JPH11250746A - High-temperature oxide superconductive wire rod and its manufacture - Google Patents

High-temperature oxide superconductive wire rod and its manufacture

Info

Publication number
JPH11250746A
JPH11250746A JP10051619A JP5161998A JPH11250746A JP H11250746 A JPH11250746 A JP H11250746A JP 10051619 A JP10051619 A JP 10051619A JP 5161998 A JP5161998 A JP 5161998A JP H11250746 A JPH11250746 A JP H11250746A
Authority
JP
Japan
Prior art keywords
powder
temperature oxide
oxide superconducting
metal tube
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10051619A
Other languages
Japanese (ja)
Inventor
Tetsuaki Sashita
哲明 指田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10051619A priority Critical patent/JPH11250746A/en
Publication of JPH11250746A publication Critical patent/JPH11250746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature oxide superconductive wire rod with a metal sheath having high critical current density, by filling an aggregate of one or more kinds of powder in a metal tube. SOLUTION: In this manufacture, a core metal is put in a metal tube 3 of silver or silver alloy, etc., and second powder 2 is filled into space formed between the metal tube 3 and the core metal with a ratio (a loading ratio) of bulk density to theoretical density of the powder after the filling adjusted to lie in the range of 1/3-1. Then a first powder is filled into space formed by drawing the core metal out, to make up a compound material by repeating the filling and compression of the powder, with the loading ratio adjusted in the same way. The compound material is extruded, then it is drawn, and the diameter of it is reduced by methods of wiredrawing and rolling, etc., thereafter it is heat-treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属シースを施し
た高い臨界電流密度を有する高温酸化物超電導線材およ
びその製造方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a high-temperature oxide superconducting wire having a high critical current density provided with a metal sheath and a method for producing the same.

【0002】[0002]

【従来の技術】高温酸化物超電導線材は、液体窒素温度
で超電導状態を示すことから、超電導マグネット用線
材、超電導ケーブルなどへの応用が期待され、その開発
が進められている。特に、ビスマス系高温酸化物超電導
体を用い、金属シースを施した高温酸化物超電導線材
は、高臨界電流密度化等の超電導特性向上を目指した研
究開発が行われている。
2. Description of the Related Art Since high-temperature oxide superconducting wires exhibit a superconducting state at liquid nitrogen temperature, they are expected to be applied to wires for superconducting magnets, superconducting cables, and the like, and their development is being promoted. In particular, high-temperature oxide superconducting wires provided with a metal sheath using a bismuth-based high-temperature oxide superconductor have been researched and developed with the aim of improving superconducting characteristics such as increasing the critical current density.

【0003】金属シースを施した高温酸化物超電導線材
は、銀または銀合金などの金属管に高温酸化物超電導仮
焼粉末を詰め、それを縮径、延伸加工し、定尺切断した
ものを多数本束ね、さらに銀または銀合金などの金属パ
イプに充填、縮径、延伸加工するパウダー・イン・チュ
ーブ法などで製造され、用途に応じて丸断面線材あるい
はテープ状に加工される。
[0003] Many high-temperature oxide superconducting wires with a metal sheath are prepared by packing a high-temperature oxide superconducting calcined powder in a metal tube such as silver or silver alloy, reducing the diameter of the powder, stretching it, and cutting it to a fixed size. The bundle is manufactured by a powder-in-tube method of filling, reducing, and stretching a metal pipe such as silver or a silver alloy, and then processed into a wire having a round cross section or a tape depending on the application.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の方法で
は、金属管内に単一種類の粉末を充填するのみであり、
性質の異なる2種以上の粉末を設計どおりの配置にして
充填することは、高温酸化物超電導仮焼粉末は、粒径数
ミクロンから数十ミクロンのセラミックス微粉末であ
り、粉流体としての挙動を示すため、2種以上の粉末を
金属管内に充填しようとしても、互いに混合してしまう
という問題があった。
However, in the conventional method, only a single type of powder is filled in a metal tube.
Filling two or more kinds of powders with different properties according to the layout as designed is because the high-temperature oxide superconducting calcined powder is a ceramic fine powder with a particle size of several microns to several tens of microns, and exhibits the behavior as a powder fluid. For this reason, there is a problem that two or more kinds of powders are mixed with each other even if the metal tube is filled.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、1種以
上の高温酸化物超電導仮焼粉末を用い、第1の粉末が長
尺に集合してなる芯材の周囲に、第1の粉末と材料ある
いは組成が異なる第2の粉末の集合体を配置し、さらに
その周囲に金属管を配置する高温酸化物超電導線材を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to use one or more types of high-temperature oxide superconducting calcined powder, and to form a first powder around a core material formed by elongating the first powder. An object of the present invention is to provide a high-temperature oxide superconducting wire in which an aggregate of a second powder having a different material or composition from the powder is arranged, and a metal tube is arranged around the second powder.

