameter of the coil and having a thermal expansion coefficient equal to or greater than that of the coil is fitted at room temperature to seal the gap between the coil and the reinforcing cylinder and to apply vacuum pressure. In this state, a cold-setting impregnated resin is introduced into the gap, and after the resin filled in the gap is cured, the bobbin is removed.

【0016】請求項4に対応する発明は、径方向に複数
に分割可能な円筒状の巻枠の外側に超電導導体を所定回
数巻回してコイルを形成し、その後該コイルの外側に外
径が該コイルの外径寸法より若干大きい寸法に加工さ
れ、且つ熱膨脹係数がコイルと同等以上の材料よりなる
補強円筒を予め常温常圧で嵌め込み、前記コイルと前記
補強円筒の間隙の一部を封止した状態で、前記間隙に常
温硬化型の含浸樹脂を加圧注入し、前記間隙に満された
樹脂が硬化した後、前記巻枠を除去する。
According to a fourth aspect of the present invention, a coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical winding frame that can be divided into a plurality of pieces in the radial direction, and thereafter, an outer diameter is formed outside the coil. A reinforcing cylinder made of a material having a size slightly larger than the outer diameter of the coil and having a thermal expansion coefficient equal to or greater than that of the coil is previously fitted at normal temperature and normal pressure to partially seal a gap between the coil and the reinforcing cylinder. In this state, a cold-setting impregnated resin is injected into the gap under pressure, and after the resin filled in the gap is cured, the reel is removed.

【0017】請求項5に対応する発明は、請求項1乃至
請求項4の何ずれかの項に対応する発明の超電導コイル
の製造方法において、常温硬化型の樹脂として、微細な
フィラを混入して高粘性としたエポキシ樹脂を用いる。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a superconducting coil according to any one of the first to fourth aspects, wherein a fine filler is mixed as a cold-setting resin. Use a highly viscous epoxy resin.

【0018】上記請求項1乃至請求項5に対応する発明
の超電導コイルの製造方法にあっては、巻枠に巻回され
た超電導コイルとこのコイルの外周に配設された補強円
筒との間隙に樹脂注入のために加熱することがないの
で、巻枠と補強円筒の熱膨脹差により樹脂層に発生する
応力がなく、したがって超電導運転のために極低温に冷
却するまでの熱応力も加熱硬化樹脂で含浸する場合に比
べて約40%減ずることができる。
In the method for manufacturing a superconducting coil according to the present invention, the gap between the superconducting coil wound on the bobbin and the reinforcing cylinder disposed on the outer periphery of the coil is provided. Since there is no heating for filling the resin, there is no stress generated in the resin layer due to the difference in thermal expansion between the winding frame and the reinforcing cylinder.Therefore, the heat stress before cooling to cryogenic temperature for superconducting operation is also reduced. Can be reduced by about 40% as compared with the case of impregnation.

【0019】[0019]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明による超電導コイルの
製造方法を説明するための第1の実施の形態として、内
巻型の超電導コイルの製作工程の内、嵌め込み完了の状
態を示す断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing, as a first embodiment for explaining a method of manufacturing a superconducting coil according to the present invention, a state in which fitting has been completed in a manufacturing process of an inner winding type superconducting coil.

【0020】図1において、内側に治具として配設され
る巻枠1は、鉄(軟鋼)等の材料で内径側に分解可能に
複数に分割されている。この巻枠1の外周面に離型材を
塗布した上で超電導導体を所定回数巻回して超電導コイ
ル2を形成する。
In FIG. 1, a bobbin 1 disposed inside as a jig is divided into a plurality of pieces by a material such as iron (mild steel) so that it can be disassembled to the inner diameter side. A superconducting conductor is wound a predetermined number of times after applying a release material to the outer peripheral surface of the winding frame 1 to form a superconducting coil 2.

【0021】この超電導コイル2の外径寸法は、図2
(a)に示すように次の工程で同軸的に配置される補強
円筒3と間隙が1mm程度の間隔に保ち嵌合される。補強
円筒3は、通常アルミニウムを材料として上記超電導コ
イルとの間隙にはガラステープなどを含む樹脂の浸透性
の良好な対地絶縁を施し、図2(b)に示すようにこれ
らを互いにエポキシ樹脂4を塗布しながら嵌め込みを行
う。
The outer diameter of the superconducting coil 2 is shown in FIG.
As shown in (a), the reinforcing cylinder 3 is coaxially arranged in the next step and is fitted with a gap of about 1 mm. The reinforcing cylinder 3 is usually made of aluminum, and is provided with a ground insulation having good permeability of a resin including a glass tape or the like in a gap between the superconducting coil and the epoxy resin, as shown in FIG. The fitting is performed while applying.

