JPH11249126A - Liquid crystal optical element - Google Patents

Liquid crystal optical element

Info

Publication number
JPH11249126A
JPH11249126A JP10048061A JP4806198A JPH11249126A JP H11249126 A JPH11249126 A JP H11249126A JP 10048061 A JP10048061 A JP 10048061A JP 4806198 A JP4806198 A JP 4806198A JP H11249126 A JPH11249126 A JP H11249126A
Authority
JP
Japan
Prior art keywords
liquid crystal
retardation
optical element
plate
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10048061A
Other languages
Japanese (ja)
Other versions
JP4381492B2 (en
Inventor
Tatsuo Uchida
龍男 内田
Tetsuya Miyashita
哲哉 宮下
Takahiro Ishinabe
隆宏 石鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU TECHNO BRAINS KK
Original Assignee
TOHOKU TECHNO BRAINS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU TECHNO BRAINS KK filed Critical TOHOKU TECHNO BRAINS KK
Priority to JP04806198A priority Critical patent/JP4381492B2/en
Publication of JPH11249126A publication Critical patent/JPH11249126A/en
Application granted granted Critical
Publication of JP4381492B2 publication Critical patent/JP4381492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress reflectance in a dark state in a visible light area and to perform a high contrast display by optimizing the characteristics of a liquid crystal optical element by making a phase difference plate to plural-sheets constitution. SOLUTION: A first phase difference plate 4a is provided with wavelength dispersion almost same as a parallel orientation ECB liquid crystal layer 3 to visible incident light, the absolute value of retardation is made almost equal, a code is made opposite and the sum of the retardation of the first phase difference plate 4a and the parallel ECB liquid crystal layer 3 is made within the range of -λ/20 to λ/20. Also, a second phase difference plate 4b is the retardation of the size of λ/4-λ/20 to λ/4+λ/20 to while defining a wavelength as λat an incident angle within the range of -70 degree to 70 degree on the basis of the normal direction of the second phase difference plate 4b to the visible incident light. By applying such an optical element, a phase difference film is designed by taking the orientation state of liquid crystal and the wavelength dispersion into consideration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶を利用して反
射光の光強度を電気的に制御し、カラー表示も可能とし
た光学素子と、その光学素子を利用した液晶表示装置に
関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an optical element capable of electrically controlling the light intensity of reflected light by using liquid crystal to enable color display, and a liquid crystal display device using the optical element.

【0002】[0002]

【従来の技術】従来、液晶を用いて反射光を制御する光
学素子として、二枚の偏光板とねじれ構造を有する液晶
材料を用いた液晶光学素子に微細な凹凸形状を有する拡
散反射板を付加した構造の液晶光学素子が用いられてき
ている。図2に従来用いられている液晶光学素子の断面
を示す。図において、透明電極(ITO)2bを付着させ
たガラス基板1bと、透明電極(ITO)2cを付着させた
ガラス基板1cに挟持されたねじれ構造を有する液晶材料
からなる液晶層3は、更に、一対の偏光板5で挟持さ
れ、片方には拡散反射板6が貼り付けられている。そし
て、もう一方の偏光板側から入射された光がこの拡散反
射板6で反射され、その過程で液晶層3の液晶による反
射光の制御が行われる。
2. Description of the Related Art Conventionally, as an optical element for controlling reflected light using liquid crystal, a diffuse reflection plate having fine irregularities is added to a liquid crystal optical element using two polarizing plates and a liquid crystal material having a twisted structure. Liquid crystal optical elements having such a structure have been used. FIG. 2 shows a cross section of a conventionally used liquid crystal optical element. In the figure, a glass substrate 1b on which a transparent electrode (ITO) 2b is adhered and a liquid crystal layer 3 made of a liquid crystal material having a twisted structure sandwiched between a glass substrate 1c on which a transparent electrode (ITO) 2c is adhered, A pair of polarizing plates 5 is sandwiched, and a diffuse reflection plate 6 is attached to one side. Then, the light incident from the other polarizing plate side is reflected by the diffuse reflection plate 6, and in the process, the light reflected by the liquid crystal of the liquid crystal layer 3 is controlled.

【0003】また、上記に示す拡散反射板を貼り付ける
のではなく、上記の一対の透明電極のうち片方をミラー
電極とし、素子の表面側に拡散板を設けた構造の液晶光
学素子も開発されている。このような液晶光学素子を適
用し、表面からの白色光をカラーフィルタによって着色
させてフルカラー画像表示を行う反射型フルカラー液晶
表示装置が開発されている。
In addition, a liquid crystal optical element having a structure in which one of the above-mentioned pair of transparent electrodes is used as a mirror electrode and a diffusion plate is provided on the surface side of the element, instead of attaching the above-mentioned diffuse reflection plate, has been developed. ing. A reflection type full color liquid crystal display device which applies such a liquid crystal optical element and colors white light from the surface with a color filter to display a full color image has been developed.

