JP3069549B2 - Manufacturing method of geothermal hot spring - Google Patents

Manufacturing method of geothermal hot spring

Info

Publication number
JP3069549B2
JP3069549B2 JP10219903A JP21990398A JP3069549B2 JP 3069549 B2 JP3069549 B2 JP 3069549B2 JP 10219903 A JP10219903 A JP 10219903A JP 21990398 A JP21990398 A JP 21990398A JP 3069549 B2 JP3069549 B2 JP 3069549B2
Authority
JP
Japan
Prior art keywords
geothermal
hot spring
pumping passage
casing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10219903A
Other languages
Japanese (ja)
Other versions
JP2000038891A (en
Inventor
瑞雄 栗山
Original Assignee
有限会社東北水源工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社東北水源工業 filed Critical 有限会社東北水源工業
Priority to JP10219903A priority Critical patent/JP3069549B2/en
Publication of JP2000038891A publication Critical patent/JP2000038891A/en
Application granted granted Critical
Publication of JP3069549B2 publication Critical patent/JP3069549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、温泉法上の温泉
(天然温泉)ではないが、地下水を地熱の利用により温
水とする地熱温水泉の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a geothermal hot spring which is not a hot spring (natural hot spring) according to the hot spring method, but uses underground water as hot water by utilizing geothermal heat.

【0002】[0002]

【従来の技術及びその欠点】温泉とは、温泉法上「地中
からゆう出する温水、鉱水及び水蒸気その他のガス(炭
化水素を主成分とする天然ガスを除く)で、温泉源の温
度が摂氏25度以上のものか、鉱水1Kg中に定められ
た量以上の物質が含まれているもの」と規定されてい
る。したがって、温泉を得るには井戸を掘削し源泉を掘
り当てなければならない。
2. Description of the Related Art Hot springs are defined as hot water, mineral water, steam, and other gases (excluding natural gas mainly composed of hydrocarbons) that escape from the ground under the hot spring method. A substance having a temperature of 25 degrees Celsius or higher or a substance in an amount of 1 Kg or more specified in mineral water ". Therefore, in order to get a hot spring, you have to dig a well and find a source.

【0003】ところで、温泉資源の恒久的な保護及び利
用を図るため、都道府県には温泉特別保護地域及び温泉
保護地域が設定されており、当該地域での掘削制限が定
められている。例えば青森県の場合は、温泉をゆう出さ
せる目的での土地掘削は温泉特別保護地域では原則認め
られず、また温泉保護地域では源泉間の地表における直
線距離が800m以内での土地掘削が原則認められな
い。また、地下水を採取する目的で土地を掘削する場合
であっても、その掘削深度につき表1及び表2の如き制
限がある。
[0003] In order to permanently protect and use hot spring resources, prefectural governments have set up special hot spring protection areas and hot spring protection areas, and restrictions on excavation in these areas have been established. For example, in Aomori Prefecture, land excavation for the purpose of letting out hot springs is not allowed in the special hot spring protected area in principle, and land excavation in the hot spring protected area within a straight line distance of 800 m or less between the source is in principle allowed. I can't. Further, even when excavating land for the purpose of collecting groundwater, there are restrictions as shown in Tables 1 and 2 on the excavation depth.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【表2】 [Table 2]

【0006】[0006]

【発明が解決しようとする課題】このように温泉資源の
保護が図られているのであるが、一方では昨今の温泉ブ
ームのため温泉のさらなる利用が求められている。しか
しながら、温泉掘削を無闇に行なうと温泉の涸渇化のお
それがある。
While the protection of hot spring resources has been attempted as described above, on the other hand, due to the recent hot spring boom, further use of hot springs has been demanded. However, if the hot spring excavation is performed in darkness, the hot spring may be depleted.

【0007】また空井戸の問題がある。温泉の掘削は多
額の費用を要するため、テストボーリングや揚水試験を
重ねて慎重に適所の選定をするのである。しかし、温泉
の湧出により適所と判定した場合であっても、思いの外
含水量が少なく、あるいは使用量が多いときは、結果的
に温泉が涸渇化するということがある。また、味、臭
い、濁り、ガス、酸性等の点で水質が悪く使用できない
場合がある。かかるときは数千万円から数億円かかると
言われる開発費用が無駄になるだけでなく、折角育て上
げた観光産業等にも悪影響を及ぼす結果となる。
There is also the problem of empty wells. Excavation of hot springs is very costly, so it is necessary to carefully select the right place through repeated test boring and pumping tests. However, even when it is determined that the hot spring is in the right place due to the spring, when the unexpected water content is low or the amount used is large, the hot spring may eventually be depleted. In addition, water quality is poor in terms of taste, smell, turbidity, gas, acidity, and the like, so that it may not be used. In such a case, the development cost, which is said to cost tens of millions to hundreds of millions of yen, is not only wasted, but also adversely affects the tourism industry and the like that have been raised.

