JPH11248260A - Method for realizing artificial hot spring - Google Patents

Method for realizing artificial hot spring

Info

Publication number
JPH11248260A
JPH11248260A JP10069262A JP6926298A JPH11248260A JP H11248260 A JPH11248260 A JP H11248260A JP 10069262 A JP10069262 A JP 10069262A JP 6926298 A JP6926298 A JP 6926298A JP H11248260 A JPH11248260 A JP H11248260A
Authority
JP
Japan
Prior art keywords
water
hot spring
inner casing
passage
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10069262A
Other languages
Japanese (ja)
Inventor
Mizuo Kuriyama
瑞雄 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU SUIGEN KOGYO KK
Original Assignee
TOHOKU SUIGEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU SUIGEN KOGYO KK filed Critical TOHOKU SUIGEN KOGYO KK
Priority to JP10069262A priority Critical patent/JPH11248260A/en
Publication of JPH11248260A publication Critical patent/JPH11248260A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply hot water similar to that of hot spring stably by inserting an inner casing through an interval into an outer casing leading to a geothermal source, conducting the interval with the inner hole of the inner casing to form a going path and a return path, and heating injected water. SOLUTION: An inner casing 11 is inserted into an outer casing 1 through an interval forming a going passage 9. Water 19 conditioned to have desired components is then injected from an injection port 17 made in the ground opening thereof. The water 19 flows down through the passage 9 with the temperature being raised gradually through geothermal action. The hot water, i.e., artificial hot spring 19a water, intrudes into the inner hole 12 of the inner casing 11 through a conduction hole 15 made in the bottom 13 thereof under action of the hydraulic pressure of subsequent supply water 19. A water supply pump installed on the ground is operated to pump up the hot spring water 19a in the inner casing 11 and take out from a take-out port 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、温泉法上の温泉
(天然温泉)ではないが、これと同等の成分としたりあ
るいは成分内容を自在に設計することができる人工温泉
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an artificial hot spring which is not a hot spring (natural hot spring) according to the hot spring method, but which can be made to have the same components or to freely design the contents of the components.

【0002】[0002]

【従来の技術】温泉とは、温泉法上「地中からゆう出す
る温水、鉱水及び水蒸気その他のガス(炭化水素を主成
分とする天然ガスを除く)で、温泉源の温度が摂氏25
度以上のものか、鉱水1Kg中に定められた量以上の物
質が含まれているもの」と規定されている。したがっ
て、従来、温泉は井戸を掘削し、そこから採取してい
た。
2. Description of the Related Art A hot spring is defined as "hot water, mineral water, steam and other gases (excluding natural gas containing hydrocarbons as a main component) flowing out of the ground under the hot spring method.
Or more than a specified amount in 1 kg of mineral water ". Therefore, in the past, hot springs were excavated and collected from wells.

【0003】即ち、従来の温泉の掘削は、テストボーリ
ングにより揚水係数の高い地層(即ち、温泉水体層)の
存在と揚水量を調べ、しかる後適所に井戸管を埋設して
行なっている。最近では温泉ブームのため、日本各地で
温泉掘削が盛んに行なわれ、場所によっては温泉の涸渇
化が心配されている。
[0003] That is, the conventional hot spring excavation is carried out by examining the existence of a stratum having a high pumping coefficient (that is, a hot spring water body layer) and the amount of pumped water by test boring, and thereafter burying a well pipe in an appropriate place. Recently, due to the hot spring boom, hot spring drilling has been actively conducted in various parts of Japan, and in some places there is concern that hot springs may be depleted.

【0004】[0004]

【発明が解決しようとする課題】従来の温泉採取方法に
よると次のような欠点がある。まず、温泉法による温泉
の採取制限の問題がある。所有権が異なる土地において
も温泉の出る地層は地中でつながっていることがあり、
このようなところでは既存の温泉源保護のため自己の所
有土地上であっても温泉の掘削ができない場合がある
(温泉法第9条)。
According to the conventional hot spring collecting method, there are the following disadvantages. First, there is a problem of the restriction of hot spring collection by the hot spring method. Even in lands with different ownership, the stratum where the hot spring comes out may be connected underground,
In such a place, it may not be possible to dig a hot spring even on its own land to protect the existing hot spring source (Article 9 of the Hot Spring Law).