【0004】図8に、その反射型フルカラー液晶表示装
置の断面図を示す。本反射型液晶表示装置は、ガラス1
b、1cの間に、カラーフィルタ10、透明導電膜(IT
O)2b、液晶3、鏡面反射板を兼ねた電極であるミラー
電極2aがそれぞれ層となってサンドイッチ状に挟み込ま
れ、表面側には拡散板11が設けられている。そして、表
面側からの白色の入射光がこの本液晶表示装置で選択的
に反射されることでフルカラー画像が得られる構造とな
っている。ここで、本図においては、説明の簡単化のた
め、偏光板、位相差板の記載、および、駆動回路の記載
などは省略している。
FIG. 8 is a sectional view of the reflection type full color liquid crystal display device. This reflective liquid crystal display device uses glass 1
b, 1c, color filter 10, transparent conductive film (IT
O) 2b, liquid crystal 3, and mirror electrode 2a, which is also an electrode also serving as a mirror reflector, are sandwiched in layers as layers, and a diffusion plate 11 is provided on the surface side. Then, the structure is such that a full-color image can be obtained by selectively reflecting white incident light from the front side by the present liquid crystal display device. Here, for simplification of description, description of a polarizing plate, a phase difference plate, and description of a driving circuit are omitted in the drawing.

【0005】このような反射型フルカラー液晶表示装置
に適用される液晶セルの詳細構造の一例を図9(a)に
示す。この反射タイプの液晶セルは、上から拡散板11、
偏光板5、位相差板12、ガラス1b、透明導電膜(IT
O)2b、液晶15、ミラー電極2a、ガラス1cの積層構造と
なっている。ただし、図9においてはカラーフィルタの
記載は省略しているが、図8に示すようにカラーフィル
タを付加することによって容易にカラー化することが可
能である。
FIG. 9A shows an example of a detailed structure of a liquid crystal cell applied to such a reflection type full color liquid crystal display device. This reflection type liquid crystal cell has a diffusion plate 11 from above.
Polarizing plate 5, retardation plate 12, glass 1b, transparent conductive film (IT
O) It has a laminated structure of 2b, liquid crystal 15, mirror electrode 2a, and glass 1c. Although illustration of the color filters is omitted in FIG. 9, colorization can be easily achieved by adding a color filter as shown in FIG.

【0006】ここで、図9(a)は平行配向ECB(el
ectrically controlled birefringence )液晶セルであ
るが、図9(b)に示すベンド配向液晶セル、図9
(c)に示すHAN(hybrid aligned nematic)配向液
晶セルなども同様に適用することが可能である。なお、
上述の図8、図9で示したミラー電極2aの代わりに拡散
反射板を兼ねた金属電極を用いても良いし、あるいは、
拡散反射板と透明な平坦化膜と透明電極を用いても良
い。このような拡散反射板を用いた場合、拡散板11は除
くこともできる。
Here, FIG. 9A shows a parallel orientation ECB (el
FIG. 9B shows a bend-aligned liquid crystal cell shown in FIG.
A HAN (hybrid aligned nematic) alignment liquid crystal cell shown in (c) can be similarly applied. In addition,
Instead of the mirror electrode 2a shown in FIGS. 8 and 9, a metal electrode serving also as a diffuse reflection plate may be used, or
A diffuse reflection plate, a transparent flattening film, and a transparent electrode may be used. When such a diffuse reflection plate is used, the diffusion plate 11 can be omitted.

【0007】[0007]

【発明が解決しようとする課題】しかし、以上で説明し
た光学素子は広視野角の範囲において十分な明るさ、コ
ントラストを得ることができない。本発明は、平行配向
ECB、または、ベンド配向、HAN配向のいずれかの
液晶セルを適用した液晶光学素子において、その明るさ
とコントラストを最適化し、高反射率、高解像度、高コ
ントラストを有する液晶光学素子の提供と、その液晶光
学素子を適用した液晶表示装置の実現を課題とする。
However, the optical element described above cannot provide sufficient brightness and contrast in a wide viewing angle range. The present invention relates to a liquid crystal optical element to which a liquid crystal cell of any of a parallel alignment ECB, a bend alignment, and a HAN alignment is applied, in which the brightness and contrast are optimized, and the liquid crystal optical element having high reflectance, high resolution, and high contrast is provided. It is an object to provide an element and to realize a liquid crystal display device to which the liquid crystal optical element is applied.

【0008】[0008]

【課題を解決するための手段】本発明は、液晶光学素子
の特性に位相差板が大きく寄与することに着目し、その
位相差板の特性を詳しく解析することによってなされた
ものであり、従来1枚で構成されていた位相差板を複数
枚構成とすることで、液晶光学素子の特性が最良となる
ことを見出したことに基づいてなされたものである。
The present invention focuses on the fact that a phase difference plate greatly contributes to the characteristics of a liquid crystal optical element, and has been made by analyzing the characteristics of the phase difference plate in detail. This is based on the finding that the characteristics of the liquid crystal optical element are optimized by forming a plurality of retardation plates each composed of one sheet.

