JPH11248530A - Infrared image sensing element and infrared sensor - Google Patents

Infrared image sensing element and infrared sensor

Info

Publication number
JPH11248530A
JPH11248530A JP10053648A JP5364898A JPH11248530A JP H11248530 A JPH11248530 A JP H11248530A JP 10053648 A JP10053648 A JP 10053648A JP 5364898 A JP5364898 A JP 5364898A JP H11248530 A JPH11248530 A JP H11248530A
Authority
JP
Japan
Prior art keywords
infrared
bolometer
metal
resistor
infrared imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10053648A
Other languages
Japanese (ja)
Inventor
Toru Umezawa
徹 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10053648A priority Critical patent/JPH11248530A/en
Publication of JPH11248530A publication Critical patent/JPH11248530A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an infrared image sensing element in which temperature control is unnecessary. SOLUTION: An infrared image sensing element using a metal bolometer 7 consists of two struts 8 which are fixed on a substrate 9 and made of the same material as the metal bolometer 7, the metal bolometer 7 retained in the air at two points by the struts 8, and a resistor 10 which is made of the same material as the metal bolometer 7 and is buried in the substrate 9. The quotient or resistance values or the metal bolometer 7 and the resistor 10 is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は赤外線を検知する
赤外線撮像素子と赤外センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging device for detecting infrared rays and an infrared sensor.

【0002】[0002]

【従来の技術】図5は従来の半導体ボロメータによる赤
外線撮像素子の構成を示す図であり、1は半導体ボロメ
ータ、2は半導体ボロメータ1を2点で空中に支えるた
めの導体支柱、3は支柱2の半導体ボロメータ2に接続
していない端をそれぞれ固定する基板、4は半導体ボロ
メータと直列に接続された抵抗体、5は基板3の温度を
測定する温度計、6は基板3の温度を調整するペルチェ
素子である。
2. Description of the Related Art FIG. 5 is a view showing a configuration of a conventional infrared imaging device using a semiconductor bolometer, 1 is a semiconductor bolometer, 2 is a conductor support for supporting the semiconductor bolometer 1 at two points in the air, and 3 is a support 2 A substrate which fixes the ends not connected to the semiconductor bolometer 2 respectively, 4 is a resistor connected in series with the semiconductor bolometer, 5 is a thermometer for measuring the temperature of the substrate 3, and 6 is a regulator for adjusting the temperature of the substrate 3. It is a Peltier device.

【0003】図6は従来の赤外線撮像素子を駆動させる
駆動回路の概略である。半導体ボロメータ1の抵抗値を
Rf、抵抗体4の抵抗値をRs、バイアス電圧をV、出
力電圧をVoutとする。半導体ボロメータ1は赤外線
放射を受けると温度が変化し、それに伴い抵抗値Rfも
変化する。Rfの変化はVout=Rf×V/(Rf+
Rs)の形で電圧に変換される。Rsが一定であること
を仮定した場合、Voutの変化は半導体ボロメータ1
の受けた赤外線放射に対して一価の関数になるため、V
outをモニタすることにより赤外線放射の量を検出す
ることができる。なお、上記のRs一定の仮定である
が、これは温度計5により常に基板の温度変化をモニタ
し、基準温度相当の電圧Vtと比較し、差分をペルチェ
素子6フィードバックすることで、ある誤差の範囲内に
押さえることで実現している。
FIG. 6 is a schematic diagram of a driving circuit for driving a conventional infrared imaging device. The resistance of the semiconductor bolometer 1 is Rf, the resistance of the resistor 4 is Rs, the bias voltage is V, and the output voltage is Vout. When the semiconductor bolometer 1 receives infrared radiation, the temperature changes, and accordingly, the resistance value Rf also changes. The change in Rf is Vout = Rf × V / (Rf +
Rs). Assuming that Rs is constant, the change in Vout is the semiconductor bolometer 1
Is a monovalent function for the infrared radiation received by
By monitoring out, the amount of infrared radiation can be detected. It is assumed that Rs is constant. This is because the temperature change of the substrate is constantly monitored by the thermometer 5, the temperature is compared with the voltage Vt corresponding to the reference temperature, and the difference is fed back to the Peltier element 6, so that a certain error can be obtained. It is realized by holding it within the range.

【0004】[0004]

【発明が解決しようとする課題】従来の赤外線撮像素子
では、基板3の温度を一定に保つためペルチェ素子等の
電子冷却器を用いているが、これらの電子冷却は一般に
消費電力が非常に大きく、したがって屋外での電池等に
よる長時間動作を不可能にしている。
In the conventional infrared imaging device, an electronic cooler such as a Peltier device is used to keep the temperature of the substrate 3 constant. However, these electronic coolings generally consume a very large amount of power. Therefore, long-term operation with a battery or the like outdoors is impossible.

【0005】この発明は、このような問題点を解決する
ためになされたものであり、基板の温度制御を必要とせ
ず、屋外等で長時間使用できる赤外線撮像素子および赤
外線センサを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide an infrared imaging device and an infrared sensor which can be used for a long time outdoors or the like without requiring temperature control of the substrate. And

【0006】[0006]

【課題を解決するための手段】第1の発明の赤外線撮像
素子は、赤外線放射を受ける部分に金属ボロメータを使
用し、金属ボロメータと同じ金属でできた2本の支柱に
より、上記金属ボロメータを2点支持で空中に支える。
この時の上記金属ボロメータの抵抗値と、上記金属ボロ
メータと同一金属で構成され、基板に埋め込まれた抵抗
体の抵抗値の商を出力することにより、温度制御を必要
としない赤外線撮像素子を得るものである。
According to the first aspect of the present invention, there is provided an infrared imaging device which uses a metal bolometer at a portion receiving infrared radiation and uses two columns made of the same metal as the metal bolometer to form the metal bolometer. Support in the air with point support.
By outputting the quotient of the resistance value of the metal bolometer at this time and the same metal as the metal bolometer and the resistance value of the resistor embedded in the substrate, an infrared imaging device that does not require temperature control is obtained. Things.

【0007】第2の発明の赤外線撮像素子は、第1の発
明において、金属ボロメータおよび抵抗体をオペアンプ
の帰還抵抗および入力抵抗にして反転増幅器を構成する
ことにより、金属ボロメータと抵抗体の抵抗値の比を電
圧の形で取り出すことで、温度制御を必要としない赤外
線撮像素子を実現するものである。
According to a second aspect of the present invention, there is provided an infrared imaging device according to the first aspect, wherein the metal bolometer and the resistor are used as a feedback resistor and an input resistor of an operational amplifier to constitute an inverting amplifier. By extracting the ratio in the form of a voltage, an infrared imaging device that does not require temperature control is realized.

【0008】第3の発明の赤外線撮像素子は、第1の発
明において、金属ボロメータ及び抵抗体を薄膜形成技術
により同時製膜して形成することにより、金属ボロメー
タと抵抗体の物性値の固有差を抑制することで。赤外線
撮像の精度を向上させ、温度制御を必要としない赤外線
撮像素子を得るものである。
The infrared imaging device according to a third aspect of the present invention is the infrared imaging device according to the first aspect, wherein the metal bolometer and the resistor are simultaneously formed by a thin film forming technique to form an inherent difference between the physical properties of the metal bolometer and the resistor. By suppressing. An object of the present invention is to improve the accuracy of infrared imaging and obtain an infrared imaging device that does not require temperature control.

【0009】第4の発明の赤外線センサは、第1の発明
の赤外線撮像素子を、1次元または2次元に複数個配置
することにより、赤外線画像を得るものである。
According to a fourth aspect of the present invention, there is provided an infrared sensor for obtaining an infrared image by arranging a plurality of one-dimensional or two-dimensional infrared imaging devices according to the first invention.

【0010】[0010]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1を示す図であり、7は金属ボロメータ、8
は金属ボロメータ7を中空で支える金属ボロメータと同
一の材質でできた2本の支柱、9は支柱8の一方の端を
固定する基板、10は金属ボロメータと電気的に接触し
基板9に埋め込まれた金属ボロメータと同一の材質でで
きた抵抗体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a view showing a first embodiment of the present invention, in which 7 is a metal bolometer, and 8 is a metal bolometer.
Are two columns made of the same material as the metal bolometer that supports the metal bolometer 7 in a hollow state, 9 is a substrate for fixing one end of the column 8, and 10 is an electrical contact with the metal bolometer and embedded in the substrate 9. This is a resistor made of the same material as the metal bolometer.

【0011】金属ボロメータ7が赤外線放射を受ける
と、その温度が変化し、それに伴い抵抗値Rfが変化す
る。金属はその性質上、抵抗の温度依存性はRf=Rf
o×exp(kf・T)で表わされる。ここでRfoは
ボロメータの形状で決まる定数である。また、kfは温
度抵抗係数であり金属の場合、種類によって一定であ
る。同一のことが抵抗体10の抵抗値Rsにもいえ、R
s=Rso×exp(ks・T)で表わされる。理想的
にはkfとksは同一である。
When the metal bolometer 7 receives infrared radiation, its temperature changes, and accordingly, the resistance value Rf changes. Due to the nature of metals, the temperature dependence of resistance is Rf = Rf
It is represented by oxexp (kf · T). Here, Rfo is a constant determined by the shape of the bolometer. Further, kf is a temperature resistance coefficient, and in the case of metal, it is constant depending on the type. The same can be said for the resistance value Rs of the resistor 10,
s = Rso × exp (ks · T). Ideally, kf and ks are the same.

【0012】金属ボロメータ7の温度がT1である場
合、その内訳は赤外線放射を受けたことによる温度上昇
ΔTおよび基板温度T2の和である(T1=ΔT+T
2)。したがって、この時の抵抗値はRf=Rfo×e
xp(kf(ΔT+T2))となる。この際、基板9の
温度T2は周辺の温度変化等の影響により一定値ではな
い。この時の抵抗体10の抵抗値RsはRso×exp
(ks・T2)である。従って、金属ボロメータ7と抵
抗体10の抵抗値の商はRf/Rs=(Rfo/Rs
o)×exp(kf(ΔT+T2)−ks・T2))と
なる。同一の金属を使用していることから原理的にkf
=ksであるので、上記式はRf/Rs=(Rfo/R
so)×exp(kf・ΔT)となり、基板の温度変化
T2に依存しない表式となる。
When the temperature of the metal bolometer 7 is T1, the breakdown is the sum of the temperature rise ΔT caused by receiving the infrared radiation and the substrate temperature T2 (T1 = ΔT + T).
2). Therefore, the resistance value at this time is Rf = Rfo × e
xp (kf (ΔT + T2)). At this time, the temperature T2 of the substrate 9 is not a constant value due to an influence of a peripheral temperature change or the like. At this time, the resistance value Rs of the resistor 10 is Rso × exp.
(Ks · T2). Therefore, the quotient of the resistance values of the metal bolometer 7 and the resistor 10 is Rf / Rs = (Rfo / Rs
o) × exp (kf (ΔT + T2) −ks · T2)). Since the same metal is used, in principle, kf
= Ks, the above equation gives Rf / Rs = (Rfo / R
so) × exp (kf · ΔT), which is a formula that does not depend on the temperature change T2 of the substrate.

【0013】また、現実的な場合な金属ボロメータ7と
抵抗10に同一の金属を選択しても、δk=kf−ks
≠となり、したがってRf/Rs=(Rfo/Rso)
×exp(kf・ΔT)×exp(δk・T2)とな
る。これに対しては、金属ボロメータ7と抵抗体10を
薄膜製造プロセスにより同時に製膜することにより、物
性をそろえ、δk≒0を実現し、実質的な誤差が出ない
ように対処する。
Further, even if the same metal is selected for the metal bolometer 7 and the resistor 10 in a practical case, δk = kf−ks
And therefore Rf / Rs = (Rfo / Rso)
× exp (kf · ΔT) × exp (δk · T2). To cope with this, by simultaneously forming the metal bolometer 7 and the resistor 10 by a thin film manufacturing process, the physical properties are made uniform, δk ≒ 0 is realized, and a countermeasure is made so as not to cause a substantial error.

【0014】以上により、Rf/Rsをモニタすること
により、温度制御を行わなくても赤外線放射による影響
のみを純粋に取り出すことができるので、基板温度制御
を必要としない赤外線撮像素子が得られる。
As described above, by monitoring Rf / Rs, only the influence of infrared radiation can be taken out purely without performing temperature control, so that an infrared imaging device that does not require substrate temperature control can be obtained.

【0015】実施の形態2.図2はこの発明の実施の形
態2を表わす図であり、図中Rf、Rsは各々金属ボロ
メータ7、抵抗体10を記号で表記したものであり、1
1は演算増幅器(オペアンプ)である。なお、オペアン
プ11を駆動させるのに必要な電源、バイパスコンデン
サ等は省略してある。
Embodiment 2 FIG. 2 is a diagram showing a second embodiment of the present invention. In the drawing, Rf and Rs denote metal bolometer 7 and resistor 10 by symbols, respectively.
Reference numeral 1 denotes an operational amplifier (operational amplifier). Note that a power supply, a bypass capacitor, and the like necessary for driving the operational amplifier 11 are omitted.

【0016】バイアス電圧Vin(一定値)をオペアン
プ11に入力する。オペアンプ11はRfおよびRsに
より反転増幅器を形成しており、オペアンプ出力Vou
tは、Vout=−Rf/Rs×Vin=−(Rfo・
Vin/Rso)×exp(kf・ΔT)となる。以上
の回路によりボロメータの赤外線放射量を電圧の形で原
理的に取り出せる。
A bias voltage Vin (constant value) is input to an operational amplifier 11. The operational amplifier 11 forms an inverting amplifier with Rf and Rs, and the operational amplifier output Vou
t is Vout = −Rf / Rs × Vin = − (Rfo ·
Vin / Rso) × exp (kf · ΔT). With the above circuit, the amount of infrared radiation from the bolometer can be extracted in principle in the form of a voltage.

【0017】また、現実的な場合な金属ボロメータ7と
抵抗10に同一の金属を選択しても、δk=kf−ks
≠0となり、したがってVout=−(Rfo・Vin
/Rso)×exp(kf・ΔT)×exp(δk・T
2)となる。これに対しては、金属ボロメータ7と抵抗
体10を薄膜製造プロセスにより同時に製膜することに
より、物性をそろえ、δk≒0を実現し、実質的な誤差
が出ないように対処する。
Further, even if the same metal is selected for the metal bolometer 7 and the resistor 10 in a practical case, δk = kf−ks
≠ 0, and therefore Vout = − (Rfo · Vin
/ Rso) × exp (kf · ΔT) × exp (δk · T
2). To cope with this, by simultaneously forming the metal bolometer 7 and the resistor 10 by a thin film manufacturing process, the physical properties are made uniform, δk ≒ 0 is realized, and a countermeasure is made so as not to cause a substantial error.

【0018】以上により、Voutをモニタすることに
より、温度制御を行わなくても赤外線放射による影響の
みを純粋に取り出すことができるので、基板温度制御を
必要としない赤外線撮像素子が得られる。
As described above, by monitoring Vout, only the influence of infrared radiation can be taken out purely without performing temperature control, so that an infrared imaging device that does not require substrate temperature control can be obtained.

【0019】実施の形態3.図3はこの発明の実施の形
態3を表わす図であり、12は実施の形態1または2の
赤外線撮像素子単体、13は2次元平面に赤外線撮像素
子12を配置した赤外線センサである。また、図4は赤
外線センサ13の運用の形態であり、14は赤外線セン
サ13上に赤外線画像を結像する赤外線レンズ、15は
赤外線センサ13を駆動させる駆動回路である。
Embodiment 3 FIG. 3 is a view showing a third embodiment of the present invention, in which 12 is an infrared imaging element unit of the first or second embodiment, and 13 is an infrared sensor in which the infrared imaging element 12 is arranged on a two-dimensional plane. FIG. 4 shows a mode of operation of the infrared sensor 13, reference numeral 14 denotes an infrared lens for forming an infrared image on the infrared sensor 13, and reference numeral 15 denotes a drive circuit for driving the infrared sensor 13.

【0020】外部からの赤外線映像は、赤外線レンズ1
4により、赤外線センサ13上に結像され、各赤外線撮
像素子12の温度を上昇させる。駆動回路15は赤外線
センサ13上の各赤外線撮像素子単体12に対して、き
められた順番でVin印可し、その時のVoutを順次
測定していく。
An infrared image from the outside is transmitted through an infrared lens 1
By 4, an image is formed on the infrared sensor 13, and the temperature of each infrared imaging element 12 is increased. The drive circuit 15 applies Vin to each infrared imaging element unit 12 on the infrared sensor 13 in the determined order, and sequentially measures Vout at that time.

【0021】以上により、温度制御を行わない状態で、
赤外線映像を得ることができる。なお、本例では赤外線
撮像素子単体を2次元に配置したが、これは1次元でも
かまわない。
As described above, in a state where the temperature control is not performed,
Infrared images can be obtained. In this example, the infrared imaging element alone is arranged two-dimensionally, but this may be one-dimensional.

【0022】[0022]

【発明の効果】第1の発明によれば、基板の温度の変化
に原理的に依存しない赤外線撮像素子が得られ、赤外線
撮像器の定消費電力化を実現する事ができる。
According to the first aspect of the present invention, it is possible to obtain an infrared imaging device which does not depend on a change in the temperature of the substrate in principle, and to realize a constant power consumption of the infrared imaging device.

【0023】第2の発明によれば、基板の温度の変化に
原理的に依存しない赤外線撮像素子が得られ、赤外線撮
像器の定消費電力化を実現する事ができる。
According to the second aspect of the present invention, it is possible to obtain an infrared imaging device which does not depend on a change in the temperature of the substrate in principle, thereby realizing constant power consumption of the infrared imaging device.

【0024】第3の発明によれば、基板の温度の変化に
依存しない赤外線映像が得られ、赤外線撮像器の定消費
電力化を実現する事ができる。
According to the third aspect, an infrared image which is independent of a change in the temperature of the substrate can be obtained, and constant power consumption of the infrared imaging device can be realized.

【0025】第4の発明によれば第1の発明の赤外線撮
像素子を1次元又は2次元に複数個配置することによ
り、赤外線画像を得ることができる。
According to the fourth aspect, an infrared image can be obtained by arranging a plurality of one-dimensional or two-dimensional infrared imaging devices according to the first aspect of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.

【図2】 この発明の実施の形態2の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a second embodiment of the present invention.

【図3】 この発明の実施の形態3の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of a third embodiment of the present invention.

【図4】 この発明の実施の形態3の運用の形態を表わ
す図である。
FIG. 4 is a diagram illustrating a mode of operation according to a third embodiment of the present invention.

【図5】 従来の赤外線撮像素子の構成を示す図であ
る。
FIG. 5 is a diagram illustrating a configuration of a conventional infrared imaging device.

【図6】 従来の赤外線撮像素子の駆動方法を示す図で
ある。
FIG. 6 is a diagram illustrating a driving method of a conventional infrared imaging element.

【符号の説明】[Explanation of symbols]

1 半導体ボロメータ、2 導体支柱、3 基板、4
抵抗体、5 温度計、6 ペルチェ素子、7 金属ボロ
メータ、8 2本の支柱、9 基板、10 抵抗体、1
1 オペアンプ、12 赤外線撮像素子単体、13 赤
外線センサ、14 赤外線レンズ、15 駆動回路。
1 semiconductor bolometer, 2 conductor support, 3 substrate, 4
Resistor, 5 thermometer, 6 Peltier element, 7 metal bolometer, 8 2 columns, 9 substrate, 10 resistor, 1
1 operational amplifier, 12 infrared imaging element alone, 13 infrared sensor, 14 infrared lens, 15 drive circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 赤外線を検知する赤外線撮像素子におい
て、赤外線を検知する金属ボロメータと、上記金属ボロ
メータを2点支持で空中に支える上記金属ボロメータと
同一材質の2本の支柱と、上記2本の支柱の上記金属ボ
ロメータに接していない端をそれぞれ固定する基板と、
上記2本の支柱のうち一本と上記基板の固定点にて電気
的に接続し、かつ上記基板に埋め込まれた上記金属ボロ
メータと同一材質の抵抗体と、上記金属ボロメータの抵
抗値と上記抵抗体の抵抗値の商を出力する読み出し回路
とを備えたことを特徴とする、赤外線撮像素子。
1. An infrared imaging device for detecting infrared rays, a metal bolometer for detecting infrared rays, two columns of the same material as the metal bolometer for supporting the metal bolometer in the air at two points, and the two bolometers. Substrates for fixing the ends of the columns not in contact with the metal bolometer, respectively;
A resistor made of the same material as the metal bolometer embedded in the substrate and electrically connected to one of the two pillars at a fixed point of the substrate, and a resistance value of the metal bolometer and the resistance A read-out circuit for outputting a quotient of a resistance value of a body;
【請求項2】 上記金属ボロメータと上記抵抗体を、そ
れぞれ演算増幅器の帰還抵抗および入力抵抗に接続する
ことで、上記読み出し回路を構成する、請求項1記載の
赤外線撮像素子。
2. The infrared imaging device according to claim 1, wherein the readout circuit is configured by connecting the metal bolometer and the resistor to a feedback resistor and an input resistor of an operational amplifier, respectively.
【請求項3】 上記金属ボロメータと、上記2本の支柱
と、上記抵抗体を薄膜形成技術により同時に形成するこ
とを特徴とする、請求項1記載の赤外線撮像素子。
3. The infrared imaging device according to claim 1, wherein the metal bolometer, the two columns, and the resistor are formed simultaneously by a thin film forming technique.
【請求項4】 請求項1の赤外線撮像素子を、1次元ま
たは2次元に複数個配置し、赤外線映像を測定する機能
を有する、赤外線センサ。
4. An infrared sensor having a function of measuring an infrared image by arranging a plurality of the infrared imaging elements according to claim 1 in one or two dimensions.
JP10053648A 1998-03-05 1998-03-05 Infrared image sensing element and infrared sensor Pending JPH11248530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10053648A JPH11248530A (en) 1998-03-05 1998-03-05 Infrared image sensing element and infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10053648A JPH11248530A (en) 1998-03-05 1998-03-05 Infrared image sensing element and infrared sensor

Publications (1)

Publication Number Publication Date
JPH11248530A true JPH11248530A (en) 1999-09-17

Family

ID=12948718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10053648A Pending JPH11248530A (en) 1998-03-05 1998-03-05 Infrared image sensing element and infrared sensor

Country Status (1)

Country Link
JP (1) JPH11248530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717147B2 (en) 2000-08-29 2004-04-06 Nec Corporation Thermo-sensitive infrared ray detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717147B2 (en) 2000-08-29 2004-04-06 Nec Corporation Thermo-sensitive infrared ray detector

Similar Documents

Publication Publication Date Title
JP5845301B2 (en) Infrared radiation detection device with resistive imaging bolometer and system with an array of such bolometers
US8232525B2 (en) Device for the detection of an electromagnetic radiation and electromagnetic radiation detector comprising such devices
US8080793B2 (en) Device for detecting infrared radiation comprising a resistive imaging bolometer, a system comprising an array of such bolometers and a method for reading an imaging bolometer integrated into such a system
US7325449B2 (en) Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
JP2000111397A (en) Two-dimensional array-type infrared detecting element and its manufacture
US4831257A (en) Gate coupled input circuit
JP2011174919A (en) Detection circuit for thermal sensor, thermal sensor device, and electronic device
US9207127B2 (en) Infrared detector
US8481940B2 (en) Detection device, sensor device, and electronic apparatus
US9170160B2 (en) Imaging device
US20020190208A1 (en) Readout technique for microbolometer array
JPH10227689A (en) Infrared detector and infrared focal plane array
CN111829670B (en) Uncooled infrared focal plane array reading circuit
JPH11248530A (en) Infrared image sensing element and infrared sensor
JP3974902B2 (en) Thermal infrared detector
JP6026585B2 (en) Infrared imaging device
US8283634B2 (en) Device for detecting electromagnetic radiation
JP3495309B2 (en) Thermal infrared imaging device
US8895927B2 (en) Detection device, sensor device and electronic apparatus
JP2010283514A (en) Infrared ray imaging device
JP4959735B2 (en) Thermal infrared detector
Qian et al. Self-heating cancellation circuits for microbolometer
JPH10318843A (en) Infrared ray detector and infrared ray array
KR20130108087A (en) Pin-compatible infrared light detector having improved thermal stability
Chen et al. A new bias method for microbolometer array