【0022】エポキシ樹脂4としては特願平7−224
231号の明細書にも記載されているレジンコートと呼
ぶフィラを調合して高粘性となった常温硬化性の樹脂を
用いる。
The epoxy resin 4 is disclosed in Japanese Patent Application No. Hei 7-224.
No. 231, a filler called a resin coat, which is made of a high-viscosity room-temperature-curable resin, is used.

【0023】また、コイル2と補強円筒3に挟まれた空
間のエポキシ樹脂に空気が巻込まれて封入されないよう
にするため、嵌め込み作業中は常に樹脂により空間が満
たされた状態にする。
Further, in order to prevent air from being caught in the epoxy resin in the space between the coil 2 and the reinforcing cylinder 3, the space is always filled with the resin during the fitting operation.

【0024】嵌め込み完了した超電導コイルは樹脂の硬
化までの期間(通常10時間以上)重力方向を封止し
て、完全硬化した後、巻枠1が取り除かれ、コイル2が
補強円筒3の内側に接して固定された状態の超電導コイ
ルが製作される。
The superconducting coil that has been fitted is sealed in the direction of gravity until the resin hardens (usually 10 hours or more). A superconducting coil in a state of being in contact with and fixed is manufactured.

【0025】このような超電導コイルの製造方法にあっ
ては、巻枠1は鉄等の材料で分解可能に構成しておき、
その外周に超電導導体を所定回数巻回された超電導コイ
ル2と、微小な間隙を存した状態で嵌合されて同軸的に
配置された補強円筒3とは樹脂で間隙を満たして常温で
硬化する。
In such a method for manufacturing a superconducting coil, the bobbin 1 is made of a material such as iron so that it can be disassembled.
The superconducting coil 2 in which the superconducting conductor is wound a predetermined number of times around its outer periphery and the reinforcing cylinder 3 fitted and coaxially arranged with a minute gap are filled with resin and cured at room temperature. .

【0026】従って、常温でエポキシ樹脂を硬化し、超
電導コイルと補強円筒とを含浸固定を行うので、巻枠1
と補強円筒3の熱膨脹差により樹脂の硬化後に互いの変
位による剪断応力が発生することはない。
Therefore, the epoxy resin is cured at normal temperature and the superconducting coil and the reinforcing cylinder are impregnated and fixed.
There is no occurrence of shear stress due to mutual displacement after curing of the resin due to the difference in thermal expansion between the resin and the reinforcing cylinder 3.

【0027】次にこれらの部材が超電導コイルの動作温
度である極低温まで冷却される間、硬化した樹脂には超
電導コイルと補強円筒の熱収縮差による応力が作用する
ようになる。この樹脂層の剪断接着強さを実験により評
価すると樹脂層の厚さが大きい方が強い傾向にあるが、
一般的な設計条件で必要な5MPa以上を得るには、
0.5mm以上で満足している。
Next, while these members are cooled to an extremely low temperature, which is the operating temperature of the superconducting coil, a stress is applied to the cured resin due to a difference in thermal contraction between the superconducting coil and the reinforcing cylinder. When the shear bond strength of this resin layer is evaluated by an experiment, the larger the thickness of the resin layer, the stronger it tends to be.
To obtain the required 5MPa or more under general design conditions,
We are satisfied with 0.5 mm or more.

【0028】一方、コイルから補強円筒への熱伝達は樹
脂層の厚さに比例して低下することから、樹脂層の厚さ
は接着力の許す範囲で小さいことが望ましく、例えば直
径1m程度のコイルでは嵌め合いの工作精度から勘案し
て1mm程度が最適である。
On the other hand, since the heat transfer from the coil to the reinforcing cylinder decreases in proportion to the thickness of the resin layer, the thickness of the resin layer is desirably as small as the adhesive force allows, for example, about 1 m in diameter. For the coil, about 1 mm is optimal considering the work accuracy of fitting.