【0009】すなわち、本発明者らは、複屈折型の液晶
を用いた場合、液晶のリターデーション(複屈折率と厚
さの積:Δn ・d、厚さは、波長λの倍数として表すこ
ともある。)に波長依存性があり、またこの波長依存性
は光の入射角度によって変化してしまうことから高コン
トラスト化を実現するためには光の入射角度によらず可
視領域にある全ての光が暗状態となるように位相差板を
設計して積層する必要があることを見出したのである。
That is, when the present inventors use a birefringent liquid crystal, the retardation of the liquid crystal (the product of the birefringence and the thickness: Δn · d, and the thickness is expressed as a multiple of the wavelength λ) Has a wavelength dependence, and the wavelength dependence changes depending on the incident angle of light. Therefore, in order to realize a high contrast, all wavelengths in the visible region are required regardless of the incident angle of light. They have found that it is necessary to design and stack a retardation plate so that light is in a dark state.

【0010】そこで、このために必要な位相差板の詳細
構成について検討を行った。一般に液晶のリタデーショ
ンは、光の波長λ、入射角度θそして液晶にかかる印加
電圧Vによって変化する。したがってλ0 を設計時にお
ける最適波長とすると液晶のリタデーションRlcを次式
のように表すことができる。 Rlc (λ, V, θ) =Rlc (λ=λ0,θ=0,V) A (θ, V) B (λ) (1) 一方、位相差板のリタデーションRFilmは光の波長、入
射角度に依存することから次式のように表すことができ
る。 RFilm (λ, θ) =RFilm (λ=λ0,θ=0)K (θ) L (λ) (2) ここで (2)式から、波長依存性または角度依存性の等し
い二種類の位相差板は次式で表すように一種類の位相差
板で実現することができる。
Therefore, the detailed configuration of the retardation plate necessary for this purpose was studied. In general, the retardation of the liquid crystal changes depending on the wavelength λ of light, the incident angle θ, and the voltage V applied to the liquid crystal. Therefore, if λ 0 is the optimum wavelength at the time of design, the retardation R lc of the liquid crystal can be expressed by the following equation. R lc (λ, V, θ) = R lc (λ = λ 0 , θ = 0, V) A (θ, V) B (λ) (1) On the other hand, the retardation R Film of the retardation plate is the wavelength of light. , Since it depends on the angle of incidence. R Film (λ, θ) = R Film (λ = λ 0 , θ = 0) K (θ) L (λ) (2) Here, from equation (2), two types having equal wavelength dependence or angle dependence are obtained. Can be realized by one kind of retardation plate as represented by the following equation.

【0011】波長依存性が同じ場合には次のようにな
る。 RFilm1(λ=λ0,θ=0)K1(θ) L (λ) +RFilm2(λ=λ0,θ=0)K2(θ) L λ) ={RFilm1(λ=λ0,θ=0)K1(θ) +RFilm2(λ=λ0,θ=0)K2(θ) }L (λ) (3) 一方、視角特性が同じ場合には次式で示される。 RFilm1(λ=λ0,θ=0)K (θ) L1(λ) +RFilm2(λ=λ0,θ=0)K (θ) L 2 (λ) ={RFilm1(λ=λ0,θ=0)L1(λ) +RFilm2(λ=λ0,θ=0)L2(λ) }K (θ) (4) ここで1枚の偏光板、位相差板、液晶からなる反射型液
晶素子の反射率は次式で表すことができる。 Rreflectance =cos2((2π|Rlc−Rfilm|)/λ) (5) (1) 式と(5) 式から、全ての波長、入射角度において暗
状態を得るために必要な位相差板の特性はθとλによら
ず、次式を満たせばよい。 RFilm=Rlc (λ=λ0,θ=0,V) A (θ, V) B (λ) −λ/4 (6) ここで右辺第一項は液晶と同じ波長分散を有し、かつ、
視角θを変えても絶対値は同じで負のリタデーションを
有する位相差板を表している。第二頃は光の入射角θと
波長λに依存せず、1/4 波長条件を満たす位相差板を表
している。
When the wavelength dependence is the same, the following is obtained.
You. RFilm1(λ = λ0, θ = 0) K1(θ) L (λ) + RFilm2(λ = λ0, θ = 0) KTwo(θ) L λ) = {RFilm1(λ = λ0, θ = 0) K1(θ) + RFilm2(λ = λ0, θ = 0) KTwo(θ)} L (λ) (3) On the other hand, when the viewing angle characteristics are the same, it is expressed by the following equation. RFilm1(λ = λ0, θ = 0) K (θ) L1(λ) + RFilm2(λ = λ0, θ = 0) K (θ) L Two (λ) = {RFilm1(λ = λ0, θ = 0) L1(λ) + RFilm2(λ = λ0, θ = 0) LTwo(λ)} K (θ) (4) Here, a reflective liquid composed of one polarizing plate, retardation plate, and liquid crystal
The reflectance of the crystal element can be expressed by the following equation. Rreflectance= CosTwo((2π | Rlc-Rfilm|) / Λ) (5) From Eqs. (1) and (5), darkness at all wavelengths and incident angles was obtained.
The characteristics of the retardation plate required to obtain the state depend on θ and λ.
Instead, the following equation may be satisfied. RFilm= Rlc (λ = λ0, θ = 0, V) A (θ, V) B (λ) −λ / 4 (6) where the first term on the right side has the same wavelength dispersion as the liquid crystal, and
Even if the viewing angle θ is changed, the absolute value is the same and negative retardation
FIG. The second time, the incident angle of light θ
A retardation plate that satisfies the 1/4 wavelength condition regardless of the wavelength λ is displayed.
doing.