【0005】また空井戸の問題がある。温泉の掘削は多
額の費用を要するため、上記のように、テストボーリン
グや揚水試験を重ねて慎重に適所の選定をするのであ
る。しかし、温泉の湧出により適所と判定した場合であ
っても、思いの外含水量が少なく、あるいは使用量が多
いときは、結果的に温泉が涸渇化するということがあ
る。また、味、臭い、濁り、ガス、酸性等の点で水質が
悪く使用できない場合がある。かかるときは数千万円か
ら数億円かかると言われる開発費用が無駄になるだけで
なく、折角育て上げた観光産業等にも悪影響を及ぼす結
果となる。
There is also the problem of empty wells. Excavation of hot springs is very expensive, so as mentioned above, test boring and pumping tests are repeated to carefully select the right place. However, even when it is determined that the hot spring is in the right place due to the spring, when the unexpected water content is low or the amount used is large, the hot spring may eventually be depleted. In addition, water quality is poor in terms of taste, smell, turbidity, gas, acidity, and the like, so that it may not be used. In such a case, the development cost, which is said to cost tens of millions to hundreds of millions of yen, is not only wasted, but also adversely affects the tourism industry and the like that have been raised.

【0006】また温泉の過度の汲み上げをすると、場所
によっては地盤沈下を惹起するという問題がある。
[0006] Excessive pumping of hot springs also causes a problem of land subsidence in some places.

【0007】さらに上記のような問題を解消するため沸
かし湯とすると、エネルギーを多量に消費するという欠
点がある。
[0007] In addition, when boiling water is used to solve the above problems, there is a disadvantage that a large amount of energy is consumed.

【0008】本願発明は、上記欠点を解消し、温泉と同
等の熱水の提供を安定的にかつ確実にまた環境保全上も
有効に行なうことを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks and to stably and surely provide hot water equivalent to that of a hot spring and effectively protect the environment.

【0009】[0009]

【課題を解決するための手段】上記目的達成のため、本
願発明による人工温泉の製造方法は、地熱源に至るまで
挿設したアウターケーシング内に、インナーケーシング
を間隔を存して挿設し、上記間隔とインナーケーシング
の内孔とを連通して往路及び復路を形成し、地上より注
入した水を上記間隔からなる通路を通過中に地熱により
加熱して取り出すことを特徴とする。また請求項1記載
の人工温泉の製造方法において、上記通路より注入した
水を、通路(往路)通過中に加熱し、インナーケーシン
グの内孔より取り出すことを特徴とする。また請求項1
記載の人工温泉の製造方法において、インナーケーシン
グの内孔より注入した水を、通路(復路)通過中に加熱
し、上記通路より取り出すことを特徴とする。また請求
項1記載の人工温泉の製造方法において、上記インナー
ケーシングの底部に連通孔を設けることを特徴とする。
また請求項1記載の人工温泉の製造方法において、注入
する水の成分を所望に設定することを特徴とする。
Means for Solving the Problems To achieve the above object, a method for producing an artificial hot spring according to the present invention comprises inserting an inner casing at an interval into an outer casing inserted up to a geothermal source; The space and the inner hole of the inner casing communicate with each other to form a forward path and a return path, and water injected from the ground is heated and extracted by geothermal heat while passing through the path having the distance. Further, in the method for producing an artificial hot spring according to claim 1, the water injected from the passage is heated while passing through the passage (outgoing passage) and taken out from the inner hole of the inner casing. Claim 1
The method for producing an artificial hot spring described above is characterized in that the water injected from the inner hole of the inner casing is heated during passage through the passage (return passage) and is taken out from the passage. In the method for producing an artificial hot spring according to claim 1, a communication hole is provided in a bottom portion of the inner casing.
The method for producing an artificial hot spring according to claim 1 is characterized in that the component of water to be injected is set as desired.

【0010】[0010]

【発明の実施の形態】次に、実施の形態を示す図面に基
づき本願発明による人工温泉の製造方法をさらに詳しく
説明する。1はアウターケーシングであり、鋼、銅等熱
伝導率の高い材質からなる上下部開放のケーシング管
(図示省略)を多数線状に連結してなる。該アウターケ
ーシング1は下端部を構成するケーシング管のみ底部3
を設け、上部5を開放とし、地熱源となる高地温層に至
るまで地中に深く掘削した掘削孔7に挿設する。掘削
は、既に地下の地熱構造の判明している地域において、
鉱内温度測定法、物理探査法等の公知の調査方法を用い
て行なう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a method for producing an artificial hot spring according to the present invention will be described in more detail with reference to the drawings showing an embodiment. Reference numeral 1 denotes an outer casing, which is formed by connecting a number of casing tubes (not shown) which are made of a material having a high thermal conductivity, such as steel and copper, and which are open at the top and bottom. The outer casing 1 has only a bottom portion 3 having only a casing tube constituting a lower end portion.
And the upper part 5 is opened, and is inserted into the excavation hole 7 excavated deep into the ground to reach a high geothermal layer serving as a geothermal source. Drilling is performed in areas where underground geothermal structures are already known.
The measurement is performed using a well-known investigation method such as a method of measuring the temperature in the ore and a geophysical exploration method.

