JPH11248844A - Low temperature diffusion cloud chamber and jig for use in observation - Google Patents

Low temperature diffusion cloud chamber and jig for use in observation

Info

Publication number
JPH11248844A
JPH11248844A JP5514298A JP5514298A JPH11248844A JP H11248844 A JPH11248844 A JP H11248844A JP 5514298 A JP5514298 A JP 5514298A JP 5514298 A JP5514298 A JP 5514298A JP H11248844 A JPH11248844 A JP H11248844A
Authority
JP
Japan
Prior art keywords
observation
temperature diffusion
diffusion type
track
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5514298A
Other languages
Japanese (ja)
Inventor
Yoshihide Sato
吉秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMAZU RIKA KIKAI KK
Original Assignee
SHIMAZU RIKA KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMAZU RIKA KIKAI KK filed Critical SHIMAZU RIKA KIKAI KK
Priority to JP5514298A priority Critical patent/JPH11248844A/en
Publication of JPH11248844A publication Critical patent/JPH11248844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low temperature diffusion cloud chamber which is easy in temperature control and enables easy observation of a track of a particle rays, etc. SOLUTION: Outputs of an electronic cooling element 12 for cooling the bottom face part 11a of an observation bath 11 in which ethanol is sealed and an electric heater 15 set at an upper part of the observation bath 11 are controlled by a control device 19, thereby properly maintaining a temperature difference of the ethanol gas at the upper part and bottom part of the observation bath. A supersaturated layer A is accordingly easily obtained. When a cap for controlling a count and a direction of charged particles emitted to a charged particle source is mounted, a track of each particle can be observed more easily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、学校の物理実験等
で用いられる低温拡散形霧箱および観察用治具に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature diffusion type fog box and an observation jig used in a physical experiment or the like of a school.

【0002】[0002]

【従来の技術】図6は従来の低温拡散形霧箱の概念図で
あり、その断面を示したものである。低温拡散形霧箱で
は、観察槽1内をエタノールガスで充満させた後(例え
ば、観察槽内にエタノールを入れてそれを気化させ
る)、観察槽1の底面部1a部分を冷却剤であるドライ
アイス2で冷却する。なお、冷却剤としては液体窒素等
も用いられる。このように底面部1aを冷却すると、観
察槽1内のエタノールガスは図示上下方向に温度勾配が
生じ、図のような過飽和層Aが形成される。このとき、
底面部1a部分温度と上面部1b部分の温度との差ΔT
を50〜60(deg)程度に保つと過飽和層Aが得ら
れやすい。この過飽和層Aをα粒子のような荷電粒子3
が通過したときにその通路4に沿って霧滴5の列がで
き、荷電粒子の飛跡を観察することができる。
2. Description of the Related Art FIG. 6 is a conceptual view of a conventional low-temperature diffusion type fog box, and shows a cross section thereof. In the low-temperature diffusion type fog box, after filling the inside of the observation tank 1 with ethanol gas (for example, putting ethanol into the observation tank and evaporating it), the bottom surface 1a of the observation tank 1 is dried with a cooling agent. Cool with ice 2. Note that liquid nitrogen or the like is also used as a coolant. When the bottom surface 1a is cooled in this manner, the ethanol gas in the observation tank 1 has a temperature gradient in the vertical direction in the figure, and a supersaturated layer A as shown in the figure is formed. At this time,
The difference ΔT between the temperature of the bottom part 1a and the temperature of the top part 1b
Is maintained at about 50 to 60 (deg), the supersaturated layer A is easily obtained. This supersaturated layer A is charged particles 3 such as α particles.
When the vehicle passes, a row of fog droplets 5 is formed along the passage 4, and the tracks of the charged particles can be observed.