【0029】なお、超電導コイルの外周にはガラステー
プがあり、僅かの間隙に注入されたエポキシ樹脂には十
分な比率のフィラを調合してあるので、、特願平7−2
24231号の明細書に記載してあるようにコイルと熱
収縮差が小さく、樹脂自体は割れや剥がれの発生しにく
い強化プラスチックの組成となっている。
A glass tape is provided on the outer periphery of the superconducting coil, and a sufficient ratio of filler is mixed with the epoxy resin injected into a small gap.
As described in the specification of Japanese Patent No. 24231, the difference in heat shrinkage from the coil is small, and the resin itself is a reinforced plastic composition that is less likely to crack or peel.

【0030】上述した第1の実施の形態の如き超電導コ
イルの製造方法とすれば、超電導コイル2と補強円筒3
とは室温若しくは低温の領域において超電導コイルと補
強円筒の間に働く応力を加熱硬化型樹脂を用いた含浸方
式に比較して約40%減ずることができる。また、樹脂
層には樹脂の硬化収縮による空隙が殆どないので、良好
な接着状態を保つことができ、超電導コイルは補強円筒
との間の熱伝達が良好で、冷却が十分に行われる。この
ため、超電導コイルは安定性の良い運転が可能で、コン
パクトで特性の良い超電導電磁石システムを構成でき
る。また、本製造方法は真空含浸タンクなどの設備装置
を必要とせず、簡便に超電導コイルトと補強円筒とを一
体化することができる。
According to the method of manufacturing a superconducting coil as described in the first embodiment, the superconducting coil 2 and the reinforcing cylinder 3
This means that the stress acting between the superconducting coil and the reinforcing cylinder in a room temperature or low temperature region can be reduced by about 40% as compared with the impregnation method using a thermosetting resin. In addition, since the resin layer has almost no void due to the curing shrinkage of the resin, a good adhesion state can be maintained, and the superconducting coil has good heat transfer with the reinforcing cylinder and is sufficiently cooled. Therefore, the superconducting coil can be operated with good stability, and a compact superconducting electromagnet system having good characteristics can be constructed. In addition, this manufacturing method does not require equipment such as a vacuum impregnation tank, and can easily integrate the superconducting coil and the reinforcing cylinder.

【0031】次に本発明の第2の実施の形態を図3によ
り説明する。図3は内巻型の超電導コイルの製作工程の
内で嵌め込み完了の状態を示す断面図であり、図1と同
一部分には同一符号を付してその説明を省略し、ここで
は異なる点についてのみ述べる。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view showing a state in which fitting has been completed in the manufacturing process of the inner winding type superconducting coil, and the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only mentioned.

【0032】第1の実施の形態では、樹脂の注入を補強
円筒3と超電導コイル2との嵌め込みの際に塗布しなが
ら行う方法としたが、第2の実施の形態では図3に示す
ように予め両者を同軸的に配置し、予め用意された樹脂
貯槽6を補強円筒3の下部に連結して樹脂貯槽6より超
電導コイル2と補強円筒3との間の空隙に樹脂を加圧注
入し、しかる後常温硬化するようにしたものである。
In the first embodiment, the resin is injected while being applied when the reinforcing cylinder 3 and the superconducting coil 2 are fitted. However, in the second embodiment, as shown in FIG. Both are arranged coaxially in advance, the resin storage tank 6 prepared in advance is connected to the lower part of the reinforcing cylinder 3, and the resin is injected under pressure from the resin storage tank 6 into the gap between the superconducting coil 2 and the reinforcing cylinder 3, Thereafter, it is cured at room temperature.

【0033】このような超電導コイルの製造方法におい
ても、第1の実施の形態と同等の作用効果を得ることが
できる。次に本発明の第3の実施の形態を図4により説
明する。
In the method of manufacturing the superconducting coil, the same operation and effect as those of the first embodiment can be obtained. Next, a third embodiment of the present invention will be described with reference to FIG.

【0034】図4は内巻型の超電導コイルの製作工程の
内で嵌め込み完了の状態を示す断面図であり、図1と同
一部分には同一符号を付してその説明を省略し、ここで
は異なる点についてのみ述べる。
FIG. 4 is a cross-sectional view showing a state in which fitting has been completed in the manufacturing process of the inner winding type superconducting coil. The same parts as those in FIG. Only the differences will be described.