【0006】本発明は、図1に示すように長尺に集合し
てなる第1の粉末の芯材1の周囲に、第1の粉末と材料
あるいは組成が異なる第2の粉末の集合体2を配置し、
さらにその周囲に金属管3を配置した高温酸化物超電導
線材であり、この高温酸化物超電導線材は、以下の手順
で作製される。まず、銀や銀合金などの金属管3に芯金
4を配置し、金属管3と芯金4の間に形成される空間に
第2の粉末を充填し、パイプ状押し治具6でこの粉末を
軸方向に押し込み、その後、パイプ状押し治具6を引き
抜く。さらに、体積が減少した分の粉末を注ぎ足し、圧
縮をするという作業をかさ密度を調整しながら作製す
る。次に芯金4を引き抜いてできた空間に第1の粉末を
充填し、棒状の治具にてこの粉末を押し込み、同様にか
さ密度を調整しながら粉末の注ぎ足し圧縮を繰り返す。
この複合体9を押出し、伸線や圧延等の方法で縮径、延
伸することにより線材化し、熱処理することにより、金
属管内に2種以上の粉末を断面内に所定の設計どおり配
置した金属シースを施した高温酸化物超電導線材を得る
ことができる。
According to the present invention, as shown in FIG. 1, a second powder aggregate 2 having a material or composition different from that of the first powder is provided around a first powder core material 1 formed in a long shape. And place
Further, a high-temperature oxide superconducting wire having a metal tube 3 disposed therearound is produced by the following procedure. First, a metal core 4 is placed in a metal tube 3 made of silver or a silver alloy, and a space formed between the metal tube 3 and the metal core 4 is filled with a second powder. The powder is pushed in the axial direction, and then the pipe-shaped pushing jig 6 is pulled out. Further, the work of adding and compressing the powder whose volume has been reduced and adjusting the bulk density is performed. Next, the space formed by extracting the cored bar 4 is filled with the first powder, and the powder is pushed in with a rod-shaped jig, and the powder is poured while the bulk density is adjusted in the same manner, and compression is repeated.
The composite 9 is extruded, reduced in diameter and stretched by a method such as wire drawing or rolling to form a wire rod, and heat-treated to form a metal sheath in which two or more kinds of powders are arranged in a metal tube in a cross section according to a predetermined design. , A high-temperature oxide superconducting wire can be obtained.

【0007】[0007]

【発明の実施の形態】本発明は、第1の長尺に集合して
なる粉末の芯材の周囲に、材料あるいは組成が異なる第
2の粉末の集合体を配置し、さらにその周囲に銀又は銀
合金からなる金属管を配置する高温酸化物超電導線材と
その製造方法であり、第1の粉末あるいは第2の粉末と
しては、機械的な加工により結晶配向化の促進および結
晶接合が改善される高温酸化物超電導材料が望ましく、
Bi系あるいはTl系などの高温酸化物超電導材料が適
用できる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, an aggregate of a second powder having a different material or composition is arranged around a core material of a first elongate aggregated powder. Or a high-temperature oxide superconducting wire in which a metal tube made of a silver alloy is arranged and a method for producing the same, wherein the first powder or the second powder has improved crystal orientation and improved crystal bonding by mechanical processing. High temperature oxide superconducting material is desirable,
A high-temperature oxide superconducting material such as a Bi-based or Tl-based material can be used.