【0003】なお、拡散形霧箱としては上述したような
低温拡散形霧箱の他に高温拡散形霧箱がある。高温拡散
形霧箱では、観察槽にエチレングリコールを入れて上部
をヒーター等で加熱し、同様の温度差ΔTを形成して過
飽和層を形成している。
As the diffusion type fog box, there is a high-temperature diffusion type fog box in addition to the low-temperature diffusion type fog box described above. In the high-temperature diffusion type fog box, ethylene glycol is put in an observation tank and the upper part is heated by a heater or the like, and a similar temperature difference ΔT is formed to form a supersaturated layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た低温拡散形霧箱では、冷却剤としてドライアイスや液
体窒素等の消耗品を用いるため、実験の度に冷却剤を準
備する必要があり、これら冷却剤の入手が困難な場合に
は実験を行うことができないという欠点がある。また、
冷却剤を用いて冷却をしているため冷却のコントロール
を簡単に行うことができず、温度差ΔTを適切な温度に
保つのが難しい。例えば、観察槽1全体が冷えてしまっ
てΔTが小さくなった場合、飛跡が見えにくくなるとい
う欠点がある。一方、高温拡散形霧箱の場合には、加熱
源として電気ヒータ等を用いているため手軽に実験が行
えるが、β線の観察を行う場合には温度管理が難しく飛
跡の観察を容易に行うことができないという欠点があ
る。
However, in the low-temperature diffusion type fog box described above, since consumables such as dry ice and liquid nitrogen are used as the cooling agent, it is necessary to prepare a cooling agent for each experiment. There is a disadvantage that experiments cannot be performed when it is difficult to obtain a coolant. Also,
Since cooling is performed using a coolant, cooling control cannot be easily performed, and it is difficult to maintain the temperature difference ΔT at an appropriate temperature. For example, if the entire observation tank 1 is cooled and ΔT is reduced, there is a disadvantage that the track becomes difficult to see. On the other hand, in the case of a high-temperature diffusion type fog chamber, an experiment can be easily performed because an electric heater or the like is used as a heating source, but when observing β rays, it is difficult to control the temperature and easily observe a track. There is a drawback that you can not.

【0005】本発明の目的は、温度制御がしやすく、容
易に荷電粒子の飛跡観察を行うことができる低温拡散形
霧箱、および飛跡観察時に飛跡をより観察しやすくする
ための観察用治具を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a low-temperature diffusion type fog chamber in which the temperature can be easily controlled and the track of charged particles can be easily observed, and an observation jig for making it easier to observe the track during the track observation. Is to provide.

【0006】[0006]

【課題を解決するための手段】発明の実施の形態を示す
図2〜4に対応付けて説明する。 (1)図2に対応付けて説明すると、請求項1の発明
は、飛跡観察用気体の封入された観察槽11の底面部1
1aを冷却手段で冷却し、飛跡観察用気体の過飽和層を
形成して荷電粒子の飛跡を観察する低温拡散形霧箱に適
用され、冷却手段として電子冷却素子12を用いたこと
により上述の目的を達成する。 (2)請求項2の発明は、請求項1に記載の低温拡散形
霧箱において、観察槽11の上部に設けられて飛跡観察
用気体を加熱するための加熱装置15と、観察槽上部お
よび底部における飛跡観察用気体の温度の差が適切に保
たれるように電子冷却素子12および加熱装置15を制
御する制御手段19とを設けた。 (3)図3に対応付けて説明すると、請求項3の発明
は、請求項1に記載の低温拡散形霧箱において、電子冷
却素子12の放熱部12bを覆い、放熱部12bから冷
却部12aへの熱侵入を阻止する断熱部材10を設けた
ことを特徴とする低温拡散形霧箱。 (4)図4に対応付けて説明すると、請求項4の発明
は、荷電粒子源20から観察槽11内に放出される荷電
粒子の飛跡を観察する霧箱に用いられる観察用治具22
であって、荷電粒子源20から観察槽11内に入射する
荷電粒子の数を制限し、かつ、観察槽11内に形成され
る過飽和層Aに沿って荷電粒子を入射させることにより
上述の目的を達成する。
An embodiment of the present invention will be described with reference to FIGS. (1) When described in association with FIG. 2, the invention of claim 1 is based on the bottom portion 1 of an observation tank 11 in which a track observation gas is sealed.
1a is cooled by a cooling means, and is applied to a low-temperature diffusion type fog box for observing the tracks of charged particles by forming a supersaturated layer of a track observing gas. To achieve. (2) In the low-temperature diffusion type fog box according to the first aspect of the present invention, the heating device 15 provided on the upper part of the observation tank 11 for heating the track observation gas, the upper part of the observation tank, Control means 19 is provided for controlling the electronic cooling element 12 and the heating device 15 so that the difference in the temperature of the track observation gas at the bottom is appropriately maintained. (3) Explaining in connection with FIG. 3, the invention of claim 3 is the low-temperature diffusion type fog box according to claim 1, which covers the heat radiating portion 12b of the electronic cooling element 12, and moves from the heat radiating portion 12b to the cooling portion 12a. A low-temperature diffusion type fog box, comprising a heat insulating member 10 for preventing heat from entering into the fog box. (4) Explained in connection with FIG. 4, the invention according to claim 4 is an observation jig 22 used for a fog box for observing tracks of charged particles emitted from the charged particle source 20 into the observation tank 11.
The above-described object is achieved by limiting the number of charged particles that enter the observation tank 11 from the charged particle source 20 and causing the charged particles to enter along the supersaturated layer A formed in the observation tank 11. To achieve.