【0035】第3の実施の形態においては、図4に示す
ように予め超電導コイル2と補強円筒3とを同軸的に配
置すると共に、超電導コイル2と補強円筒3との間に存
する間隙の上部及び下部を真空封止材7にて封止して真
空圧とし、この状態で外部(大気圧)に置かれた樹脂貯
槽6より樹脂を補強円板3の下部より間隙に吸引注入し
た後、常温硬化するようにしたものである。
In the third embodiment, as shown in FIG. 4, the superconducting coil 2 and the reinforcing cylinder 3 are arranged coaxially in advance, and the upper part of the gap existing between the superconducting coil 2 and the reinforcing cylinder 3 is formed. And the lower part is sealed with a vacuum sealing material 7 to a vacuum pressure, and in this state, the resin is sucked and injected into the gap from the lower part of the reinforcing disk 3 from the resin storage tank 6 placed outside (atmospheric pressure). It is made to cure at room temperature.

【0036】このような超電導コイルの製造方法におい
ても、第1の実施の形態と同等の作用効果を得ることが
できる。上記第1乃至第3の実施の形態では、補強円筒
の材質をアルミニウムとしたが、巻枠の材質との熱膨張
率の差に依存しない工法であるので、ステンレス鋼ある
いは銅を用いても同様の原理により本発明による製造方
法を適用することができ、同様の作用効果を得ることが
できる。
In the method of manufacturing a superconducting coil, the same operation and effect as those of the first embodiment can be obtained. In the first to third embodiments, the material of the reinforcing cylinder is aluminum. However, since the construction method does not depend on the difference in the coefficient of thermal expansion from the material of the bobbin, the same applies even when stainless steel or copper is used. According to the principle described above, the manufacturing method according to the present invention can be applied, and the same function and effect can be obtained.

【0037】[0037]

【発明の効果】以上述べたように本発明によれば、良好
な熱伝達特性を必要とする間接冷却の内巻コイルにおい
て、超電導コイルの冷却及び電磁力に対する通電安定性
が良好で、製作の容易な超電導コイルの製造方法を提供
することができる。
As described above, according to the present invention, in the indirectly cooled inner winding coil which needs good heat transfer characteristics, the superconducting coil has good cooling and current conduction stability against electromagnetic force, and the manufacturing efficiency is improved. An easy manufacturing method of a superconducting coil can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態において、内巻き超
電導コイルの樹脂嵌め合い工程を終った段階を示す断面
図。
FIG. 1 is a cross-sectional view showing a stage after a resin fitting step of an inner winding superconducting coil in a first embodiment of the present invention.

【図2】(a),(b)は同実施の形態において、図1
より前の製作工程を説明するための断面図。
2 (a) and 2 (b) show the same embodiment as FIG.
Sectional drawing for demonstrating the earlier manufacturing process.

【図3】本発明の第2の実施の形態の超電導コイルの製
造方法を説明するための部分断面図。
FIG. 3 is a partial cross-sectional view for explaining a method for manufacturing a superconducting coil according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態の超電導コイルの製
造方法を説明するための部分断面図。
FIG. 4 is a partial cross-sectional view for explaining a method for manufacturing a superconducting coil according to a third embodiment of the present invention.

【図5】従来の超電導コイルの製造方法を説明するため
の断面図。
FIG. 5 is a cross-sectional view for explaining a conventional method for manufacturing a superconducting coil.

【符号の説明】[Explanation of symbols]