【0011】ところで、高地温層は地熱源により異なる
深度にある。即ち、地熱源には地下のマグマ・エネルギ
ーに由来する火山性地熱源、断層運動による摩擦熱、化
学反応熱、放射能による熱等に由来する非火山性地熱
源、上記火山性地熱源により温化された地下水(即ち、
温泉)のエネルギーに由来する地下水性地熱源があり、
それぞれその放出エネルギーが異なる。一般に前2者の
放出エネルギーは大であり、後者は小とされる。したが
って、掘削場所の地熱源が何であるかにより掘削孔7の
深度は異なるのである。地下水性地熱源の場合、わが国
の地下温度の上昇率は一般に深度100m掘進するごと
に約4℃上昇すると言われている(本願発明者のデータ
上は平均約4.35℃/100mの地温上昇がある)。
したがって、地熱は掘進に伴なって確実に上昇するた
め、この掘削に当たっては従来のようにテストボーリン
グや揚水試験を重ねる必要がない。11はインナーケー
シングであり、上記アウターケーシング1の内側に間隔
を存した状態で挿設し、上記間隔により通路9を形成す
る。該インナーケーシング11は、樹脂、セラミック、
パルプを樹脂で固めたもの等断熱効率の高い材質からな
る上下部開放のケーシング管(図示省略)を多数線状に
連結してなる。該インナーケーシング11は下端部を構
成するケーシング管のみ底部13に多数の連通孔15を
設けてある。
The high geothermal layer is at a different depth depending on the geothermal source. That is, the geothermal source is a volcanic geothermal source derived from underground magma energy, a non-volcanic geothermal source derived from frictional heat due to fault motion, heat of chemical reaction, heat due to radioactivity, etc. Groundwater (ie,
Underground geothermal source derived from the energy of hot springs)
Each of them has different emission energy. In general, the former has a large emission energy, and the latter has a small energy. Therefore, the depth of the excavation hole 7 differs depending on the geothermal source at the excavation site. In the case of a groundwater source, it is generally said that the rate of increase in the underground temperature in Japan increases by about 4 ° C. every time a depth of 100 m is excavated (according to the inventor's data, an increase in the ground temperature of about 4.35 ° C./100 m on average). There is).
Therefore, since geothermal heat is surely increased with the excavation, it is not necessary to repeat test boring and pumping tests in this excavation. Reference numeral 11 denotes an inner casing, which is inserted inside the outer casing 1 with a space therebetween, and forms the passage 9 by the space. The inner casing 11 is made of resin, ceramic,
Upper and lower open casing tubes (not shown) made of a material having high heat insulation efficiency, such as pulp hardened with resin, are connected in a large number of lines. The inner casing 11 has a large number of communication holes 15 in the bottom portion 13 of only the casing tube constituting the lower end portion.

【0012】しかして上記通路9を往路として用い、そ
の地上開口に形成する注入口17より所望の成分内容に
調整した水19を注入する。水19は矢示の如く上記通
路9内を下進し、下方に進行するに従って地熱の作用に
より水温が上昇してくる。
Thus, using the above-mentioned passage 9 as an outward passage, water 19 adjusted to a desired component content is injected from an injection port 17 formed in the opening above the ground. The water 19 travels downward in the passage 9 as indicated by the arrow, and as it proceeds downward, the temperature of the water rises due to the action of geothermal energy.