【0007】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
[0007] In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to the embodiment.

【0008】[0008]

【発明の実施の形態】以下、図1〜図5を参照して本発
明の実施の形態を説明する。図1は本発明による低温拡
散形霧箱の一実施の形態を示す斜視図であり、図2は制
御系も含めて示した図である。図2において、(a)は
霧箱を側面から見た断面図であり、(b)は(a)のD
−D断面図である。12はペルチェ素子等の電子冷却素
子、13はその電源であり、電子冷却素子12は観察槽
11の底面部11aに取り付けられる。12aは電子冷
却素子12の冷却部、12bは放熱部であり、14は放
熱部12bを冷却するための水冷ブロックである。水冷
ブロック14には冷却水路14cが設けられており、1
4aは給水口で14bは排水口である。なお、図2
(a)では、分りやすいように排水口14bを給水口1
4aに対して反対側に示した。底面部11aは熱伝導性
の良い材料であるアルミ材が用いられ、上面部11bや
側面部11cには透明部材であるポリサルフォン等が用
いられる。側面部11cの上面部側付近には電気ヒータ
15が設けらており、16はその電源である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing an embodiment of a low-temperature diffusion type fog box according to the present invention, and FIG. 2 is a view including a control system. 2A is a cross-sectional view of the fog box viewed from the side, and FIG.
It is -D sectional drawing. Reference numeral 12 denotes an electronic cooling element such as a Peltier element, and reference numeral 13 denotes a power supply. The electronic cooling element 12 is attached to the bottom surface 11a of the observation tank 11. 12a is a cooling unit of the electronic cooling element 12, 12b is a radiator, and 14 is a water cooling block for cooling the radiator 12b. The water cooling block 14 is provided with a cooling water passage 14c.
4a is a water supply port and 14b is a drain port. Note that FIG.
In (a), the drain port 14b is connected to the water supply port 1 for easy understanding.
4a is shown on the opposite side. Aluminum material, which is a material having good heat conductivity, is used for the bottom surface 11a, and polysulfone, which is a transparent member, is used for the top surface 11b and the side surface 11c. An electric heater 15 is provided near the upper surface of the side surface 11c, and 16 is a power supply for the electric heater.

【0009】観察槽11内の電気ヒータ部分にはエタノ
ールを含んだフェルト17等が入れられ、これが電気ヒ
ータ15で暖められるとエタノールが蒸発して観察槽1
1内にエタノールガスが充満する。18a,18bは温
度センサであり、これらにより観察槽11内の上部およ
び下部の温度を計測する。19は温度センサ18a,1
8bの計測値に基づいて電子冷却素子12および電気ヒ
ータ15を制御する制御装置であり、観察槽11内の上
下方向の温度差ΔTが適切に保たれるように電子冷却素
子12および電気ヒータ15の出力が制御される。エタ
ノールを用いてα粒子の飛跡を観察する場合には、ΔT
=50〜60℃程度に保つようにするのが良い。本実施
の形態では、電子冷却素子12の温度を約−20℃に、
電気ヒータ15の温度を約40℃にそれぞれ制御するこ
とによって、上記の温度差ΔTを保つようにしている。
α粒子線源20は、側面部11cの過飽和層Aが形成さ
れる位置に取り付けられる。21は観察槽11内の雑イ
オンを除去するための雑イオン除去電極である。
A felt 17 or the like containing ethanol is placed in the electric heater portion in the observation tank 11. When the felt 17 is heated by the electric heater 15, the ethanol evaporates and the observation tank 1 is heated.
1 is filled with ethanol gas. Reference numerals 18a and 18b denote temperature sensors, which measure the temperatures of the upper and lower portions in the observation tank 11 by these. 19 is a temperature sensor 18a, 1
8b is a control device that controls the electronic cooling element 12 and the electric heater 15 based on the measurement value of the electronic cooling element 12 and the electric heater 15 so that the vertical temperature difference ΔT in the observation tank 11 is appropriately maintained. Is controlled. When observing the track of α particles using ethanol, ΔT
= 50 to 60 ° C. In the present embodiment, the temperature of the thermoelectric cooler 12 is set to about −20 ° C.
The temperature difference ΔT is maintained by controlling the temperature of the electric heater 15 to about 40 ° C., respectively.
The α particle beam source 20 is attached to the side surface portion 11c at a position where the supersaturated layer A is formed. Reference numeral 21 denotes a miscellaneous ion removing electrode for removing miscellaneous ions in the observation tank 11.