【0008】高温超電導線材の臨界電流密度を高めるた
めに、長尺に集合してなる第1の粉末の芯材とその周囲
に設けられる第2の粉体の集合体は、通電時の超電導線
の内部の電流分布を考慮して配置することができるが、
複数本の高温酸化物超電導線材がケーブルあるいはコイ
ルなどに対称的に配置される場合、電流分布、磁界分布
を考慮し、長尺に集合してなる第1の粉末とその周囲に
配置する第2の粉末の集合体を同軸に配置することが好
ましい。さらに、通電時の超電導線の内部の電流分布を
考慮して、第2の粉末集合体の周囲に第3の粉末の集合
体などを多層に配置することができる。
[0008] In order to increase the critical current density of the high-temperature superconducting wire, the first powder core material formed into a long length and the second powder assembly provided around the first powder core material are composed of a superconducting wire when energized. Can be placed in consideration of the current distribution inside the
When a plurality of high-temperature oxide superconducting wires are symmetrically arranged on a cable or a coil, the first powder formed into a long length and the second powder arranged around the first powder are considered in consideration of current distribution and magnetic field distribution. Is preferably arranged coaxially. Furthermore, in consideration of the current distribution inside the superconducting wire at the time of energization, the third powder aggregate and the like can be arranged in multiple layers around the second powder aggregate.

【0009】第1の粉末と第2の粉末として、一方をB
i系高温酸化物超電導仮焼粉末であり、他方にこの高温
酸化物超電導仮焼粉末と反応しない、MgO、SrTi
3などの異なる材料のセラミックス粉末を用いること
ができる。第1の粉末にBi系高温酸化物超電導仮焼粉
末を用い、第2の粉末にこの高温酸化物超電導仮焼粉末
と反応しない、MgO、SrTiO3などの異なる材料
のセラミックス粉末を用いることにより、セラミック粉
末がバリア層となり、交流通電時において高温酸化物超
電導体間の結合損失の低減や、熱処理時の金属管からの
高温酸化物超電導体への不純部汚染防止などの効果を得
ることができる。
One of the first powder and the second powder is B
i-based high-temperature oxide superconducting calcined powder, and on the other hand, MgO, SrTi
Ceramic powder of a different material such as O 3 can be used. By using a Bi-based high-temperature oxide superconducting calcined powder as the first powder and a ceramic powder of a different material such as MgO or SrTiO 3 that does not react with the high-temperature oxide superconducting calcined powder as the second powder, The ceramic powder serves as a barrier layer, and it is possible to obtain effects such as a reduction in coupling loss between the high-temperature oxide superconductors during AC current application and a prevention of contamination of the high-temperature oxide superconductor from the metal tube to the high-temperature oxide superconductor during heat treatment. .

【0010】また、第1の粉末および第2の粉末共にB
i系あるいはTl系高温酸化物超電導材料の仮焼粉末で
あり、互いの組成が異なる粉末を用いることができ、高
温酸化物超電導体間の電流分布を制御することで、交流
損失低減あるいは臨界電流密度の増大といった超電導特
性を向上させることができる。
In addition, both the first powder and the second powder have B
A calcined powder of i- or Tl-based high-temperature oxide superconducting material, powders having different compositions can be used. By controlling the current distribution between the high-temperature oxide superconductors, AC loss reduction or critical current Superconducting characteristics such as an increase in density can be improved.

【0011】本発明の高温酸化物超電導線材は、図1に
示すように長尺に集合して形成された第1の粉末の芯材
1の周囲に、第1の粉末と材料あるいは組成が異なる第
2の粉末の集合体2を配置し、さらにその周囲に銀又は
銀合金からなる金属管3を配置する高温酸化物超電導線
材であり、この高温酸化物超電導線材は、図2から図6
に示す手順で作製される。まず、銀や銀合金などの金属
管2に芯金4を端末治具5で固定し、金属管3と芯金4
の間に形成される空間に第2の粉末を充填し、パイプ状
押し治具6でこの粉末を軸方向に押し込み、その後、パ
イプ状押し治具を引き抜く。圧縮により体積が減少した
分の第2の粉末を注ぎ足し、圧縮をするという作業を繰
り返し、第2の粉末のかさ密度を調整することができ
る。
As shown in FIG. 1, the high-temperature oxide superconducting wire of the present invention has a material or composition different from that of the first powder around the core 1 of the first powder formed in a long shape. This is a high-temperature oxide superconducting wire in which a second powder aggregate 2 is arranged, and a metal tube 3 made of silver or a silver alloy is arranged around the second powder aggregate 2.
It is produced by the procedure shown in FIG. First, a metal core 4 is fixed to a metal tube 2 made of silver or a silver alloy with a terminal jig 5.
The space formed between them is filled with the second powder, and this powder is pushed in the axial direction by the pipe-shaped pushing jig 6, and then the pipe-shaped pushing jig is pulled out. The operation of adding and compressing the second powder whose volume has been reduced by the compression and repeating the compression can adjust the bulk density of the second powder.