【0013】地下水性地熱源の場合、通常深度が深いの
で通路9の途中、例えば上層の方に部分的に地熱温度の
低い地層があったとしても、下進するにしたがってより
大なる地熱エネルギーにより加熱されるから、実際上低
地温層による影響を受けることがない。取水温度は利用
の便宜を考えて100℃以下とすることが多い。例え
ば、40℃〜43℃程度で取水しようとする場合は、通
常、深度2,000m位まで掘削する。かかる場合は、
底部付近での地熱は約80℃〜87℃位となっている。
この熱水即ち人工温泉19aは、後続して送給されてく
る水19の水圧により、インナーケーシング11の底部
13に設けた連通孔15からインナーケーシング11の
内孔12に浸入する。したがって、地上に設置した揚水
ポンプ(図示省略)を作動させインナーケーシング11
内の人工温泉19aを汲み上げることにより、人工温泉
19aをインナーケーシング11の地上側開放端部に形
成した取出口21から取り出す。
In the case of an underground geothermal source, the depth is usually deep, so that even if there is a part of the passage 9 where the geothermal temperature is partially low, for example, in the upper part, the geothermal energy becomes larger as it goes down. Because it is heated, it is practically unaffected by low geothermal layers. The water intake temperature is often set to 100 ° C. or lower for convenience of use. For example, when water is to be taken at about 40 ° C to 43 ° C, excavation is usually performed to a depth of about 2,000 m. In such cases,
Geothermal near the bottom is about 80-87 ° C.
The hot water, that is, the artificial hot spring 19a, enters the inner hole 12 of the inner casing 11 from the communication hole 15 provided in the bottom portion 13 of the inner casing 11 by the water pressure of the water 19 subsequently supplied. Therefore, the water pump (not shown) installed on the ground is operated to activate the inner casing 11.
By pumping up the artificial hot spring 19a inside, the artificial hot spring 19a is taken out from the outlet 21 formed at the ground-side open end of the inner casing 11.

【0014】なお、取水温度は、注入水の水温や水量、
アウターケーシング1の容積や熱伝導率、インナーケー
シング11の断熱効率、地熱源の放熱量等に影響される
ので、所望の取水温度となるように掘削深度を設計す
る。
[0014] The water intake temperature is determined by the temperature and amount of the injection water,
The excavation depth is designed so as to have a desired water intake temperature because it is affected by the volume and thermal conductivity of the outer casing 1, the heat insulation efficiency of the inner casing 11, the amount of heat released from the geothermal source, and the like.

【0015】上記実施の形態によれば、地中から湧出す
る温水を採取するのではないから、温泉法による温泉の
採取制限の問題がない。したがって、隣接地などに既存
の温泉源がある場合であっても、自由に天然温泉と同等
の成分あるいは成分内容を自在に設計した熱水(人工温
泉)を得ることができる。
According to the above-described embodiment, since the hot water flowing from the ground is not collected, there is no problem of the restriction of the hot spring by the hot spring method. Therefore, even when there is an existing hot spring source in an adjacent land or the like, it is possible to freely obtain hot water (artificial hot spring) in which components equivalent to natural hot springs or component contents are freely designed.

【0016】また、地熱は掘進に伴なって確実に上昇す
るものであり、本願発明による人工温泉19aはこの地
熱を利用して加熱するものであるため、涸渇化のおそれ
が全くない。したがって、温泉の掘削に当たって最も重
要な湯脈の有無や含水量の測定誤り、あるいは使用過多
等による温泉の涸渇化、あるいは排水の水質の問題、あ
るいはこれらのことから生ずる種々の損失を回避するこ
とができる。
Further, the geothermal heat is surely increased with the excavation, and the artificial hot spring 19a according to the present invention uses this geothermal heat, so that there is no fear of depletion. Therefore, it is necessary to avoid the presence or absence of hot water veins and the measurement of water content which are the most important in excavation of hot springs, or to deplete hot springs due to excessive use, or to reduce the quality of drainage water, or various losses resulting from these. Can be.

【0017】また、本願発明による人工温泉19aは地
中から湧出する温水を採取するのではないから、汲み上
げによる地盤沈下を惹起するというおそれが全くない。
Further, since the artificial hot spring 19a according to the present invention does not collect hot water that springs from the ground, there is no possibility that the pumping will cause land subsidence.

【0018】また、加熱源は天然の地熱であるからエネ
ルギー消費による種々の問題を惹起するおそれがない。
Further, since the heating source is natural geothermal, there is no possibility of causing various problems due to energy consumption.

【0019】さらに、注入する水19の成分を所望に設
定することができるから、目的別、効能別の人工温泉1
9aを得ることができる。また取水温度も用途にあわせ
て設計することができる。
Furthermore, since the components of the water 19 to be injected can be set as desired, the artificial hot spring 1 according to purpose and effect can be set.
9a can be obtained. Also, the intake temperature can be designed according to the application.