【0010】このように、本実施の形態では、低温拡散
形霧箱において、観察槽底面部11aの冷却に電子冷却
素子12を用いているため、従来のように実験の度に冷
却剤である液体窒素やドライアイスを用意する必要がな
く、これらの冷却剤が入手困難な場所でも容易に実験を
行うことができる。さらに、観察槽11の上部に電気ヒ
ータ15を設けて、観察槽11の上下方向温度差ΔTが
最適になるように電子冷却素子12と電気ヒータ15の
出力を制御するようにしたので、過飽和層Aを容易に形
成することができる。
As described above, in this embodiment, in the low-temperature diffusion type fog box, the electronic cooling element 12 is used for cooling the bottom 11a of the observation tank. There is no need to prepare liquid nitrogen or dry ice, and experiments can be easily performed even in locations where these coolants are difficult to obtain. Further, an electric heater 15 is provided above the observation tank 11, and the outputs of the electronic cooling element 12 and the electric heater 15 are controlled so that the vertical temperature difference ΔT of the observation tank 11 is optimized. A can be easily formed.

【0011】ところで、電子冷却素子12の冷却部12
aと放熱部12bとは接近しているため、図3(a)に
示すように電子冷却素子12の側面部分において放熱部
12bから冷却部12aへ熱が侵入し冷却効果の低下を
招く。本実施の形態では、図3(b)に示すように電子
冷却素子12の側面部分に、放熱部12bを覆うように
断熱部材10を設け、冷却部12aへの熱侵入を低減す
るようにした。
The cooling section 12 of the electronic cooling element 12
Since the a and the heat radiating portion 12b are close to each other, as shown in FIG. 3A, heat enters the cooling portion 12a from the heat radiating portion 12b on the side surface portion of the electronic cooling element 12, and the cooling effect is reduced. In the present embodiment, as shown in FIG. 3B, a heat insulating member 10 is provided on the side surface of the electronic cooling element 12 so as to cover the heat radiating portion 12b, so that heat intrusion into the cooling portion 12a is reduced. .

【0012】図4(a)はα粒子線源20から観察槽1
1内に放出されるα粒子のようすを概念的に示した図で
ある。α粒子線源20の放出部20a(円形の穴)から
放出されるα粒子は、図に示すような立体角Ωの範囲に
放出される。ところで、形成された過飽和層Aの厚みd
は薄いため、例えば、水平方向から大きな角度θで放出
されたα粒子の飛跡は短くなり、観測しにくい。また、
放出されるα粒子数はθが小さい程大きいので、水平方
向に放出されるα粒子の飛跡が重なって太く、ぼやけて
観測されることになり、観測し難いという欠点があっ
た。
FIG. 4 (a) shows the observation tank 1 from the α particle beam source 20.
FIG. 3 is a diagram conceptually showing the appearance of α particles released into the inside of the device. The α-particles emitted from the emission section 20a (circular hole) of the α-particle beam source 20 are emitted in the range of the solid angle Ω as shown in the figure. By the way, the thickness d of the formed supersaturated layer A
Is thin, for example, the track of α particles emitted at a large angle θ from the horizontal direction is short and difficult to observe. Also,
Since the number of emitted α-particles is larger as θ is smaller, the tracks of α-particles emitted in the horizontal direction are overlapped and are observed thick, blurred, and have a disadvantage that it is difficult to observe.