【0012】この2枚の位相差板は視角依存性、波長依
存性ともに異なることから、二種類の位相差板を1枚の
位相差板として実現することはできない。したがって、
2枚の位相差板を独立に設計し、積層することによって
はじめて高コントラスト化を実現することができるので
あり、本発明においてはじめて、その2枚の位相差板の
特性について好適な適正範囲を見出したのである。
Since these two retardation plates have different viewing angle dependence and wavelength dependence, two types of retardation plates cannot be realized as one retardation plate. Therefore,
The high contrast can be realized only by independently designing and laminating the two phase difference plates. In the present invention, for the first time, a suitable appropriate range is found for the characteristics of the two phase difference plates. It was.

【0013】すなわち、本発明は、基板と、該基板上に
形成され電極機能を有する反射板と、該反射板上に被着
された平行配向ECB液晶層と、該平行配向ECB液晶
層上に載設され、該平行配向ECB液晶層側に透明電極
が形成されたガラス基板と、該ガラス基板上に載設した
第1の位相差板と、該第1の位相差板上に載設された第
2の位相差板と、該第2の位相差板上に載設された偏光
板とからなる液晶光学素子であって、前記第1の位相差
板が、可視の入射光に対し前記平行配向ECB液晶層と
略同じ波長分散を有し、リタデーションの絶対値を略等
しく、かつ、符号を逆とし、前記第1の位相差板と前記
平行配向ECB液晶層とのリタデーションの和を−λ/2
0 〜λ/20 の範囲内とするものであって、前記第2の位
相差板が、可視の入射光に対し、前記第2の位相差板の
法線方向を基準として−70度から70度の範囲内の入射角
度において、波長をλとして、λ/4−λ/20 からλ/4+
λ/20 の大きさのリタデーションであることを特徴とす
る液晶光学素子によって上記課題を解決したのである。
That is, the present invention provides a substrate, a reflector formed on the substrate and having an electrode function, a parallel alignment ECB liquid crystal layer adhered on the reflection plate, and a parallel alignment ECB liquid crystal layer formed on the parallel alignment ECB liquid crystal layer. A glass substrate having a transparent electrode formed on the side of the parallel alignment ECB liquid crystal layer, a first phase difference plate mounted on the glass substrate, and a glass substrate mounted on the first phase difference plate. A liquid crystal optical element comprising: a second retardation plate; and a polarizing plate mounted on the second retardation plate, wherein the first retardation plate is configured to detect the incident light with respect to visible light. It has substantially the same wavelength dispersion as the parallel alignment ECB liquid crystal layer, the absolute value of the retardation is substantially equal, and the sign is reversed, and the sum of the retardation of the first retardation plate and the parallel alignment ECB liquid crystal layer is- λ / 2
0 to λ / 20, wherein the second retardation plate is in a range from −70 degrees to 70 degrees with respect to visible incident light with respect to a normal direction of the second retardation plate. At an incident angle in the range of degrees, the wavelength is λ, and λ / 4−λ / 20 to λ / 4 +
This problem has been solved by a liquid crystal optical element characterized in that the retardation has a magnitude of λ / 20.

【0014】そして、前記平行配向ECB液晶層がHA
N配向液晶層またはベンド配向液晶層のいずれかであっ
ても同様に上記課題を解決できることを見出した。ま
た、上記においては、前記反射板を鏡面反射板として、
前記偏光板上に更に拡散板を載荷した構成とすることが
好適であることを見出した。一方、前記反射板が微細な
凹凸のある拡散反射板であり、該拡散反射板上に凹凸を
吸収する透明な平坦化膜が形成されているようにしても
良いことを見出した。
The parallel-aligned ECB liquid crystal layer has an HA
It has been found that the above problem can be similarly solved by using either the N-oriented liquid crystal layer or the bend-oriented liquid crystal layer. Further, in the above, the reflector is a specular reflector,
It has been found that a configuration in which a diffusion plate is further loaded on the polarizing plate is preferable. On the other hand, they have found that the reflector may be a diffuse reflector having fine irregularities, and a transparent flattening film for absorbing irregularities may be formed on the diffuse reflector.