【0020】本願発明による人工温泉の製造方法は上記
実施の形態に限定されない。例えば火山性地熱源にて加
熱する場合には、図示実施の形態とは逆方向の水の流れ
とすることができる。即ち、この場合は、インナーケー
シング11の内孔12より注入した水を、連通孔15よ
りアウターケーシング1とインナーケーシング11との
間の通路9に流出させ、通路9(復路)通過中に加熱し
て取り出すのである。火山性地熱源は一般に地下の浅所
(例えば100m〜200m位のところ)に存するた
め、温水が通路9(復路)を通過する移動距離が短くて
済むため、移動中の冷却の影響が少ない。このため、図
示実施の形態とは逆方向の水の流れとすることができる
のである。
The method for producing an artificial hot spring according to the present invention is not limited to the above embodiment. For example, when heating with a volcanic geothermal source, the flow of water can be in the opposite direction to that of the illustrated embodiment. That is, in this case, the water injected from the inner hole 12 of the inner casing 11 flows out of the communication hole 15 into the passage 9 between the outer casing 1 and the inner casing 11, and is heated while passing through the passage 9 (return path). And take it out. Since the volcanic geothermal source is generally located in a shallow place underground (for example, at a position of about 100 m to 200 m), the moving distance of hot water passing through the passage 9 (return path) can be short, so that the influence of cooling during movement is small. For this reason, it is possible to make the water flow in the opposite direction to the illustrated embodiment.

【0021】また、アウターケーシング1を構成するケ
ーシング管は、熱伝導率の高い材質からなるものであれ
ばその材質を問わない。また、インナーケーシング11
を構成するケーシング管は、断熱効率の高い材質からな
るものであればその材質を問わない。さらに、アウター
ケーシング1とインナーケーシング11との間に間隔を
存してインナーケーシング11を挿入すればよく、アウ
ターケーシング1に対しインナーケーシング11を必ず
しも同軸に設けなくてもよい。
The casing tube constituting the outer casing 1 may be made of any material having a high thermal conductivity. Also, the inner casing 11
Is not limited as long as it is made of a material having high heat insulation efficiency. Furthermore, the inner casing 11 may be inserted with a space between the outer casing 1 and the inner casing 11, and the inner casing 11 does not necessarily have to be provided coaxially with the outer casing 1.

【0022】また人工温泉の取り出しの態様は任意であ
り、例えば揚水ポンプを用いず、送水ポンプの送水圧に
より取り出してもよい。
The mode of taking out the artificial hot spring is optional. For example, the hot spring may be taken out by a water supply pressure of a water supply pump without using a water pump.

【0023】[0023]

【発明の効果】このように、本願発明による人工温泉の
製造方法によれば、温泉と同等の熱水の提供を安定的に
かつ確実にまた環境保全上も有効に行なうことができ
る。
As described above, according to the method for producing an artificial hot spring according to the present invention, it is possible to stably and reliably provide hot water equivalent to that of a hot spring and effectively protect the environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明による人工温泉の製造方法を説明する
正面断面図である。
FIG. 1 is a front sectional view illustrating a method for producing an artificial hot spring according to the present invention.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【符号の説明】[Explanation of symbols]

1 アウターケーシング 3 底部 5 上部 7 掘削孔 9 間隔 11 インナーケーシング 12 内孔 13 底部 15 連通孔 17 注入口 19 水 19a 人工温泉 21 取出口 DESCRIPTION OF SYMBOLS 1 Outer casing 3 Bottom part 5 Top part 7 Excavation hole 9 Interval 11 Inner casing 12 Inner hole 13 Bottom part 15 Communication hole 17 Inlet 19 Water 19a Artificial hot spring 21 Outlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 地熱源に至るまで挿設したアウターケー
シング内に、インナーケーシングを間隔を存して挿設
し、上記間隔とインナーケーシングの内孔とを連通して
往路及び復路を形成し、地上より注入した水を上記間隔
からなる通路を通過中に地熱により加熱して取り出すこ
とを特徴とする人工温泉の製造方法。
An inner casing is inserted into an outer casing inserted up to a geothermal source with an interval therebetween, and an outward path and a return path are formed by communicating the interval with an inner hole of the inner casing. A method for producing an artificial hot spring, characterized in that water injected from the ground is extracted by heating with geothermal heat while passing through a passage having the above intervals.
【請求項2】 請求項1記載の人工温泉の製造方法にお
いて、上記通路より注入した水を、通路(往路)通過中
に加熱し、インナーケーシングの内孔より取り出すこと
を特徴とする人工温泉の製造方法。
2. The method for producing an artificial hot spring according to claim 1, wherein the water injected from the passage is heated during passage of the passage (outward passage) and is taken out from the inner hole of the inner casing. Production method.
【請求項3】 請求項1記載の人工温泉の製造方法にお
いて、インナーケーシングの内孔より注入した水を、通
路(復路)通過中に加熱し、上記通路より取り出すこと
を特徴とする人工温泉の製造方法。
3. The method for producing an artificial hot spring according to claim 1, wherein the water injected from the inner hole of the inner casing is heated while passing through a passage (return path) and taken out from the passage. Production method.
【請求項4】 請求項1記載の人工温泉の製造方法にお
いて、上記インナーケーシングの底部に連通孔を設ける
ことを特徴とする人工温泉の製造方法。
4. The method for producing an artificial hot spring according to claim 1, wherein a communication hole is provided in a bottom portion of the inner casing.
【請求項5】 請求項1記載の人工温泉の製造方法にお
いて、注入する水の成分を所望に設定することを特徴と
する人工温泉の製造方法。
5. The method for producing an artificial hot spring according to claim 1, wherein a component of water to be injected is set as desired.
JP10069262A 1998-03-05 1998-03-05 Method for realizing artificial hot spring Pending JPH11248260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10069262A JPH11248260A (en) 1998-03-05 1998-03-05 Method for realizing artificial hot spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10069262A JPH11248260A (en) 1998-03-05 1998-03-05 Method for realizing artificial hot spring