【0012】次に芯金4を引き抜いてできた空間に粉末
ガイド治具7を用い第1の粉末を充填し、押し治具8に
て第1の粉末を押し込み、体積が減少した分の第1の粉
末を注ぎ足し、圧縮を繰り返し、第2の粉末の充填率と
同様に第1の粉末のかさ密度を調整し、複合体9を作製
することができる。
Next, the space created by pulling out the metal core 4 is filled with the first powder using a powder guide jig 7, and the first powder is pushed in with a pushing jig 8 to reduce the volume of the first powder. The composite 9 can be produced by adding and adding the powder 1 and repeating the compression to adjust the bulk density of the first powder in the same manner as the filling rate of the second powder.

【0013】なお、本発明の高温酸化物超電導線材の複
合体9の製造方法として、第1の粉末と第2の粉末のか
さ密度が小さい場合、予め作製した第2の粉末層で形成
した空間に第1の粉末を充填し圧縮する際に、第2の粉
末層が崩れる問題があり、粉末層の強度を高めるため、
第1の粉末と第2の粉末の充填後のかさ密度を理論密度
の1/3〜1とすることで、第1の粉末と第2の粉末の
各集合体間の界面が均一な複合体9を作製することがで
きる。
As a method of manufacturing the composite 9 of a high-temperature oxide superconducting wire according to the present invention, when the bulk density of the first powder and the second powder is small, the space formed by the second powder layer prepared in advance is used. There is a problem that the second powder layer collapses when the first powder is filled and compressed, and in order to increase the strength of the powder layer,
By setting the bulk density after filling of the first powder and the second powder to be 1/3 to 1 of the theoretical density, the interface between the aggregates of the first powder and the second powder is uniform. 9 can be produced.

【0014】この複合体9を押出し、伸線や圧延等の方
法で縮径、延伸することにより高温酸化物超電導線材線
材を作製できる。また、この線材を定尺切断したものを
多数本束ね、銀または銀合金などの金属パイプに充填、
縮径、延伸加工することにより、多芯フィラメントの高
温酸化物超電導線材を作製することもできる。これらの
高温酸化物超電導線材は、丸断面線材でもよいし、ロー
ル圧延加工しテープ状線材にすることができる。
The composite 9 is extruded, reduced in diameter and stretched by a method such as wire drawing or rolling to produce a high-temperature oxide superconducting wire. In addition, this wire rod is cut into fixed lengths, bundled into many pieces, and filled in a metal pipe such as silver or silver alloy,
The high-temperature oxide superconducting wire of a multifilamentary filament can also be produced by reducing and stretching the diameter. These high-temperature oxide superconducting wires may be round cross-section wires or may be roll-rolled into tape-like wires.

【0015】[0015]

【実施例】第1の粉末として、Bi23、PbO、Sr
CO3、CaCO3及びCuOの粉末の混合物に対し、仮
焼結のための熱処理および粉砕を3回繰り返し、酸化物
超電導体の前駆体である( Bi,Pb)2Sr2Ca2
3y 超電導仮焼粉末を作製した。
EXAMPLES As the first powder, Bi 2 O 3 , PbO, Sr
The heat treatment and the pulverization for the preliminary sintering were repeated three times for the mixture of the powders of CO 3 , CaCO 3 and CuO, and the precursor of the oxide superconductor (Bi, Pb) 2 Sr 2 Ca 2 C
We were prepared u 3 O y superconductor calcined powder.