【0013】そこで、本実施の形態では、α粒子線の透
過率が比較的小さいことを利用して、図4(b)に示す
ようなキャップ22をα粒子線源20の先端部分に取り
付けα粒子の放出を制限するようにした。図5はキャッ
プ22を詳細に示す図であり、(a)はキャップ22を
正面から見た図であり、(b)は側面から見た図であ
る。キャップ22には溝幅の狭いスリット22aが水平
方向に形成されており、図4(b)に示すように、α粒
子源21からのα粒子はキャップ22で制限され、スリ
ット22aを通過するα粒子のみが観察槽11内に放出
される。
Therefore, in the present embodiment, a cap 22 as shown in FIG. 4B is attached to the tip of the α particle beam source 20 by utilizing the relatively small transmittance of the α particle beam. The emission of particles was limited. 5A and 5B are diagrams showing the cap 22 in detail, wherein FIG. 5A is a diagram of the cap 22 viewed from the front, and FIG. 5B is a diagram of the cap 22 viewed from the side. A slit 22a having a narrow groove width is formed in the cap 22 in the horizontal direction. As shown in FIG. 4B, α particles from the α particle source 21 are restricted by the cap 22, and α particles passing through the slit 22a are formed. Only particles are released into the observation tank 11.

【0014】このとき、スリット22aの溝幅が非常に
狭いため、図4(b)の角度θも小さくなりほとんど水
平方向に放出され、放出されるα粒子数も小さなものと
なる。その結果、α粒子が過飽和層Aに対して水平に放
出されるようになって飛跡が長くなるとともに、α粒子
の数が制限されるために飛跡の数が少なくなって一つ一
つの飛跡の観測がしやすくなる。図4(c)はα粒子線
源20を観察槽11の上方から見た図であり、破線Bは
飛跡を示す。
At this time, since the groove width of the slit 22a is very narrow, the angle θ in FIG. 4B is also reduced, and the light is emitted almost horizontally, and the number of α particles emitted is also small. As a result, the α-particles are emitted horizontally to the supersaturated layer A and the track lengthens, and the number of tracks decreases because the number of α-particles is limited. Observation becomes easier. FIG. 4C is a view of the α particle beam source 20 as viewed from above the observation tank 11, and a broken line B indicates a track.

【0015】上述した実施の形態では、α粒子を観察す
る場合について説明したが、β線に関しても同様の効果
が得られる。すなわち、温度差の管理がし易くなって飛
跡の観察を容易に行うことができるようになる。
In the above-described embodiment, the case of observing α particles has been described. However, similar effects can be obtained for β rays. That is, the temperature difference can be easily managed, and the track can be easily observed.

【0016】以上説明した実施の形態と特許請求の範囲
の要素との対応において、電気ヒータ15は加熱装置
を、キャップ22は観察用治具をそれぞれ構成する。
In the correspondence between the embodiment described above and the elements of the claims, the electric heater 15 constitutes a heating device, and the cap 22 constitutes an observation jig.

【0017】[0017]

【発明の効果】以上説明したように、請求項1〜3の発
明によれば、観察槽の冷却手段として電子冷却素子を用
いているため、従来のように実験の度に窒素やドライア
イス等の冷却剤を用意する必要がなく、これらの冷却剤
が入手困難な場合でも容易に飛跡観察の実験を行うこと
ができる。特に、請求項2の発明では、観察槽の上部に
電気ヒータを設けて観察槽内の上下方向の温度差が適切
に保たれるように制御するようにしているため、過飽和
層を容易に形成することができる。また、請求項3の発
明では、電子冷却素子の冷却部と放熱部との間の断熱が
向上して電子冷却素子の冷却効果の低下を防止すること
ができる。請求項4の発明によれば、過飽和層に入射す
る荷電粒子の数が減少し、かつ、荷電粒子を過飽和層に
沿って入射させるため、観測される飛跡の密度が小さく
なるとともに飛跡の長さが長くなるため、飛跡観察がし
やすくなる。
As described above, according to the first to third aspects of the present invention, since the electronic cooling element is used as the cooling means for the observation tank, nitrogen or dry ice or the like is used every time an experiment is performed as in the prior art. It is not necessary to prepare a coolant, and even when these coolants are difficult to obtain, an experiment of track observation can be easily performed. In particular, in the second aspect of the present invention, an electric heater is provided above the observation tank to control the temperature difference in the vertical direction in the observation tank appropriately, so that the supersaturated layer is easily formed. can do. Further, according to the third aspect of the invention, the heat insulation between the cooling part and the heat radiating part of the electronic cooling element is improved, so that the cooling effect of the electronic cooling element can be prevented from lowering. According to the invention of claim 4, since the number of charged particles incident on the supersaturated layer is reduced and the charged particles are incident along the supersaturated layer, the density of the track to be observed is reduced and the length of the track is reduced. , The track observation becomes easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による低温拡散形霧箱の実施の形態を示
す斜視図。
FIG. 1 is a perspective view showing an embodiment of a low-temperature diffusion type fog box according to the present invention.