【0015】ここで、反射板として拡散反射板を用いる
場合、平行配向ECB液晶層をベンド配向液晶層とする
ことが最も好ましい。そして、以上のような液晶光学素
子を用いた液晶表示装置においては、フルカラー表示を
行うためのRGBのカラーフィルタを有し、前記反射板
が電極機能を有するマトリックス反射板であり、前記マ
トリックス反射板と前記透明電極の間において、前記R
GBの各画素にそれぞれ異なる電圧を印加して同じ階調
となるようにすることが好適であることを見出した。
Here, when a diffuse reflector is used as the reflector, it is most preferable that the parallel alignment ECB liquid crystal layer is a bend alignment liquid crystal layer. In the liquid crystal display device using the liquid crystal optical element as described above, the liquid crystal display device includes an RGB color filter for performing full-color display, and the reflector is a matrix reflector having an electrode function. And the transparent electrode, the R
It has been found that it is preferable to apply different voltages to the respective pixels of GB so that the same gradation is obtained.

【0016】[0016]

【発明の実施の形態】ここで、この2枚の位相差板のリ
タデーション特性について検討した。第1の位相差板と
液晶層とのリターデーションの和を横軸とし、その時の
暗状態の反射率を縦軸として両者の関係を図3に示す。
また、図4に、第2の位相差板のリタデーションとその
時の暗状態の反射率の変化を示す。
Here, the retardation characteristics of the two retardation plates were examined. FIG. 3 shows the relationship between the sum of the retardations of the first retardation plate and the liquid crystal layer on the horizontal axis and the reflectance in the dark state at that time on the vertical axis.
FIG. 4 shows the retardation of the second retardation plate and the change in reflectance in the dark state at that time.

【0017】図3、図4において縦軸の暗状態の反射率
は、本発明の光学素子の明状態を100 %としたときの暗
状態における反射率を示す。ここで、暗状態と明状態の
間のコントラスト比を次のように定義する。 コントラスト比=(明状態の反射率/暗状態の反射率) したがって、許容できる最低のコントラスト比の値を10
とすると、暗状態の反射率は10%以下とする必要があ
る。
In FIGS. 3 and 4, the reflectance in the dark state on the vertical axis indicates the reflectance in the dark state when the light state of the optical element of the present invention is set to 100%. Here, the contrast ratio between the dark state and the bright state is defined as follows. Contrast ratio = (reflectance in bright state / reflectance in dark state) Therefore, the lowest acceptable contrast ratio value is 10
Then, the reflectance in the dark state needs to be 10% or less.

【0018】ここでリタデーションの誤差による各波長
の最低のコントラスト比をそれぞれ10とすると、前者の
第1の位相差板と液晶層とのリターデーションの和は±
λ/20 、後者の第2の位相差板のリタデーションはλ/4
に対し±λ/20 以内であれば良いことがわかる。したが
って、光の波長λが400nm から700nm の間の可視光範囲
の入射光に対し、第1の位相差板は液晶の光軸方位にお
ける入射角度によることなく、液晶層のリタデーション
との和が±λ/20 の範囲に入るようにすればよく、ま
た、第2の位相差板はλ/4−λ/20 からλ/4+λ/20 の
大きさのリタデーションを有するように設計することに
よって、それぞれ10以上の高コントラストを実現可能と
なる。
Assuming that the lowest contrast ratio of each wavelength due to the retardation error is 10 respectively, the sum of the retardation of the first retardation plate and the liquid crystal layer is ± 1.
λ / 20, the latter retardation of the second retardation plate is λ / 4
It can be seen that it is only necessary to be within ± λ / 20. Therefore, for the incident light in the visible light range where the wavelength λ of the light is between 400 nm and 700 nm, the first retardation plate does not depend on the incident angle in the optical axis direction of the liquid crystal and the sum with the retardation of the liquid crystal layer is ± λ / 20, and the second retardation plate is designed so as to have a retardation of a magnitude of λ / 4−λ / 20 to λ / 4 + λ / 20. High contrast of 10 or more can be realized.

【0019】[0019]

【実施例】つぎに、本発明の液晶光学素子を用い、実際
の液晶表示装置の実現について検討を行った。複屈折を
用いる液晶光学素子の場合、RGBの各画素を同じ電圧
−反射率特性とみなして駆動すると、屈折率の波長分散
によって暗状態以外の状態では波長依存性に起因して反
射率が異なってしまう上に、この波長依存性は光の入射
角によって変化する。
EXAMPLE Next, the realization of an actual liquid crystal display using the liquid crystal optical element of the present invention was examined. In the case of a liquid crystal optical element using birefringence, if each of the RGB pixels is driven with the same voltage-reflectance characteristics, the reflectance differs due to wavelength dependence in a state other than the dark state due to the wavelength dispersion of the refractive index. In addition, the wavelength dependency changes depending on the incident angle of light.