【0016】外径50mmφ、内径42mmφ、長さ5
00mmの銀製の金属管3を用い、銀製の金属管3の長
さより長い直径38mmφのステンレス製の芯金4を端
末治具5を通して固定した。この銀製の金属管3とステ
ンレス製の芯金4の間に形成される空間に、表1に示す
種類の第2の粉末を充填し、外径42mmφ、内径38m
mφのパイプ状押し治具6で軸方向に押し込み、引き抜
きを行ない、体積が減少した分の粉末を注ぎ足し、さら
に、圧縮するという作業を、表1に示す第2の粉末のか
さ密度が理論密度のa倍(充填率)になるまで繰り返し
行なった。
Outer diameter 50 mmφ, inner diameter 42 mmφ, length 5
Using a silver metal tube 3 of 00 mm, a stainless steel core 4 having a diameter of 38 mmφ longer than the length of the silver metal tube 3 was fixed through a terminal jig 5. A space formed between the silver metal tube 3 and the stainless steel core 4 is filled with a second powder of the type shown in Table 1 and has an outer diameter of 42 mm and an inner diameter of 38 m.
The work of pushing in the axial direction with a pipe-shaped jig 6 of mφ, pulling out, adding the powder whose volume has been reduced, and further compressing the powder is performed by the following method. The process was repeated until the density became a times (filling rate).

【0017】次に内径38mmφの粉末ガイド治具7を
銀製の金属管3の端部に取付け、ステンレス製の芯金4
を粉末ガイド治具7を取り付けた反対側より引き抜きな
がら、抜いてできた空間に第1の超電導仮焼粉末を間断
なく充填させた。さらに、この状態で、直径38mmφ
のステンレス製の押し治具8の先端が銀製の金属管3内
に入らないように押し込むストローク調整しながら圧縮
を繰り返し、第1の粉末の超電導仮焼粉末のかさ密度が
第2の粉末と同様、理論密度のa倍(充填率)になるま
で、充填、圧縮を行なった。表1に充填した粉末の種類
と充填率a倍に対する複合体9の作製結果を示す。
Next, a powder guide jig 7 having an inner diameter of 38 mmφ is attached to the end of the silver metal tube 3, and a stainless steel core 4 is attached.
Was pulled out from the opposite side to which the powder guide jig 7 was attached, and the space formed was filled with the first superconducting calcined powder without interruption. Further, in this state, the diameter is 38 mmφ.
The compression is repeated while adjusting the stroke of pushing the tip of the stainless steel pushing jig 8 so as not to enter the silver metal tube 3, and the bulk density of the superconducting calcined powder of the first powder is the same as that of the second powder. Filling and compression were performed until the density became a times the theoretical density (filling ratio). Table 1 shows the results of producing the composite 9 with respect to the type of the filled powder and the filling rate a times.

【0018】[0018]

【表1】 [Table 1]

【0019】実施したすべての粉末において充填率a倍
(充填後の粉末のかさ密度と充填粉末の理論密度の比)
が1/3〜1の範囲において、第2の粉末層が第1の粉
末の圧縮時に崩れることがなく、第1の粉末と第2の粉
末の界面は均一で良好な断面配置の複合体9が得られ
た。
Filling rate a times (ratio of bulk density of filled powder to theoretical density of filled powder) for all powders used
Is in the range of 1/3 to 1, the second powder layer is not collapsed when the first powder is compressed, and the interface between the first powder and the second powder is uniform and the composite 9 having a good cross-sectional arrangement is provided. was gotten.

【0020】良好な断面が得られた第1の粉末として複
合体9を直径4.6mmφまで伸線後、断面を観察した
ところ、いずれのサンプルにおいても、第1の粉末と第
2の粉末の断面積比は、複合体9における第1の粉末と
第2の粉末の断面積比の設計値とほぼ同じ値が得られ、
粉末同士の混ざりや長手方向での不均一もなく、良好な
断面構造が得られた。
As a first powder having a good cross section, the composite 9 was drawn to a diameter of 4.6 mmφ, and the cross section was observed. In each sample, the first powder and the second powder were mixed. The cross-sectional area ratio is approximately the same as the design value of the cross-sectional area ratio of the first powder and the second powder in the composite 9, and
A good cross-sectional structure was obtained without mixing of powders and non-uniformity in the longitudinal direction.