【図2】図1の霧箱を詳細に示す図であり、(a)は側
面から見た断面図、(b)はD−D断面図。
FIGS. 2A and 2B are views showing the detail of the fog box of FIG. 1, wherein FIG. 2A is a cross-sectional view as viewed from the side, and FIG.

【図3】図2の電子冷却素子12付近の拡大図であり、
(a)は冷却効果の低下を説明する図、(b)は断熱部
材10を説明する図。
FIG. 3 is an enlarged view of the vicinity of an electronic cooling element 12 in FIG. 2,
(A) is a figure explaining the fall of a cooling effect, (b) is a figure explaining the heat insulation member 10. FIG.

【図4】観察槽11内におけるα粒子の放出のようすを
説明する図であり、(a)はキャップ22が無い場合、
(b),(c)はキャップ22を設けた場合を示し、
(c)は観察槽11の上面側から見た図。
FIGS. 4A and 4B are views for explaining how alpha particles are released in the observation tank 11. FIG.
(B), (c) shows the case where the cap 22 is provided,
(C) is a diagram viewed from the upper surface side of the observation tank 11.

【図5】キャップ22を詳細に示す図であり、(a)は
正面図、(b)は側面図。
5A and 5B are views showing the cap 22 in detail, wherein FIG. 5A is a front view and FIG. 5B is a side view.

【図6】従来の低温拡散形霧箱を説明する断面図。FIG. 6 is a cross-sectional view illustrating a conventional low-temperature diffusion type fog box.

【符号の説明】[Explanation of symbols]

10 断熱部材 11 観察槽 12 電子冷却素子 14 水冷ブロック 15 電気ヒータ 19 制御装置 20 α粒子線源 22 キャップ A 過飽和層 DESCRIPTION OF SYMBOLS 10 Insulation member 11 Observation tank 12 Electronic cooling element 14 Water cooling block 15 Electric heater 19 Control device 20 Alpha particle beam source 22 Cap A Supersaturated layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 飛跡観察用気体の封入された観察槽の底
面部を冷却手段で冷却し、前記気体の過飽和層を形成し
て荷電粒子の飛跡を観察する低温拡散形霧箱において、 前記冷却手段として電子冷却素子を用いたことを特徴と
する低温拡散形霧箱。
1. A low-temperature diffusion type fog box for cooling a bottom portion of an observation tank filled with a track observation gas by cooling means to form a supersaturated layer of the gas and observe tracks of charged particles. A low-temperature diffusion type fog box characterized by using an electronic cooling element as a means.
【請求項2】 請求項1に記載の低温拡散形霧箱におい
て、 前記観察槽の上部に設けられて飛跡観察用気体を加熱す
るための加熱装置と、 前記観察槽上部および底部における飛跡観察用気体の温
度の差が適切に保たれるように前記電子冷却素子および
加熱装置を制御する制御手段とを設けたことを特徴とす
る低温拡散形霧箱。
2. The low-temperature diffusion type fog box according to claim 1, wherein a heating device provided at an upper portion of the observation tank for heating a track observation gas, and for tracking a track at an upper portion and a bottom portion of the observation tank. A low-temperature diffusion type fog box, further comprising control means for controlling the electronic cooling element and the heating device so that a difference in gas temperature is appropriately maintained.
【請求項3】 請求項1に記載の低温拡散形霧箱におい
て、 前記電子冷却素子の放熱部を覆い、放熱部から冷却部へ
の熱侵入を阻止する断熱部材を設けたことを特徴とする
低温拡散形霧箱。
3. The low-temperature diffusion type fog box according to claim 1, further comprising a heat insulating member that covers a heat radiating portion of the electronic cooling element and prevents heat from entering the cooling portion from the heat radiating portion. Low-temperature diffusion type fog box.
【請求項4】 荷電粒子源から観察槽内に放出される荷
電粒子の飛跡を観察する霧箱に用いられる観察用治具で
あって、 前記荷電粒子源から前記観察槽内に入射する荷電粒子の
数を制限し、かつ、前記観察槽内に形成される過飽和層
に沿って前記荷電粒子を入射させることを特徴とする観
察用治具。
4. An observation jig used for a fog box for observing tracks of charged particles emitted from a charged particle source into an observation tank, wherein the charged particles enter the observation tank from the charged particle source. Wherein the number of the charged particles is limited and the charged particles are incident along a supersaturated layer formed in the observation tank.
JP5514298A 1998-03-06 1998-03-06 Low temperature diffusion cloud chamber and jig for use in observation Pending JPH11248844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5514298A JPH11248844A (en) 1998-03-06 1998-03-06 Low temperature diffusion cloud chamber and jig for use in observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5514298A JPH11248844A (en) 1998-03-06 1998-03-06 Low temperature diffusion cloud chamber and jig for use in observation