【0020】したがって、無彩色の表示を行おうとする
と、RGBの各画素間で異なる電圧−反射率特性に対し
て常に彩度が小さくなるように、異なる電圧を印加して
おく必要がある。この時、視野角を変化させても色相の
変化が生じないようにするためには、RGBの各画素の
視角特性を同じにする必要があるが、図5に示すように
RGBの各画素の最大の反射率を各階調で等しくするこ
とによって視角特性を同じにすることができる。
Therefore, when an achromatic display is to be performed, it is necessary to apply different voltages so that the saturation is always small for the different voltage-reflectance characteristics between the RGB pixels. At this time, in order to prevent a change in hue from occurring even when the viewing angle is changed, it is necessary to make the viewing angle characteristics of the RGB pixels the same, but as shown in FIG. The viewing angle characteristics can be made the same by making the maximum reflectance equal for each gradation.

【0021】図5にRGB各画素の反射率の視角特性を
示す。各画素の反射率は図示のように正面方位における
最大の反射率(R=100 %、R=75%、R=50%、R=
25%)に依存し、波長にはほとんど依存しない。したが
って、RGBの各画素の最大の反射率を同じにすること
で、RGB画素間の視角特性を等しくすることができ
る。
FIG. 5 shows the viewing angle characteristics of the reflectance of each of the RGB pixels. As shown in the figure, the reflectance of each pixel is the maximum reflectance in the front direction (R = 100%, R = 75%, R = 50%, R = 100%).
25%) and hardly depend on wavelength. Therefore, the viewing angle characteristics between the RGB pixels can be made equal by making the maximum reflectance of each pixel of RGB the same.

【0022】本発明の液晶光学素子において、以上の原
理を利用することによって高コントラスト表示、広視野
角表示が可能となる。以上で説明した知見をベースとし
て、本発明の反射型の液晶光学素子を試作した。暗状態
における波長−反射率特性の測定結果を図6に示す。こ
の結果から、本発明の液晶光学素子を用いることによ
り、暗状態における反射率を可視光領域においてほぼ0
とすることができることを確認した。
In the liquid crystal optical element of the present invention, high contrast display and wide viewing angle display can be realized by utilizing the above principle. Based on the findings described above, a reflective liquid crystal optical element of the present invention was prototyped. FIG. 6 shows the measurement results of the wavelength-reflectance characteristics in the dark state. From these results, it was found that the reflectance in the dark state was almost zero in the visible light region by using the liquid crystal optical element of the present invention.
I confirmed that I can do it.

【0023】また、RGB各画素の異なる電圧−反射率
特性を補正するように電圧を制御して駆動したときのR
GB画素の視角特性を図7に示す。この結果から、RG
B画素の視角特性がほぼ一致しており、視野角の変化に
伴う色相の変化が抑えられ、広視野角表示が可能な液晶
表示装置を実現することが可能であることを確認した。
Further, when driving by controlling the voltage so as to correct different voltage-reflectance characteristics of each of the RGB pixels,
FIG. 7 shows the viewing angle characteristics of the GB pixels. From this result, RG
It has been confirmed that the viewing angle characteristics of the B pixels are almost the same, the change in hue accompanying the change in viewing angle is suppressed, and a liquid crystal display device capable of wide viewing angle display can be realized.

【0024】[0024]

【発明の効果】本発明の液晶光学素子を適用すること
で、液晶の配向状態、波長分散を考慮して位相差フィル
ムを設計することが可能となり、暗状態における反射率
を可視光領域において抑えることができ、高コントラス
ト表示の可能な反射型液晶光学素子が実現できるように
なった。
By applying the liquid crystal optical element of the present invention, it is possible to design a retardation film in consideration of the alignment state and wavelength dispersion of the liquid crystal, and suppress the reflectance in the dark state in the visible light region. As a result, a reflective liquid crystal optical element capable of high-contrast display can be realized.

【0025】また、この光学素子を用い、RGB画素間
で異なる電圧−反射率特性を補正するように電圧を制御
して駆動できることから、視野角の変化に伴う色相の変
化を抑えることが可能となり、広視野角特性を有する液
晶表示装置を実現できるようになった。
Further, since the optical element can be driven by controlling the voltage so as to correct the voltage-reflectance characteristics different between RGB pixels, it is possible to suppress a change in hue due to a change in viewing angle. Thus, a liquid crystal display device having a wide viewing angle characteristic can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の反射型液晶光学素子の断面図である。FIG. 1 is a sectional view of a reflective liquid crystal optical element of the present invention.

【図2】従来の反射型液晶光学素子の断面図である。FIG. 2 is a sectional view of a conventional reflective liquid crystal optical element.

【図3】本発明の反射型液晶光学素子に用いる位相差板
1について位相差板1と液晶層とのリタデーションの和
と暗状態の反射率の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the sum of the retardations of the retardation film 1 and the liquid crystal layer and the reflectance in the dark state for the retardation film 1 used in the reflective liquid crystal optical element of the present invention.

【図4】本発明の反射型液晶光学素子に用いる位相差板
2についてリタデーションと暗状態の反射率の関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between retardation and reflectance in a dark state for a retardation plate 2 used in a reflective liquid crystal optical element of the present invention.