【0021】さらに、第1の粉末として( Bi,P
b)2Sr2Ca2Cu3y 超電導仮焼粉末1を用い、第
2の粉末としてMgOを用いた直径4.6mmφの複合
材9を定尺切断し、外径50mmφ、内径42mmφ、長さ
500mmの銀製の金属管に充填後、直径1.25mm
φまで伸線し、さらに厚さ0.25mmに圧延し、84
5℃で50時間熱処理を行なったところ、77Kにおい
て4端子法により臨界電流密度Jcを測定し、1.3×
104A/cm2を示す高温酸化物超電導線材が得られ
た。
Further, as the first powder (Bi, P
b) Using 2 Sr 2 Ca 2 Cu 3 O y superconducting calcined powder 1, a composite material 9 having a diameter of 4.6 mm using MgO as the second powder is cut to a fixed size, and has an outer diameter of 50 mmφ, an inner diameter of 42 mmφ, and a length. 1.25mm diameter after filling into a 500mm silver metal tube
It is drawn to φ, and further rolled to a thickness of 0.25 mm.
After a heat treatment at 5 ° C. for 50 hours, the critical current density Jc was measured at 77 K by a four-terminal method, and 1.3 ×
A high-temperature oxide superconducting wire exhibiting 10 4 A / cm 2 was obtained.

【0022】同様に第1の粉末として( Bi,Pb)2
Sr2Ca2Cu3y 超電導仮焼粉末1を用い、第2の
粉末としてSrTi3粉末2を用いた直径4.6mmφ
の複合材9を線材に加工、熱処理し、臨界電流密度を測
定したところ、1.4×104A/cm2を示す高温酸化
物超電導線材が得られた。
Similarly, as the first powder, (Bi, Pb) 2
4.6 mmφ in diameter using Sr 2 Ca 2 Cu 3 O y superconducting calcined powder 1 and SrTi 3 powder 2 as the second powder
Was processed into a wire, heat-treated, and the critical current density was measured. As a result, a high-temperature oxide superconducting wire showing 1.4 × 10 4 A / cm 2 was obtained.

【0023】また、同様に第1の粉末として( Bi,
Pb)2Sr2Ca2Cu3y 超電導仮焼粉末1を用い、
第2の粉末として Bi2Sr2Ca2Cu3y 超電導仮
焼粉末2を用いた直径4.6mmφの複合材9を線材に
加工、熱処理し、臨界電流密度を測定したところ、1.
5×104A/cm2を示す高温酸化物超電導線材が得ら
れた。
Similarly, as the first powder (Bi,
Pb) using 2 Sr 2 Ca 2 Cu 3 O y superconductor calcined powder 1,
Processing the Bi 2 Sr 2 Ca 2 Cu 3 O y superconductor calcined powder 2 composite 9 of diameter 4.6mmφ using as the second powder in the wire was heat-treated, was measured critical current density, 1.
A high-temperature oxide superconducting wire exhibiting 5 × 10 4 A / cm 2 was obtained.

【0024】[0024]