Publications (1)

Publication Number Publication Date
JPH11248844A true JPH11248844A (en) 1999-09-17

Family

ID=12990532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5514298A Pending JPH11248844A (en) 1998-03-06 1998-03-06 Low temperature diffusion cloud chamber and jig for use in observation

Country Status (1)

Country Link
JP (1) JPH11248844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232416A (en) * 2006-02-28 2007-09-13 Nakamura Scientific Co Ltd Low-temperature diffusion type cloud chamber
CN113189638A (en) * 2021-04-21 2021-07-30 中国科学院国家空间科学中心 Particle motion trajectory imaging device based on particle track imaging cloud chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232416A (en) * 2006-02-28 2007-09-13 Nakamura Scientific Co Ltd Low-temperature diffusion type cloud chamber
CN113189638A (en) * 2021-04-21 2021-07-30 中国科学院国家空间科学中心 Particle motion trajectory imaging device based on particle track imaging cloud chamber
CN113189638B (en) * 2021-04-21 2024-04-05 中国科学院国家空间科学中心 Particle motion trail imaging device based on particle trail imaging cloud chamber

Similar Documents

Publication Publication Date Title
JP5887023B2 (en) Incubator
JP2000137031A (en) Sample cooling device
JPH11248844A (en) Low temperature diffusion cloud chamber and jig for use in observation
ES2387996T3 (en) Device and method of manufacturing a block of crystalline material
US4713941A (en) Cryogenic vessel
JP2015067850A (en) Vacuum evaporation system
JP4537332B2 (en) Low temperature diffusion type cloud chamber
CA2078475A1 (en) Purified liquid storage receptacle and a heat transfer assembly and method of heat transfer
JP2013529258A (en) Side emission type linear evaporation source, manufacturing method thereof, and linear evaporator
WO2017114367A1 (en) Heater device for heating crucible, operation method therefor and crucible for containing and heating material to be evaporated or sublimated
ES2536929B1 (en) PROCEDURE FOR THE PRODUCTION OF SEMI-CONDUCTING SLIM FILMS ON EXTERNAL SUBSTRATES
JPH08262146A (en) Cloud chamber
JP2514348Y2 (en) Constant temperature bath for impurity diffusion in semiconductors
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JPS61220414A (en) Apparatus for generating molecular beam
JPH0278256A (en) Dipping/cooling module
KR20140131058A (en) Reverse cooling type effusion cell apparatus having deep-dented bottom type crucible structure
KR102543415B1 (en) Substrate mounting apparatus with seesaw motion applied
US5896852A (en) Chemical reactant bottle and method of use thereof
JP3113531B2 (en) Crystal growth cell
JPH0421087Y2 (en)
SU775255A1 (en) Heat-insulating barrier of a vessel
JP2000089236A (en) Liquid crystal filling device
JPH0318934Y2 (en)
JPH09184887A (en) Cloud chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725