【図5】本発明の反射型液晶光学素子ににおいてRGB
各画素のそれぞれの反射率に対する視角特性を等しくす
るように調整することにつき説明するグラフである。
FIG. 5 is a diagram illustrating a reflection type liquid crystal optical element according to the present invention;
9 is a graph illustrating adjustment of viewing angle characteristics with respect to respective reflectances of respective pixels so as to be equal.

【図6】本発明例と従来例の暗状態における波長−反射
率特性について比較するグラフである。
FIG. 6 is a graph comparing wavelength-reflectance characteristics in a dark state between the present invention example and the conventional example.

【図7】本発明の反射型液晶光学素子についてRGB各
画素のそれぞれの反射率に対する視角特性を示すグラフ
である。
FIG. 7 is a graph showing a viewing angle characteristic with respect to a reflectance of each of RGB pixels in the reflection type liquid crystal optical element of the present invention.

【図8】従来の反射型フルカラー液晶表示装置の構造を
示す断面図である。
FIG. 8 is a cross-sectional view showing the structure of a conventional reflective full-color liquid crystal display device.

【図9】反射型液晶表示装置の液晶構造を示す模式図で
あり、(a)は平行配向ECBセル、(b)はベンド配
向液晶セル、(c)はHAN配向液晶セルの各構造を示
す。
FIGS. 9A and 9B are schematic diagrams showing a liquid crystal structure of a reflection type liquid crystal display device, wherein FIG. 9A shows a parallel alignment ECB cell, FIG. 9B shows a bend alignment liquid crystal cell, and FIG. 9C shows a HAN alignment liquid crystal cell. .

【符号の説明】[Explanation of symbols]

1a 基板 1b、1c ガラス基板 2a ミラー電極 2b、2c 透明導電膜(ITO) 3 液晶層 4a 第1の位相差板 4b 第2の位相差板 5 偏光板 6 拡散反射板 10 マイクロカラーフィルタ 11 拡散板 12 位相差板 15 液晶 Reference Signs List 1a substrate 1b, 1c glass substrate 2a mirror electrode 2b, 2c transparent conductive film (ITO) 3 liquid crystal layer 4a first retardation plate 4b second retardation plate 5 polarizing plate 6 diffuse reflection plate 10 micro color filter 11 diffusion plate 12 Phase difference plate 15 Liquid crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石鍋 隆宏 宮城県仙台市青葉区錦町1丁目1番地の33 ワンズヴィレッジ1−103 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takahiro Ishinabe 33 Ones Village 1-103, 1-1-1, Nishikicho, Aoba-ku, Sendai, Miyagi

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に形成され電極機能を
有する反射板と、該反射板上に被着された平行配向EC
B液晶層と、該平行配向ECB液晶層上に載設され、該
平行配向ECB液晶層側に透明電極が形成されたガラス
基板と、該ガラス基板上に載設した第1の位相差板と、
該第1の位相差板上に載設された第2の位相差板と、該
第2の位相差板上に載設された偏光板とからなる液晶光
学素子であって、前記第1の位相差板が、可視の入射光
に対し前記平行配向ECB液晶層と略同じ波長分散を有
し、リタデーションの絶対値を略等しく、かつ、符号を
逆とし、入射する光の波長をλとして、前記第1の位相
差板と前記平行配向ECB液晶層とのリタデーションの
和を−λ/20 〜λ/20 の範囲内とするものであって、前
記第2の位相差板が、可視の入射光に対し、そのリタデ
ーションをλ/4−λ/20 からλ/4+λ/20 の大きさとす
るものであることを特徴とする液晶光学素子。
1. A substrate, a reflector formed on the substrate and having an electrode function, and a parallel alignment EC attached on the reflector.
A B liquid crystal layer, a glass substrate mounted on the parallel alignment ECB liquid crystal layer and having a transparent electrode formed on the side of the parallel alignment ECB liquid crystal layer, and a first retardation plate mounted on the glass substrate. ,
A liquid crystal optical element comprising a second retardation plate mounted on the first retardation plate and a polarizing plate mounted on the second retardation plate, wherein the first The retardation plate has substantially the same wavelength dispersion as the parallel alignment ECB liquid crystal layer for visible incident light, the absolute values of retardation are substantially equal, and the signs are reversed, and the wavelength of the incident light is λ, The sum of the retardation of the first retardation plate and the retardation of the parallel alignment ECB liquid crystal layer is in the range of -λ / 20 to λ / 20, and the second retardation plate has A liquid crystal optical element characterized in that the retardation of the light is λ / 4−λ / 20 to λ / 4 + λ / 20.
【請求項2】 前記平行配向ECB液晶層をHAN配向
液晶層またはベンド配向液晶層のいずれかとしたことを
特徴とする請求項1記載の液晶光学素子。
2. The liquid crystal optical element according to claim 1, wherein said parallel alignment ECB liquid crystal layer is one of a HAN alignment liquid crystal layer and a bend alignment liquid crystal layer.
【請求項3】 前記反射板が鏡面反射板であり、前記偏
光板上に更に拡散板を載荷したことを特徴とする請求項
1または2のいずれかに記載の液晶光学素子。
3. The liquid crystal optical element according to claim 1, wherein the reflection plate is a specular reflection plate, and a diffusion plate is further mounted on the polarizing plate.
【請求項4】 前記反射板が微細な凹凸のある拡散反射
板であり、該拡散反射板上に凹凸を吸収する透明な平坦
化膜が形成されていることを特徴とする請求項1または
2のいずれかに記載の液晶光学素子。
4. The reflector according to claim 1, wherein the reflector is a diffuse reflector having fine irregularities, and a transparent flattening film for absorbing the irregularities is formed on the diffuse reflector. A liquid crystal optical element according to any one of the above.
【請求項5】フルカラー表示を行うためのRGBのカラ
ーフィルタを有し、請求項1〜4記載のいずれかの液晶
光学素子を用いた液晶表示装置であって、前記反射板が
電極機能を有するマトリックス反射板であり、前記マト
リックス反射板と前記透明電極の間において、前記RG
Bの各画素にそれぞれ異なる電圧を印加して同じ階調と
なるようにしたことを特徴とする液晶表示装置。
5. A liquid crystal display device using a liquid crystal optical element according to claim 1, further comprising an RGB color filter for performing full color display, wherein said reflection plate has an electrode function. A matrix reflector, wherein the RG is provided between the matrix reflector and the transparent electrode.
A liquid crystal display device wherein different voltages are applied to the respective B pixels so that the same gradation is obtained.
JP04806198A 1998-02-27 1998-02-27 Liquid crystal optical element Expired - Lifetime JP4381492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04806198A JP4381492B2 (en) 1998-02-27 1998-02-27 Liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04806198A JP4381492B2 (en) 1998-02-27 1998-02-27 Liquid crystal optical element