1……巻枠 2……コイル 3……補強円筒 4……エポキシ樹脂 5……含浸槽 6……樹脂貯槽 7……真空封止材 DESCRIPTION OF SYMBOLS 1 ... Reel 2 ... Coil 3 ... Reinforcement cylinder 4 ... Epoxy resin 5 ... Impregnation tank 6 ... Resin storage tank 7 ... Vacuum sealing material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 径方向に複数に分割可能な円筒状の巻枠
の外側に超電導導体を所定回数巻回してコイルを形成
し、その後該コイルの外側に外径が該コイルの外径寸法
より若干大きい寸法に加工され、且つ熱膨脹係数がコイ
ルと同等以上の材料よりなる補強円筒を同軸的に設け、
これらの間隙に常温硬化型の樹脂を満たして一体に含浸
硬化した後、前記巻枠を除去することを特徴とする超電
導コイルの製造方法。
1. A coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical bobbin that can be divided into a plurality of pieces in the radial direction, and thereafter, the outside diameter is outside the coil outside the outside diameter of the coil. A coaxial reinforcing cylinder made of a material that is slightly larger in size and has a thermal expansion coefficient equal to or greater than that of the coil,
A method for manufacturing a superconducting coil, characterized in that the gap is filled with a room-temperature-curable resin, which is impregnated and cured integrally, and then the winding frame is removed.
【請求項2】 径方向に複数に分割可能な円筒状の巻枠
の外側に超電導導体を所定回数巻回してコイルを形成
し、その後該コイルの外側に外径が該コイルの外径寸法
より若干大きい寸法に加工され、且つ熱膨脹係数がコイ
ルと同等以上の材料よりなる補強円筒を常温状態で嵌め
込む際に、前記コイルと前記補強円筒の間隙が満たされ
るように樹脂を逐次塗布しながら嵌め込み、前記間隙に
満たされた樹脂が硬化した後、前記巻枠を除去すること
を特徴とする超電導コイルの製造方法。
2. A coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical winding frame that can be divided into a plurality of pieces in the radial direction, and thereafter, the outside diameter is outside the coil outside the coil. When a reinforcing cylinder made of a material having a slightly larger size and a thermal expansion coefficient equal to or greater than that of the coil is fitted at room temperature, the resin is successively applied so as to fill the gap between the coil and the reinforcing cylinder. And removing the bobbin after the resin filled in the gap is cured.
【請求項3】 径方向に複数に分割可能な円筒状の巻枠
の外側に超電導導体を所定回数巻回してコイルを形成
し、その後該コイルの外側に外径が該コイルの外径寸法
より若干大きい寸法に加工され、且つ熱膨脹係数がコイ
ルと同等以上の材料よりなる補強円筒を常温状態で嵌め
込み、前記コイルと前記補強円筒の間隙を封止すると共
に真空圧とした状態で、前記間隙に常温硬化型の含浸樹
脂を導入し、間隙に満された樹脂が硬化した後、前記巻
枠を除去することを特徴とする超電導コイルの製造方
法。
3. A coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical bobbin which can be divided into a plurality of pieces in the radial direction, and thereafter, the outside diameter is outside the coil by the outside diameter of the coil. A reinforcing cylinder made of a material having a slightly larger size and having a thermal expansion coefficient equal to or greater than that of the coil is fitted at room temperature, and the gap between the coil and the reinforcing cylinder is sealed and a vacuum pressure is applied. A method for manufacturing a superconducting coil, comprising: introducing a cold-setting impregnated resin, and curing the resin filled in the gap, and then removing the winding frame.
【請求項4】 径方向に複数に分割可能な円筒状の巻枠
の外側に超電導導体を所定回数巻回してコイルを形成
し、その後該コイルの外側に外径が該コイルの外径寸法
より若干大きい寸法に加工され、且つ熱膨脹係数がコイ
ルと同等以上の材料よりなる補強円筒を予め常温常圧で
嵌め込み、前記コイルと前記補強円筒の間隙の一部を封
止した状態で、前記間隙に常温硬化型の含浸樹脂を加圧
注入し、前記間隙に満された樹脂が硬化した後、前記巻
枠を除去することを特徴とする超電導コイルの製造方
法。
4. A coil is formed by winding a superconducting conductor a predetermined number of times outside a cylindrical bobbin which can be divided into a plurality of pieces in the radial direction, and thereafter the outside diameter of the coil is outside the outside diameter of the coil. A reinforcing cylinder made of a material having a slightly larger size and a thermal expansion coefficient equal to or greater than that of the coil is fitted at room temperature and normal pressure in advance, and a part of the gap between the coil and the reinforcing cylinder is sealed, and the gap is inserted into the gap. A method of manufacturing a superconducting coil, comprising: injecting a cold-setting type impregnated resin under pressure, and curing the resin filled in the gap, and then removing the bobbin.
【請求項5】 常温硬化型の樹脂として、微細なフィラ
を混入して高粘性としたエポキシ樹脂を用いることを特
徴とする請求項1乃至請求項4の何ずれかに記載の超電
導コイルの製造方法。
5. The method of manufacturing a superconducting coil according to claim 1, wherein an epoxy resin mixed with a fine filler and having a high viscosity is used as the room-temperature-curable resin. Method.
JP5346698A 1998-03-05 1998-03-05 Manufacture of superconducting coil Pending JPH11251133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346698A JPH11251133A (en) 1998-03-05 1998-03-05 Manufacture of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346698A JPH11251133A (en) 1998-03-05 1998-03-05 Manufacture of superconducting coil