【発明の効果】以上のように本発明において、銀や銀合
金などの金属管内に芯金を配置し、金属管と芯金の間に
形成される空間に第2の粉末を充填し、パイプ状押し治
具でこの粉末を軸方向に押し込み、その後パイプを引き
抜き、体積が減少した分の粉末を注ぎ足し、圧縮をする
という作業を、充填後の粉末のかさ密度と理論密度の比
(充填率)を1/3〜1の範囲に調整しながら作製す
る。次に芯金を引き抜いてできた空間に第2の粉末を充
填し、棒状の治具にてこの粉末を押し込み、同様に充填
率を調整しながら粉末の注ぎ足し圧縮を繰り返し複合体
を作製する。この複合体を押出し、伸線や圧延等の方法
で縮径、延伸することにより線材化し、熱処理すること
により、長尺に集合してなる第1の粉末の芯材1の周囲
に、第1の粉末と材料あるいは組成が異なる第2の粉末
の集合体2を配置し、さらにその周囲に金属管3を所定
の設計どおり配置した、金属シースを施した高い臨界電
流密度を有する高温酸化物超電導線材を得ることができ
る。
As described above, according to the present invention, a metal core is placed in a metal tube such as silver or a silver alloy, and a space formed between the metal tube and the metal core is filled with a second powder, and a pipe is formed. Pressing this powder in the axial direction with a pressing jig, then pulling out the pipe, adding the powder whose volume has been reduced, and compressing it, the work of filling the powder with the ratio of the bulk density to the theoretical density (filling Rate) in the range of 1/3 to 1. Next, the space formed by pulling out the core is filled with the second powder, and the powder is pushed in with a rod-shaped jig, and while the filling rate is similarly adjusted, the powder is added and compressed, and a composite is produced. . The composite is extruded, reduced in diameter and stretched by a method such as wire drawing or rolling to form a wire, and then heat-treated to form a first powder around the core 1 of the first powder formed into a long piece. A high-temperature oxide superconductor having a high critical current density provided with a metal sheath, in which an aggregate 2 of a second powder having a different material or composition from the powder of the above is arranged, and a metal tube 3 is arranged therearound as a predetermined design. A wire can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高温酸化物超電導線材の断面図であ
る。
FIG. 1 is a sectional view of a high-temperature oxide superconducting wire of the present invention.

【図2】本発明の第2の粉末の充填を行なう前の治具の
断面図である。
FIG. 2 is a cross-sectional view of the jig before the second powder of the present invention is filled.

【図3】本発明の第2の粉末の圧縮を行なっている状態
の治具の断面図である。
FIG. 3 is a sectional view of a jig in a state where the second powder of the present invention is being compressed.

【図4】本発明の第1の粉末の充填を行なっている状態
の治具の断面図である。
FIG. 4 is a cross-sectional view of the jig in a state where the first powder of the present invention is being filled.

【図5】本発明の第1の粉末の圧縮を行なっている状態
の治具の断面図である。
FIG. 5 is a sectional view of the jig in a state where the first powder of the present invention is being compressed.

【図6】本発明の複合体の長手方向の断面図である。FIG. 6 is a longitudinal sectional view of the composite of the present invention.

【符号の説明】 第1の粉末の集合体 第2の粉末の集合体 金属管 芯金 端末治具 パイプ状押し治具 粉末ガイド治具 押し治具 複合体[Explanation of Signs] Aggregate of first powder Aggregate of second powder Metal tube Core metal Terminal jig Pipe-shaped pushing jig Powder guide jig Push jig Composite

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】1種以上の高温酸化物超電導仮焼粉末を用
い、第1の粉末が長尺に集合してなる芯材の周囲に、第
1の粉末と材料あるいは組成が異なる第2の粉末の集合
体を配置し、さらにその周囲に金属管を配置することを
特徴とする高温酸化物超電導線材
1. A method according to claim 1, wherein at least one kind of high-temperature oxide superconducting calcined powder is used, and a second powder having a material or composition different from that of the first powder is surrounded by a core formed by elongating the first powder. A high-temperature oxide superconducting wire characterized by arranging an aggregate of powder and further arranging a metal tube around the aggregate.
【請求項2】第1の粉末がBi系高温酸化物超電導仮焼
粉末であり、第2の粉末がこの高温酸化物超電導仮焼粉
末と反応しないセラミックス粉末であることを特徴とす
る請求項1に記載の高温酸化物超電導線材
2. The method according to claim 1, wherein the first powder is a Bi-based high-temperature oxide superconducting calcined powder, and the second powder is a ceramic powder that does not react with the high-temperature oxide superconducting calcined powder. High temperature oxide superconducting wire described in
【請求項3】第1の粉末がBi系高温酸化物超電導仮焼
粉末であり、第2の粉末が第1の粉末の組成と異なるB
i系高温酸化物超電導仮焼粉末であることを特徴とする
請求項1に記載の高温酸化物超電導線材
3. The first powder is a Bi-based high-temperature oxide superconducting calcined powder, and the second powder has a composition different from that of the first powder.
The high-temperature oxide superconducting wire according to claim 1, wherein the high-temperature oxide superconducting wire is an i-based high-temperature oxide superconducting calcined powder.
【請求項4】1種以上の高温酸化物超電導仮焼粉末を用
い、金属管内の第1の粉末が長尺に集合してなる芯材を
形成する空間に芯金をあらかじめ配置し、第2の粉末を
前記金属管および前記芯金の間隙に充填し、理論密度の
1/3〜1になるまで圧縮した後、前記芯金を引きなが
らできた空間に第1の粉末を充填し、第2の粉末と同じ
条件で圧縮することを特徴とする高温酸化物超電導線材
の製造方法
4. A method comprising: using at least one kind of high-temperature oxide superconducting calcined powder; preliminarily disposing a metal core in a space for forming a core material formed by elongating a first powder in a metal tube; Is filled in the gap between the metal tube and the core metal and compressed to 1/3 to 1 of the theoretical density, and then the first powder is filled into a space formed while pulling the core metal. 2. A method for producing a high-temperature oxide superconducting wire, comprising compressing under the same conditions as powder 2.
JP10051619A 1998-03-04 1998-03-04 High-temperature oxide superconductive wire rod and its manufacture Pending JPH11250746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10051619A JPH11250746A (en) 1998-03-04 1998-03-04 High-temperature oxide superconductive wire rod and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10051619A JPH11250746A (en) 1998-03-04 1998-03-04 High-temperature oxide superconductive wire rod and its manufacture