Publications (1)

Publication Number Publication Date
JPH11248260A true JPH11248260A (en) 1999-09-14

Family

ID=13397626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10069262A Pending JPH11248260A (en) 1998-03-05 1998-03-05 Method for realizing artificial hot spring

Country Status (1)

Country Link
JP (1) JPH11248260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868099B1 (en) 2008-01-18 2008-11-11 조희남 Ground heat returning device for improving underground heat exchange efficiency by connecting with empty pipes installed to the bottom of groundwater core
KR101309162B1 (en) * 2012-03-14 2013-09-23 전재강 Geothermal exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868099B1 (en) 2008-01-18 2008-11-11 조희남 Ground heat returning device for improving underground heat exchange efficiency by connecting with empty pipes installed to the bottom of groundwater core
KR101309162B1 (en) * 2012-03-14 2013-09-23 전재강 Geothermal exchanger

Similar Documents

Publication Publication Date Title
US3863709A (en) Method of recovering geothermal energy
RU2136852C1 (en) Method for recovery of fluid medium from earth formation
Brigham et al. Tracer testing for reservoir description
Issever et al. Performance of a heavy-oil field under CO2 injection, Bati Raman, Turkey
Gulick et al. Waterflooding heterogeneous reservoirs: An overview of industry experiences and practices
Shervais et al. Snake River Plain Play Fairway Analysis-Phase 1 Report
Escobar et al. A large heavy oil reservoir in lake Maracaibo basin: cyclic steam injection experiences
JPH11248260A (en) Method for realizing artificial hot spring
Fairfield et al. Lloydminster fireflood performance, modifications promise good recoveries.[Canadian oil fields]
US10760411B2 (en) Passive wellbore monitoring with tracers
Beall Hydrologic model based on deep test data from the Walker O No. 1 well, Terminal Geyser, California
JP3069549B2 (en) Manufacturing method of geothermal hot spring
Iverson et al. Tight gas sand production from the Almond Formation, Washakie basin, Wyoming
Rice Steam-soak performance in south Oman
Jiuquan et al. Steamflood Trial and Research on Mid-deep Heavy-Oil Reservoir QI40 Block in Liaohe Oilfield
Mariner et al. Geochemical data and conceptual model for the Steamboat Hills geothermal system, Washoe County, Nevada
Sammel Analysis and interpretation of data obtained in tests of the geothermal aquifer at Klamath Falls, Oregon
Allman et al. Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system
Fanchi et al. Evaluation of the Wilmington field micellar/polymer project
Gal et al. New investigations in former hydrocarbon exploration wells in the Aquitaine Basin, France: how to get reliable data? A case study.
SU929822A1 (en) Oil deposit working method
Singh et al. Injection-Production Strategies for Reservoirs Having a Bottomwater Zone
Sundal et al. Effects of geological heterogeneity on fluid distribution and pressure propagation in a shallow, stacked aquifer system at the ECCSEL Svelvik CO2 Field Lab, Norway
Specht Exploration and development history of Shippy field: A Minnelusa Formation wildcat fringe discovery
Pongratz et al. Evolution of hydraulic fracturing in Russia