Publications (1)

Publication Number Publication Date
JPH11251133A true JPH11251133A (en) 1999-09-17

Family

ID=12943652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346698A Pending JPH11251133A (en) 1998-03-05 1998-03-05 Manufacture of superconducting coil

Country Status (1)

Country Link
JP (1) JPH11251133A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244284A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil manufacturing method and superconducting coil
JP2011023724A (en) * 2009-07-16 2011-02-03 Siemens Plc Method of manufacturing solenoidal magnet coil, and solenoidal magnet coil
GB2480636A (en) * 2010-05-26 2011-11-30 Siemens Plc Solenoid magnet with coils and compression block spacers impregnated with resin.
JP2012064693A (en) * 2010-09-15 2012-03-29 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus
GB2489661A (en) * 2011-03-14 2012-10-10 Siemens Plc Cylindrical electromagnet with a contracted outer mechanical support structure
JP2013247291A (en) * 2012-05-28 2013-12-09 Chubu Electric Power Co Inc Superconducting coil device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244284A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil manufacturing method and superconducting coil
JP2011023724A (en) * 2009-07-16 2011-02-03 Siemens Plc Method of manufacturing solenoidal magnet coil, and solenoidal magnet coil
US8943676B2 (en) 2009-07-16 2015-02-03 Siemens Plc. Method of manufacturing a solenoidal magnet structure
GB2480636A (en) * 2010-05-26 2011-11-30 Siemens Plc Solenoid magnet with coils and compression block spacers impregnated with resin.
GB2480636B (en) * 2010-05-26 2012-12-05 Siemens Plc A method for the production of solenoidal magnets made up of several axially aligned coils
GB2529596A (en) * 2010-05-26 2016-02-24 Siemens Plc Solenoidal magnets made up of several axially aligned coils
GB2493467B (en) * 2010-05-26 2016-03-16 Siemens Healthcare Ltd Solenoidal magnets made up of several axially aligned coils
GB2529596B (en) * 2010-05-26 2016-05-18 Siemens Plc Solenoidal magnets made up of several axially aligned coils
US9536659B2 (en) 2010-05-26 2017-01-03 Siemens Plc Solenoidal magnets composed of multiple axially aligned coils
JP2012064693A (en) * 2010-09-15 2012-03-29 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus
GB2489661A (en) * 2011-03-14 2012-10-10 Siemens Plc Cylindrical electromagnet with a contracted outer mechanical support structure
JP2013247291A (en) * 2012-05-28 2013-12-09 Chubu Electric Power Co Inc Superconducting coil device

Similar Documents

Publication Publication Date Title
JP5743446B2 (en) Method for manufacturing solenoid magnet coil and solenoid magnet coil
JP2002078257A (en) Motor and rotor thereof
JP6023702B2 (en) Solenoid magnet consisting of several axially aligned coils
US3737988A (en) Method of bonding armature sub-assemblies
JP5895015B2 (en) Reinforced magnet
JPH11251133A (en) Manufacture of superconducting coil
US8839505B2 (en) Method of manufacturing a magnet assembly
US8262971B2 (en) Method of centralizing and retaining molded end coils in magnet formers
US3623203A (en) Reinforced structural members and method of making same
GB2294592A (en) Superconducting coils
JP4986828B2 (en) Formed magnet end coil wound on site and manufacturing method thereof
JP2679330B2 (en) Superconducting coil manufacturing method
RU2736761C2 (en) Methods and systems for hardening materials inside cavities
JPS62196802A (en) Manufacture of superconducting coil
US20230086102A1 (en) Methods of Manufacturing a Parallel, Simplified, Formerless Multi-Coil Cylindrical Superconducting Magnet Structure, and a Structure as May Be Manufactured by Such Methods
US20230091475A1 (en) Methods of Manufacturing a Molded, Formerless Multi-Coil Cylindrical Superconducting Magnet Structure, and a Structure as May Be Manufactured by Such Methods
JP2000032717A (en) Method for curing coil insulation layer using hollow electric wire
JPH0645137A (en) Coil for electromagnet and manufacturing method thereof
JPS6136688B2 (en)
JP2007035835A (en) Manufacturing method of inner tub of cryostat
JPH0969454A (en) Manufacture of superconducting magnet
JPS62181640A (en) Can reinforcement of canned motor for compressor
JPH02843B2 (en)
JPH031807B2 (en)
JPH0374010B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311