Publications (2)

Publication Number Publication Date
JPH11249126A true JPH11249126A (en) 1999-09-17
JP4381492B2 JP4381492B2 (en) 2009-12-09

Family

ID=12792843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04806198A Expired - Lifetime JP4381492B2 (en) 1998-02-27 1998-02-27 Liquid crystal optical element

Country Status (1)

Country Link
JP (1) JP4381492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812271B1 (en) * 2000-05-17 2008-03-13 후지필름 가부시키가이샤 Phase shift plate, producing method thereof, and circular polarizing plate, 1/2 wavelength plate and refelective crystal display using the same
WO2009004869A1 (en) * 2007-07-03 2009-01-08 Sharp Kabushiki Kaisha Liquid crystal display
KR20160041913A (en) 2013-08-08 2016-04-18 갓코호우징 도쿄리카다이가쿠 Method for improving optical response and liquid crystal display device using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812271B1 (en) * 2000-05-17 2008-03-13 후지필름 가부시키가이샤 Phase shift plate, producing method thereof, and circular polarizing plate, 1/2 wavelength plate and refelective crystal display using the same
WO2009004869A1 (en) * 2007-07-03 2009-01-08 Sharp Kabushiki Kaisha Liquid crystal display
US8654303B2 (en) 2007-07-03 2014-02-18 Sharp Kabushiki Kaisha Liquid crystal display device
KR20160041913A (en) 2013-08-08 2016-04-18 갓코호우징 도쿄리카다이가쿠 Method for improving optical response and liquid crystal display device using same
US9575363B2 (en) 2013-08-08 2017-02-21 Tokyo University Of Science Foundation Method for improving optical response and liquid crystal display device using same

Also Published As

Publication number Publication date
JP4381492B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
KR100374446B1 (en) Reflection liquid crystal display and reflection liquid crystal display provided with built-in touch panel and comprising the same
US6611305B2 (en) Liquid crystal display device and electronic apparatus
US6124919A (en) Half reflection type liquid crystal display device having matched phase of transmitted and reflected light
JP4548848B2 (en) Transflective and semi-reflective TN liquid crystal display
US6407787B1 (en) Reflective liquid crystal display device
JP2002098954A (en) Translucent reflective liquid crystal display device
JP2000098385A (en) Reflection type liquid crystal display device
JPH11281970A (en) Reflection type liquid crystal display element
KR20000017461A (en) Reflective liquid crystal display device
TW556019B (en) Reflection-type liquid crystal display element
US7286198B2 (en) Transflective liquid crystal display
KR100294822B1 (en) Reflective type liquid crystal display
JPH11249126A (en) Liquid crystal optical element
JP2003195288A (en) Semi-transmission type liquid crystal display
JP2001183646A (en) Liquid crystal display device
JP3774575B2 (en) Reflective liquid crystal display
JPH05289052A (en) Liquid crystal display device
JP2001356340A (en) Reflective liquid crystal display device integrated with touch panel
JP3710722B2 (en) Reflective liquid crystal display
JP3580994B2 (en) Liquid crystal display
JPH11160703A (en) Display device
JP2000221486A (en) Liquid crystal display device
JP3289370B2 (en) Color liquid crystal display
JP2001108983A (en) Reflection liquid crystal display device and translucent reflection liquid crystal display device
US20060038945A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080711

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term