Publications (1)

Publication Number Publication Date
JPH11250746A true JPH11250746A (en) 1999-09-17

Family

ID=12891904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10051619A Pending JPH11250746A (en) 1998-03-04 1998-03-04 High-temperature oxide superconductive wire rod and its manufacture

Country Status (1)

Country Link
JP (1) JPH11250746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162379A1 (en) * 2013-04-01 2014-10-09 株式会社 日立製作所 Superconducting wire and manufacturing method for same, as well as superconducting coil
CN117954164A (en) * 2024-03-26 2024-04-30 西安聚能超导线材科技有限公司 Method for preparing superconducting cable for quantum computer by powder metallurgy method
CN117954164B (en) * 2024-03-26 2024-06-07 西安聚能超导线材科技有限公司 Method for preparing superconducting cable for quantum computer by powder metallurgy method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162379A1 (en) * 2013-04-01 2014-10-09 株式会社 日立製作所 Superconducting wire and manufacturing method for same, as well as superconducting coil
CN117954164A (en) * 2024-03-26 2024-04-30 西安聚能超导线材科技有限公司 Method for preparing superconducting cable for quantum computer by powder metallurgy method
CN117954164B (en) * 2024-03-26 2024-06-07 西安聚能超导线材科技有限公司 Method for preparing superconducting cable for quantum computer by powder metallurgy method

Similar Documents

Publication Publication Date Title
AU779553B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH11250746A (en) High-temperature oxide superconductive wire rod and its manufacture
JP3813260B2 (en) Oxide multi-core superconducting conductor and method for producing the same
US5550103A (en) Superconductor tapes and coils and method of manufacture
JPH06325634A (en) Multi-core oxide superconducting wire
JPH05334921A (en) Ceramic superconductor
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH09115356A (en) Tape form oxide superconducting wire material and superconducting magnet and current lead using the same
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JP2558686B2 (en) Superconducting wire manufacturing method
JPH1097815A (en) Bismuth oxide multicore superconducting wire and its manufacture
JPH02183918A (en) Manufacture of oxide superconductor
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH11126523A (en) Tape-like high temperature oxide superconductive wire material, manufacture and apparatus for manufacturing thereof
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
DeMoranville et al. Continuous multistrand assembly techniques for Ag clad superconducting wire
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JPH06119829A (en) Superconductive wire and manufacture thereof
EP1142037A1 (en) Method of producing superconducting tapes
JPH06302235A (en) Manufacture of oxide superconductive wire rod
JPH02192619A (en) Manufacture of oxide superconductor
JPH01169815A (en) Manufacture of superconductive cable with high critical current density
JPH02250221A (en) Manufacture of multi-conductor oxide superconducting wire
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor