JPH11248430A - Three-dimensional measuring apparatus - Google Patents

Three-dimensional measuring apparatus

Info

Publication number
JPH11248430A
JPH11248430A JP5518898A JP5518898A JPH11248430A JP H11248430 A JPH11248430 A JP H11248430A JP 5518898 A JP5518898 A JP 5518898A JP 5518898 A JP5518898 A JP 5518898A JP H11248430 A JPH11248430 A JP H11248430A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving device
scanning direction
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5518898A
Other languages
Japanese (ja)
Inventor
Toshio Norita
寿夫 糊田
Hiroshi Uchino
浩志 内野
Hidekazu Ide
英一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP5518898A priority Critical patent/JPH11248430A/en
Priority to US09/251,456 priority patent/US6292263B1/en
Publication of JPH11248430A publication Critical patent/JPH11248430A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the three-dimensional measurement at a higher resolution than that of a two-dimensional light receiving device, by providing the light receiving device for outputting a photoelectric conversion signal according to the incident angle in a subscanning direction of a reference light, and subscanning mechanism for relatively moving it in a main scanning direction. SOLUTION: A light projection system 10 is composed of a semiconductor laser 11 to be a light source, projection lens 13 for making a laser beam into a slit light (reference light) L, etc. A light receiving system 20 is composed of an image forming lens 21, light receiving device 25 for detecting the incident angle of the slight light L and, subscanning mechanism 26 for inching it in a main scanning direction. The light receiving system 20 are located with a distance from the light projection system 10 to measure the incident angle of the slit light incident on the light receiving device 5 in the subscanning direction, to obtain the distance between the irradiated part of an object Q to be measured by the slit light L and reference position in the apparatus. The output of the receiving device 25 is periodically sampled and the depth of the object Q is measured every sampling section SP of finely divided virtual plane VS to obtain a distance image with SP as a pixel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、参照光を投射して
物体形状を非接触で計測する3次元計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional measuring apparatus for projecting reference light to measure an object shape in a non-contact manner.

【0002】[0002]

【従来の技術】レンジファインダと呼称される非接触型
の3次元計測装置(3次元カメラ)は、接触型に比べて
高速の計測が可能であることから、CGシステムやCA
Dシステムへのデータ入力、身体計測、ロボットの視覚
認識などに利用されている。
2. Description of the Related Art A non-contact type three-dimensional measuring device (three-dimensional camera) called a range finder can perform higher-speed measurement than a contact-type three-dimensional measuring device.
It is used for data input to the D system, body measurement, visual recognition of robots, and the like.

【0003】レンジファインダに好適な計測方法として
スリット光投影法(光切断法ともいう)が広く知られて
いる。この方法は、物体を光学的に走査して三角測量の
原理に基づいて距離画像(3次元画像)を得る能動的計
測方法の一種である。主走査範囲に対応する長さのスリ
ット状の参照光を投射して線走査を行うので、ビーム状
の参照光を投射して点走査を行うのと比べて1フレーム
の走査時間が短い。
[0003] As a measuring method suitable for a range finder, a slit light projection method (also called a light cutting method) is widely known. This method is a kind of active measurement method that optically scans an object to obtain a distance image (three-dimensional image) based on the principle of triangulation. Since the line scanning is performed by projecting the slit-like reference light having a length corresponding to the main scanning range, the scanning time of one frame is shorter than that of performing the point scanning by projecting the beam-like reference light.

【0004】従来において、参照光を受光する光電変換
デバイスとして、一般的なCCDイメージセンサに代え
てPSD(位置検出型の光検出器)を用いる手法が提案
されている。すなわち、帯状の受光面を有する多数個
(例えば128個)の1次元PSDを主走査方向に並べ
て疑似的に2次元の受光面を形成する手法である。各P
SDはその帯状受光面に入射した光の位置に応じたアナ
ログ信号を出力する。PSDによれば、電荷蓄積が不要
であることからCCDよりも高速の走査が可能になり、
且つ副走査方向の分解能(解像度)が大幅に向上する
(原理的には無限大となる)。
Conventionally, a technique has been proposed in which a PSD (position detection type photodetector) is used instead of a general CCD image sensor as a photoelectric conversion device for receiving reference light. That is, this is a method in which a large number (for example, 128) of one-dimensional PSDs having a band-shaped light receiving surface are arranged in the main scanning direction to form a pseudo two-dimensional light receiving surface. Each P
The SD outputs an analog signal corresponding to the position of the light incident on the band-shaped light receiving surface. According to the PSD, since charge accumulation is not required, scanning at a higher speed than that of the CCD can be performed.
In addition, the resolution (resolution) in the sub-scanning direction is greatly improved (it becomes infinite in principle).

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のPSD
アレイによる計測では、PSDの配列数によって主走査
方向の分解能が規定されてしまう。配列数が多いほど高
価格になる。また、各PSD毎にヘッドアンプが必要な
ので、回路規模の上でも配列数に制約がある。
However, the above-mentioned PSD
In the measurement using an array, the resolution in the main scanning direction is defined by the number of PSD arrays. The higher the number of arrays, the higher the price. In addition, since a head amplifier is required for each PSD, the number of arrays is limited in terms of circuit scale.

【0006】本発明は、2次元の受光面を構成する受光
デバイスの分解能より高い分解能の3次元計測を実現す
ることを目的としている。
An object of the present invention is to realize three-dimensional measurement with a higher resolution than that of a light receiving device constituting a two-dimensional light receiving surface.

【0007】[0007]

【課題を解決するための手段】本発明においては、受光
デバイスを入射光に対して微小変位させることにより、
又は逆に入射光を受光面に対して微小偏向させることに
より、見かけの分解能を高める。例えば、複数個の光検
出器を並べて受光面を形成する場合、その配列ピッチの
m分の1のピッチで間欠的に変位させ、各時点で光電変
換信号をサンプリングすれば、分解能はm倍になる。
According to the present invention, by slightly displacing a light receiving device with respect to incident light,
Or, conversely, the incident light is slightly deflected with respect to the light receiving surface, thereby increasing the apparent resolution. For example, when a light receiving surface is formed by arranging a plurality of photodetectors, the displacement is intermittently displaced at a pitch of 1 / m of the arrangement pitch, and the photoelectric conversion signal is sampled at each time, so that the resolution is increased by a factor of m. Become.

【0008】請求項1の発明の装置は、仮想平面に向か
って線走査をするように参照光を投射し、前記仮想平面
を主走査方向及び副走査方向に細分化した各サンプリン
グ区画を通過する時点での計測対象で反射した前記参照
光の入射角度に応じた信号を出力する3次元計測装置で
あって、前記参照光の副走査方向の入射角度に応じた光
電変換信号を出力する受光デバイスと、前記受光デバイ
スとその受光面に向かう前記参照光とを主走査方向に相
対的に移動させる補助走査機構と、を有している。
The apparatus according to the first aspect of the present invention projects reference light so as to linearly scan a virtual plane, and passes through each sampling section obtained by subdividing the virtual plane in a main scanning direction and a sub-scanning direction. What is claimed is: 1. A three-dimensional measuring apparatus for outputting a signal corresponding to an incident angle of said reference light reflected by a measurement target at a point in time, wherein said light receiving device outputs a photoelectric conversion signal corresponding to an incident angle of said reference light in a sub-scanning direction. And an auxiliary scanning mechanism for relatively moving the light receiving device and the reference light toward the light receiving surface in the main scanning direction.

【0009】請求項2の発明の装置は、前記光電変換信
号に基づいて前記各サンプリング区画毎に距離データを
算出するデータ処理手段を有している。請求項3の発明
の装置において、前記受光デバイスは、主走査方向に配
列された2以上のn個の1次元位置検出型の光検出器か
らなり、前記補助走査機構は、前記光検出器の配列ピッ
チより小さいピッチで前記受光デバイスと前記参照光と
を相対的に移動させる。
The apparatus according to a second aspect of the present invention has a data processing means for calculating distance data for each of the sampling sections based on the photoelectric conversion signal. 4. The apparatus according to claim 3, wherein the light receiving device is composed of two or more n one-dimensional position detection type photodetectors arranged in a main scanning direction, and the auxiliary scanning mechanism includes a photodetector of the photodetector. The light receiving device and the reference light are relatively moved at a pitch smaller than the arrangement pitch.

【0010】[0010]

【発明の実施の形態】図1は本発明に係る3次元計測装
置1の概要を示す図である。3次元計測装置1は、計測
の基準面として設定した仮想平面VSに向かって線走査
をするようにスリット光Lを投射する投光系10、計測
対象の物体Qで反射したスリット光Lを受光する受光系
20、受光信号を量子化する信号処理回路90、及び制
御手段であるCPU51を備えている。
FIG. 1 is a diagram showing an outline of a three-dimensional measuring apparatus 1 according to the present invention. The three-dimensional measuring apparatus 1 includes a light projecting system 10 that projects slit light L so as to perform a line scan toward a virtual plane VS set as a reference plane for measurement, and receives the slit light L reflected by an object Q to be measured. A light receiving system 20, a signal processing circuit 90 for quantizing a received light signal, and a CPU 51 as control means.

【0011】投光系10は、光源としての半導体レーザ
(LD)11、レーザビームをスリット光Lにする投光
レンズ13、及び副走査手段であるガルバノミラー12
から構成されている。ガルバノミラー12は、スリット
光Lを反射するミラーとそれを回動させる電磁機構とか
らなる。電磁機構には、仮想平面VS上での副走査速度
が一定になるようにミラーの回動角度を変化させる駆動
信号が与えられる。副走査は1ラインの主走査毎に間欠
的に行われる。例えば、主走査方向(X方向)は水平方
向であり、副走査方向(Y方向)は垂直方向である。
A light projecting system 10 includes a semiconductor laser (LD) 11 as a light source, a light projecting lens 13 for converting a laser beam into slit light L, and a galvano mirror 12 as a sub-scanning means.
It is composed of The galvanometer mirror 12 includes a mirror that reflects the slit light L and an electromagnetic mechanism that rotates the mirror. A drive signal for changing the rotation angle of the mirror is provided to the electromagnetic mechanism so that the sub-scanning speed on the virtual plane VS is constant. The sub-scan is performed intermittently every main scan of one line. For example, the main scanning direction (X direction) is a horizontal direction, and the sub scanning direction (Y direction) is a vertical direction.

【0012】受光系20は、結像レンズ21、スリット
光Lの入射角度を検出するための受光デバイス25、及
び受光デバイス25を主走査方向に微小に移動させる補
助走査機構26からなる。補助走査機構26は例えば圧
電素子とその駆動回路とで構成される。
The light receiving system 20 includes an imaging lens 21, a light receiving device 25 for detecting an incident angle of the slit light L, and an auxiliary scanning mechanism 26 for slightly moving the light receiving device 25 in the main scanning direction. The auxiliary scanning mechanism 26 includes, for example, a piezoelectric element and a driving circuit thereof.

【0013】受光系20と上述の投光系10とはY方向
に一定距離(基線長)を隔てて配置されており、互いの
配置関係は既知である。したがって、受光デバイス25
に入射したスリット光LのY方向の入射角度が判れば、
物体Qにおけるスリット光Lで照射された部位と装置内
の基準位置との距離を周知の三角測量法を適用して求め
ることができる。スリット光LのY方向の入射角度は、
受光デバイス25の受光面における中心と受光スポット
との距離に対応する。距離画像を求める三角測量演算を
行い且つその結果にキャリブレーションに基づく補正を
加えるデータ処理はCPU51が担う。キャリブレーシ
ョンは例えば平面を計測するものである。走査期間にお
いて受光デバイス25の出力を周期的にサンプリングす
れば、仮想平面VSをX方向及びY方向に細分化した各
サンプリング区画(原理的には点)sp毎に物体Qの奥
行き(仮想平面VSと直交する方向の位置)を計測する
ことができる。すなわち、サンプリング区画spを画素
とする距離画像を得ることができる。
The light receiving system 20 and the above-mentioned light projecting system 10 are arranged at a fixed distance (base length) in the Y direction, and the mutual arrangement relationship is known. Therefore, the light receiving device 25
If the incident angle in the Y direction of the slit light L incident on
The distance between the part of the object Q irradiated with the slit light L and the reference position in the apparatus can be obtained by applying a well-known triangulation method. The incident angle of the slit light L in the Y direction is
This corresponds to the distance between the center of the light receiving surface of the light receiving device 25 and the light receiving spot. The CPU 51 performs data processing for performing a triangulation calculation for obtaining a distance image and performing correction based on calibration on the result. The calibration measures, for example, a plane. If the output of the light receiving device 25 is periodically sampled during the scanning period, the depth (virtual plane VS) of the object Q is obtained for each sampling section (in principle, a point) sp obtained by subdividing the virtual plane VS in the X and Y directions. (A position in a direction perpendicular to the direction of the arrow). That is, a distance image having the sampling section sp as a pixel can be obtained.

【0014】図2は受光デバイス25の構成図である。
受光デバイス25は、0〜n−1番の計n個(例えば1
28個)のPSD251が密接して並ぶPSDアレイで
あり、PSD251の配列方向が主走査方向となるよう
に配置される。個々のPSD251は、帯状の受光面を
有した1次元検出器であり、副走査方向のスポット位置
(スリット光像SGの一部)を示す第1及び第2の検出
信号(光電流)Y1,Y2を出力する。図中の符号の添
え字(0〜n−1)は対応するPSD251の配列番号
を表している。全てのPSD251は、後述のとおり補
助走査機構26によってスリット光像SGに対して一斉
に移動する。なお、PSDを用いることにより、CCD
撮像デバイスを用いる場合と比べて電荷蓄積が不要とな
る分だけ走査を高速化することができる。
FIG. 2 is a configuration diagram of the light receiving device 25.
The number of the light receiving devices 25 is n (0 to n−1) (for example, 1
This is a PSD array in which PSDs 251 are closely arranged and arranged so that the arrangement direction of the PSDs 251 is the main scanning direction. Each PSD 251 is a one-dimensional detector having a band-shaped light receiving surface, and includes first and second detection signals (photocurrent) Y1, indicating a spot position (part of the slit light image SG) in the sub-scanning direction. Y2 is output. The suffixes (0 to n-1) of the reference numerals in the figure represent the corresponding PSD251 array element numbers. All the PSDs 251 are moved simultaneously with respect to the slit light image SG by the auxiliary scanning mechanism 26 as described later. In addition, by using PSD, CCD
Scanning can be sped up as much as charge accumulation is unnecessary as compared with the case where an imaging device is used.

【0015】図3は受光デバイス25のステップ移動の
模式図である。受光デバイス25は、1ラインの走査期
間中に主走査方向にステップ移動をする。移動幅は1つ
のPSD251の幅wのm分の1(mは2以上の整数;
例えば8)であり、1ライン当たりのステップ数はm−
1である。ここで、k回目のステップ移動をした時点に
おいてj番目のPSD251から出力される検出信号を
Y1j,k ,Y2j,k (j=0〜n−1,k=0〜m−
1)とする。
FIG. 3 is a schematic diagram of the step movement of the light receiving device 25. The light receiving device 25 moves stepwise in the main scanning direction during the scanning period of one line. The moving width is 1 / m of the width w of one PSD 251 (m is an integer of 2 or more;
For example, 8), and the number of steps per line is m−
It is one. Here, the detection signal output from the j-th PSD 251 at the time of performing the k-th step movement is represented by Y1 j, k , Y2 j, k (j = 0 to n−1, k = 0 to m−).
1).

【0016】図4は信号処理回路90のブロック図、図
5は受光面の分解能の改善の模式図である。信号処理回
路90は、各PSD251からの検出信号Y1,Y2を
所定レベルの電圧信号に変換するヘッドアンプ(前置増
幅器)91,92、総計2n個のヘッドアンプ91,9
2の出力を選択するアナログスイッチ93、及びアナロ
グスイッチ93で選択された検出信号Y1,Y2を量子
化するA/D変換器94からなる。PSD251の移動
を開始する以前の段階(ステップ0)からm−1回目の
移動を行った段階(ステップm−1)までの計m個の段
階のそれぞれにおいて、検出信号Y1j,k ,Y2j,k
同時に信号処理回路90に入力され、アナログスイッチ
93により順に選択される。そして、検出信号Y
j,k ,Y2j,k は逐次に量子化されてCPU51に送
られる。CPU51は、ステップ0〜m−1における検
出信号Y1j,k に対応したm×n個のデータDY1
P (p=0〜m×n−1)、及び検出信号Y2j,k に対
応したn×m個のデータDY2p を1ライン分の計測デ
ータとして記憶する。
FIG. 4 is a block diagram of the signal processing circuit 90, and FIG. 5 is a schematic diagram of improving the resolution of the light receiving surface. The signal processing circuit 90 includes head amplifiers (preamplifiers) 91 and 92 for converting the detection signals Y1 and Y2 from each PSD 251 into voltage signals of a predetermined level, and a total of 2n head amplifiers 91 and 9
An analog switch 93 for selecting the output of the analog switch 93 and an A / D converter 94 for quantizing the detection signals Y1 and Y2 selected by the analog switch 93. In each of a total of m stages from the stage before the start of movement of the PSD 251 (step 0) to the stage after the (m−1) th movement (step m−1), the detection signals Y1 j, k , Y2 j , k are simultaneously input to the signal processing circuit 90, and are sequentially selected by the analog switch 93. Then, the detection signal Y
1 j, k and Y2 j, k are sequentially quantized and sent to the CPU 51. The CPU 51 outputs m × n data DY1 corresponding to the detection signals Y1 j, k in steps 0 to m−1.
P (p = 0 to m × n−1) and n × m data DY2 p corresponding to the detection signal Y2 j, k are stored as measurement data for one line.

【0017】ここで、PSD251の受光面をm分割し
た幅w/mの領域のデータDY1P,DY2p は、実際
には隣接するm個の領域の検出信号Y1j,k ,Y2j,k
の総和に相当する光電変換情報である。すなわち、図5
(B)のように各領域eが独立した受光面であると仮定
したときの検出信号をy1p ,y2p とすると、検出信
号Y1j,k は次の式で表される。検出信号Y2j,k につ
いても同様である。
Here, the data DY1 P , DY2 p of the area of width w / m obtained by dividing the light receiving surface of the PSD 251 into m are actually the detection signals Y1 j, k , Y2 j, k of the m adjacent areas.
Is the photoelectric conversion information corresponding to the sum of. That is, FIG.
Assuming that the detection signals are assumed to be y1 p and y2 p when each area e is assumed to be an independent light receiving surface as in (B), the detection signal Y1 j, k is represented by the following equation. The same applies to the detection signal Y2 j, k .

【0018】[0018]

【数1】 (Equation 1)

【0019】また、この関係は行列Y=Ayと表すこと
ができる。Yは第(m×j+k)要素がY1j,k である
(m×n)×1行列(j=0〜n−1、k=0〜m−
1)、yは第p要素がyp である(m×n)×1行列
(p=0〜m×n−1)である。Aをaijが(i,j)
要素である(m×n)×(m×n)正方行列とすると、 となる。Aの左逆行列A' の(i,j)要素をa’ij
すると、 となる。
This relationship can be expressed as a matrix Y = Ay. Y is an (m × n) × 1 matrix (j = 0 to n−1, k = 0 to m−) in which the (m × j + k) -th element is Y1 j, k
1), y is a first p element is y p (m × n) × 1 matrix (p = 0~m × n-1 ). A is a ij (i, j)
Assuming that the elements are (m × n) × (m × n) square matrix, Becomes If the (i, j) element of the left inverse matrix A ′ of A is a ′ ij , Becomes

【0020】A' を用いると、y=A' Yより、各PS
D251をm分割した各領域の信号成分が求まり、主走
査方向の分解能を上げることができる。A' は1次元P
SD251の配列数nと移動のステップ数mにより一意
に決まるので、予め求めておき、各副走査位置でのY1
j,k,,Y2j,k (j=0〜n−1,k=0〜m−1)が
入力される毎に、CPU51によりy1p,y2p 〔p=
0〜m×(n−1)〕を求める。y1p,y2p の各組み
に対し、 dp =(y1p −y2p )/ (y1p +y2p ) を求める。dp は、PSD251におけるスリット光の
入射位置と受光面の中心とのずれ量となり、この値とガ
ルバノミラー12の制御信号(又は回動角度位置のモニ
タ信号)より対象物体Qまでの距離が求まる。
When A 'is used, each PS is obtained from y = A'Y.
The signal component of each area obtained by dividing D251 into m can be obtained, and the resolution in the main scanning direction can be increased. A 'is a one-dimensional P
Since it is uniquely determined by the number n of arrays of SD 251 and the number m of movement steps, it is determined in advance and Y1 at each sub-scanning position is determined.
j, k,, Y2 j, k for each of (j = 0~n-1, k = 0~m-1) is inputted, the CPU 51 y1 p, y2 p [p =
0-mx (n-1)]. For each set of y1 p, y2 p, d p = Request (y1 p -y2 p) / ( y1 p + y2 p). d p is the amount of deviation between the incident position of the slit light in the PSD 251 and the center of the light receiving surface, and the distance to the target object Q is determined from this value and the control signal of the galvanomirror 12 (or the monitor signal of the rotation angle position). .

【0021】図6は他の受光デバイス25bの構成図で
ある。上述の例ではn個のPDS251が隙間なく幅w
のピッチで配列されていたが、図6の受光デバイス25
bではn個のPDS251が一定の間隔を設けて配列さ
れている。この構成の受光デバイス25bについてもス
テップ移動により分解能を高めることができる。
FIG. 6 is a configuration diagram of another light receiving device 25b. In the above example, n PDSs 251 have a width w without any gap.
The light receiving device 25 shown in FIG.
In b, n PDSs 251 are arranged at regular intervals. The resolution of the light receiving device 25b having this configuration can be improved by the step movement.

【0022】図7は図6に対応したステップ移動の模式
図である。ステップ移動幅はPSD251の配列ピッチ
Vのm分の1であり、1ライン当たりのステップ数はm
−1である。上述の例と同様にk回目のステップ移動を
した時点においてj番目のPSD251から出力される
検出信号をY1j,k ,Y2 j,k (j=0〜n−1,k=
0〜m−1)とする。
FIG. 7 is a schematic diagram of the step movement corresponding to FIG.
FIG. Step moving width is the array pitch of PSD251
V is 1 / m, and the number of steps per line is m
It is -1. Like the above example, the k-th step movement
Output from the j-th PSD 251
The detection signal is Y1j, k, Y2 j, k(J = 0 to n-1, k =
0 to m-1).

【0023】本例の場合には、Y1j,k ,Y2j,k が各
ステップ移動位置におけるスリット光像SGの副走査方
向の位置を表すので、上述の例で行ったマトリックス演
算は不要である。Y1j,k,Y2j,k の各組みに対し、 dj,k =(Y1j,k −Y2j,k )/(Y1j,k +Y2
j,k ) を求めることで、各主走査位置におけるスリット光像S
Gの受光面の中心からのずれ量が求まる。この値とガル
バノミラー12の制御信号(又は回動角度位置のモニタ
信号)より対象物体Qまでの距離が求まる。
In the case of this example, since Y1 j, k and Y2 j, k represent the position of the slit light image SG in the sub-scanning direction at each step movement position, the matrix operation performed in the above example is unnecessary. is there. For each set of Y1 j, k and Y2 j, k , d j, k = (Y1 j, k -Y2 j, k ) / (Y1 j, k + Y2
j, k ) to obtain the slit light image S at each main scanning position.
The shift amount of G from the center of the light receiving surface is obtained. The distance to the target object Q is obtained from this value and the control signal of the galvanometer mirror 12 (or the monitor signal of the rotation angle position).

【0024】以上の実施形態では受光デバイス25,2
5bを移動させることによってスリット光像SGに対し
て所定量だけ変位させる例を挙げたが、受光デバイス2
5,25bを固定配置し、結像レンズ21の後側又は前
側で入射光を偏向することによってスリット光像SGと
受光面とを相対的に移動させてもよい。例えば、図8の
ように入射光路内にガラス板22を配置し、微小角度ず
つ回動させることにより、入射光軸を受光面に対して主
走査方向にずらすことができる。
In the above embodiment, the light receiving devices 25, 2
5b is displaced by a predetermined amount with respect to the slit light image SG by moving the light receiving device 2b.
Alternatively, the slit light image SG and the light receiving surface may be relatively moved by arranging the fixed positions 5 and 25b and deflecting the incident light on the rear side or the front side of the imaging lens 21. For example, by arranging the glass plate 22 in the incident light path as shown in FIG. 8 and rotating it by a small angle, the incident optical axis can be shifted in the main scanning direction with respect to the light receiving surface.

【0025】また、参照光としてスリット光を例示した
が、スポット光を主走査方向に偏向するようにしてもよ
い。この場合、受光デバイスを移動させる期間におい
て、同じラインを繰り返し走査するように信号処理系を
構成すればよい。
Although the slit light is exemplified as the reference light, the spot light may be deflected in the main scanning direction. In this case, the signal processing system may be configured to repeatedly scan the same line during a period in which the light receiving device is moved.

【0026】[0026]

【発明の効果】請求項1乃至請求項3の発明によれば、
2次元の受光面を構成する受光デバイスの分解能より高
い分解能の3次元計測を実現することができる。
According to the first to third aspects of the present invention,
It is possible to realize three-dimensional measurement with a higher resolution than the resolution of the light receiving device forming the two-dimensional light receiving surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る3次元計測装置の概要を示す図で
ある。
FIG. 1 is a diagram showing an outline of a three-dimensional measuring apparatus according to the present invention.

【図2】受光デバイスの構成図である。FIG. 2 is a configuration diagram of a light receiving device.

【図3】受光デバイスのステップ移動の模式図である。FIG. 3 is a schematic diagram of a step movement of a light receiving device.

【図4】信号処理回路のブロック図である。FIG. 4 is a block diagram of a signal processing circuit.

【図5】受光面の分解能の改善の模式図である。FIG. 5 is a schematic diagram of improvement in resolution of a light receiving surface.

【図6】他の受光デバイスの構成図である。FIG. 6 is a configuration diagram of another light receiving device.

【図7】図6に対応したステップ移動の模式図である。FIG. 7 is a schematic diagram of a step movement corresponding to FIG. 6;

【図8】入射光と受光面との相対移動の変形例を示す図
である。
FIG. 8 is a diagram showing a modification of the relative movement between the incident light and the light receiving surface.

【符号の説明】[Explanation of symbols]

1 3次元計測装置 VS 仮想平面 L スリット光(参照光) sp サンプリング区画 Q 計測対象 25 受光デバイス Y1,Y2 検出信号(光電変換信号) 26 補助走査機構 51 CPU(データ処理手段) 251 PSD(1次元位置検出型の光検出器) w 幅(配列ピッチ) v 配列ピッチ Reference Signs List 1 3D measuring device VS virtual plane L slit light (reference light) sp sampling section Q measurement target 25 light receiving device Y1, Y2 detection signal (photoelectric conversion signal) 26 auxiliary scanning mechanism 51 CPU (data processing means) 251 PSD (1D) (Position detection type photodetector) w Width (array pitch) v Array pitch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】仮想平面に向かって線走査をするように参
照光を投射し、前記仮想平面を主走査方向及び副走査方
向に細分化した各サンプリング区画を通過する時点での
計測対象で反射した前記参照光の入射角度に応じた信号
を出力する3次元計測装置であって、 前記参照光の副走査方向の入射角度に応じた光電変換信
号を出力する受光デバイスと、 前記受光デバイスとその受光面に向かう前記参照光とを
主走査方向に相対的に移動させる補助走査機構と、を有
したことを特徴とする3次元計測装置。
A reference light is projected so as to perform a line scan toward a virtual plane, and is reflected by a measurement target at a point in time when the virtual plane passes through each sampling section subdivided in a main scanning direction and a sub-scanning direction. A three-dimensional measuring device that outputs a signal corresponding to the incident angle of the reference light, wherein the light receiving device outputs a photoelectric conversion signal according to the incident angle of the reference light in a sub-scanning direction; An auxiliary scanning mechanism for relatively moving the reference light toward the light receiving surface in the main scanning direction.
【請求項2】前記光電変換信号に基づいて前記各サンプ
リング区画毎に距離データを算出するデータ処理手段を
有した請求項1記載の3次元計測装置。
2. The three-dimensional measuring apparatus according to claim 1, further comprising data processing means for calculating distance data for each of said sampling sections based on said photoelectric conversion signal.
【請求項3】前記受光デバイスは、主走査方向に配列さ
れた2以上のn個の1次元位置検出型の光検出器からな
り、 前記補助走査機構は、前記光検出器の配列ピッチより小
さいピッチで前記受光デバイスと前記参照光とを相対的
に移動させる請求項1又は請求項2記載の3次元計測装
置。
3. The light-receiving device comprises two or more n one-dimensional position detection type photodetectors arranged in a main scanning direction, and the auxiliary scanning mechanism is smaller than an arrangement pitch of the photodetectors. The three-dimensional measurement apparatus according to claim 1, wherein the light receiving device and the reference light are relatively moved at a pitch.
JP5518898A 1998-02-18 1998-03-06 Three-dimensional measuring apparatus Pending JPH11248430A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5518898A JPH11248430A (en) 1998-03-06 1998-03-06 Three-dimensional measuring apparatus
US09/251,456 US6292263B1 (en) 1998-02-18 1999-02-17 Three-dimensional measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5518898A JPH11248430A (en) 1998-03-06 1998-03-06 Three-dimensional measuring apparatus

Publications (1)

Publication Number Publication Date
JPH11248430A true JPH11248430A (en) 1999-09-17

Family

ID=12991739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5518898A Pending JPH11248430A (en) 1998-02-18 1998-03-06 Three-dimensional measuring apparatus

Country Status (1)

Country Link
JP (1) JPH11248430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056214A (en) * 1999-06-10 2001-02-27 Konica Corp Optical surface displacement detection device, pattern recognition device, and optical surface displacement detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056214A (en) * 1999-06-10 2001-02-27 Konica Corp Optical surface displacement detection device, pattern recognition device, and optical surface displacement detection method

Similar Documents

Publication Publication Date Title
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
CN110325879B (en) System and method for compressed three-dimensional depth sensing
JP3206843B2 (en) 3D image measurement device
CN105143820B (en) Depth scan is carried out using multiple transmitters
AU748251B2 (en) Method and system for imaging an object with a plurality of optical beams
US20110018973A1 (en) Three-dimensional imaging device and method for calibrating three-dimensional imaging device
JP3897191B2 (en) Planar level difference measuring device
US6556307B1 (en) Method and apparatus for inputting three-dimensional data
US20040190005A1 (en) Position-sensing device for 3-D profilometers
JP4186347B2 (en) Three-dimensional input method and apparatus
JP4045341B2 (en) 3D measurement system
JPH11248430A (en) Three-dimensional measuring apparatus
CN216449449U (en) Surface detection device
JP4083928B2 (en) Scanning laser beam position detector
JP2987540B2 (en) 3D scanner
JP2000292121A (en) Three-dimensional measurement method and three- dimensional input device
JP4255625B2 (en) Multi-beam scanning optical system beam measuring apparatus and multi-beam scanning optical system beam measuring method
JP3029004B2 (en) Stereo vision camera
JP4032556B2 (en) 3D input device
CN218782411U (en) Laser scanning device and laser scanning system
JP4266286B2 (en) Distance information acquisition device and distance information acquisition method
JP5164713B2 (en) Detection apparatus and method
JP3460872B2 (en) Position detection method and positioning device
JPH10197336A (en) Laser beam-measuring apparatus
JPH11248436A (en) 3-dimensional measuring device