【0008】さらに上記のような問題を解消するため沸
かし湯とすると、エネルギーを多量に消費するため地球
温暖化の元凶とされる二酸化炭素の大量放出をするとい
う欠点がある。
[0008] Further, if boiling water is used to solve the above-mentioned problems, there is a drawback that a large amount of energy is consumed and a large amount of carbon dioxide, which is a cause of global warming, is released.

【0009】本願発明は、上記欠点を解消し、温泉と同
等の熱水の提供を安定的にかつ確実にまた環境保全上も
有効に行なうことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to stably and surely provide hot water equivalent to that of a hot spring and effectively protect the environment.

【0010】[0010]

【課題を解決するための手段】上記目的達成のため、本
願発明による地熱温水泉の製造方法は、地上から地熱源
に至るまで挿設したアウターケーシング内に、インナー
ケーシングを間隔を存した状態で挿設し、上記間隔にて
外側揚水通路部を形成し、インナーケーシングの内孔に
形成する内側揚水通路部を上記外側揚水通路部に連通
し、上記外側揚水通路部及び上記内側揚水通路部の上部
を開放し、上記アウターケーシングの周壁に取水口を設
け、該取水口より採取した地下水を上記外側揚水通路部
の通過中に地熱により加熱して上記内側揚水通路部より
取り出すことを特徴とする。請求項1記載の地熱温水泉
の製造方法において、上記外側揚水通路部及び内側揚水
通路部の連通部がインナーケーシングの底部に設ける連
通孔からなる揚水導入部であることを特徴とする。
Means for Solving the Problems] For the purpose achieved, state method for producing a geothermal hot water fountain according to the present invention, in the outer casing which is inserted from the ground up to the geothermal source, which resides apart the inner casing The outer pumping passage portion is formed at the above interval, the inner pumping passage portion formed in the inner hole of the inner casing communicates with the outer pumping passage portion, the outer pumping passage portion and the inner pumping passage portion. Top of
And an intake port is provided on a peripheral wall of the outer casing, and groundwater collected from the intake port is heated by geothermal heat while passing through the outer pumping passage section and taken out from the inner pumping passage section. The method for manufacturing a geothermal hot spring according to claim 1, wherein the communicating portion between the outer pumping passage portion and the inner pumping passage portion is a pumping-in portion formed by a communicating hole provided at the bottom of the inner casing.

【0011】[0011]

【発明の実施の形態】次に、実施の形態を示す図面に基
づき本願発明による地熱温水泉の製造方法をさらに詳し
く説明する。1はアウターケーシングであり、鋼、銅等
熱伝導率の高い材質からなる上下部開放のケーシング管
(図示省略)を多数線状に連結してなる。該アウターケ
ーシング1は下端部を構成するケーシング管のみ坑底部
3を設け、外口部5を開放とし、地熱源となる高温地熱
帯Hに至るまで地中に深く掘削した掘削孔7に挿設す
る。掘削は、既に地下の地熱構造の判明している地域に
おいて、孔内温度測定法、電気検層法、物理探査法等の
公知の調査方法を用いて行なう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a geothermal hot spring according to the present invention will now be described in more detail with reference to the drawings showing an embodiment. Reference numeral 1 denotes an outer casing, which is formed by connecting a number of casing tubes (not shown) which are made of a material having a high thermal conductivity, such as steel and copper, and which are open at the top and bottom. The outer casing 1 is provided with only a casing bottom constituting a lower end portion and provided with a pit bottom 3, an outer opening 5 is opened, and is inserted into a drilling hole 7 which is deeply excavated in the ground up to a high-temperature tropical zone H serving as a geothermal source. I do. Excavation is performed in a region where the geothermal structure of the underground is already known, using a well-known investigation method such as a method of measuring a temperature inside a hole, an electric logging method, and a geophysical exploration method.

【0012】ところで、高地温層は地熱源により異なる
深度にある。即ち、地熱源には地下のマグマ・エネルギ
ーに由来する火山性地熱源、断層運動による摩擦熱、化
学反応熱、放射能による熱等に由来する非火山性地熱
源、上記火山性地熱源により温化された地下水(即ち、
温泉)のエネルギーに由来する地下水性地熱源があり、
それぞれその放出エネルギーが異なる。一般に前2者の
放出エネルギーは大であり、後者は小とされる。したが
って、掘削場所の地熱源が何であるかにより掘削孔7の
深度は異なるのである。地下水性地熱源の場合、わが国
の地下温度の上昇率は一般に深度100m掘進するごと
に約4℃上昇すると言われている(本願発明者のデータ
上は平均約4.35℃/100mの地温上昇がある)。
したがって、地熱は掘進に伴なって確実に上昇するた
め、この掘削に当たっては従来のようにテストボーリン
グや揚水試験を重ねる必要がない。11はインナーケー
シングであり、上記アウターケーシング1の内側に間隔
を存した状態で挿設し、上記間隔により外側揚水通路部
9を形成する。上記インナーケーシング11は、樹脂、
セラミック、パルプ、グラスファイバー等を成形したも
の等断熱効率の高い材質からなる上下部開放のケーシン
グ管(図示省略)を多数線状に連結してなり、内孔に内
側揚水通路部12を形成する。該インナーケーシング1
1は下端部を構成するケーシング管のみ底部に多数の連
通孔15からなる揚水導入部13を設けてある。
The high geothermal layer is at a different depth depending on the geothermal source. That is, the geothermal source is a volcanic geothermal source derived from underground magma energy, a non-volcanic geothermal source derived from frictional heat due to fault motion, heat of chemical reaction, heat due to radioactivity, etc. Groundwater (ie,
Underground geothermal source derived from the energy of hot springs)
Each of them has different emission energy. In general, the former has a large emission energy, and the latter has a small energy. Therefore, the depth of the excavation hole 7 differs depending on the geothermal source at the excavation site. In the case of a groundwater source, it is generally said that the rate of rise in underground temperature in Japan increases by about 4 ° C. every time a depth of 100 m is excavated. There is).
Therefore, since geothermal heat is surely increased with the excavation, it is not necessary to repeat test boring and pumping tests in this excavation. Reference numeral 11 denotes an inner casing, which is inserted inside the outer casing 1 with a space therebetween, and forms the outer pumping passage 9 by the space. The inner casing 11 is made of resin,
An upper and lower open casing tube (not shown) made of a material having high heat insulation efficiency such as a molded product of ceramic, pulp, glass fiber or the like is connected in a line shape to form an inner pumping passage portion 12 in the inner hole. . The inner casing 1
1 is provided with a pumping introduction section 13 comprising a large number of communication holes 15 at the bottom of only the casing tube constituting the lower end.

【0013】上記アウターケーシング1の周壁には多数
のストレーナ孔16からなる取水口17を設ける。該取
水口17は水温が25℃未満の地層Aにおける帯水層B
に開口し、地下水19を取入れる。図中G.L.はグラ
ンドライン、U.G.はアンダグランドライン、P.
L.は揚水水位、N.L.は自然水位を示す。
The outer casing 1 has a water intake port 17 formed on the peripheral wall thereof and includes a plurality of strainer holes 16. The intake 17 is an aquifer B in the stratum A where the water temperature is lower than 25 ° C.
And the groundwater 19 is taken in. G in the figure. L. Is a ground line, U. G. FIG. Indicates an underground line,
L. Is the pumping water level, N. L. Indicates natural water level.

【0014】しかして上記取水口17より地下水19を
採取する。地下水19は矢示の如く上記外側揚水通路部
9内を下進し、下方に進行するに従って温熱帯W及び高
温地熱帯Hの通過中に地熱の作用により水温が上昇して
くる。
Thus, groundwater 19 is collected from the intake 17. The groundwater 19 travels downward in the outer pumping passage 9 as indicated by the arrow, and as it proceeds downward, the water temperature rises due to the effect of geothermal heat during the passage of the warm tropics W and the hot tropics H.

【0015】地下水性地熱源の場合、通常深度が深いの
で外側揚水通路部9の途中、例えば上層の方に部分的に
地熱温度の低い地層があったとしても、下進するにした
がってより大なる地熱エネルギーにより加熱されるか
ら、実際上低地温層による影響を受けることがない。取
水温度は利用の便宜を考えて100℃以下とすることが
多い。例えば、40℃〜43℃程度で取水しようとする
場合は、通常、深度2,000m位まで掘削する。かか
る場合は、底部付近での地熱は約80℃〜87℃位とな
っている。この熱水即ち地熱温水泉19aは、後続して
送給されてくる地下水19の水圧により、インナーケー
シング11の揚水導入部13からインナーケーシング1
1の内側揚水通路部12に浸入する。したがって、内側
揚水通路部12に設置する揚水ポンプ20を作動させ、
揚水管21を介してインナーケーシング11内に浸入し
た地熱温水泉19aを汲み上げ、取出口22から取り出
す。
In the case of an underground geothermal source, the depth is usually deep, so that even if there is a geological layer having a low geothermal temperature in the middle of the outer pumping passage section 9, for example, in the upper layer, it becomes larger as it goes down. Because it is heated by geothermal energy, it is practically unaffected by low geothermal layers. The water intake temperature is often set to 100 ° C. or lower for convenience of use. For example, when water is to be taken at about 40 ° C to 43 ° C, excavation is usually performed to a depth of about 2,000 m. In such a case, the geothermal temperature near the bottom is about 80 ° C to 87 ° C. The hot water, that is, the geothermal hot water spring 19a is moved from the pumping introduction portion 13 of the inner casing 11 to the inner casing 1 by the water pressure of the subsequently supplied groundwater 19.
1 penetrates into the inner pumping passage 12. Therefore, the pump 20 installed in the inner pumping passage 12 is operated,
The geothermal hot spring 19a that has entered the inner casing 11 via the water pump 21 is pumped up and taken out from the outlet 22.

【0016】なお、取水温度は、注入水の水温や水量、
アウターケーシング1の容積や熱伝導率、インナーケー
シング11の断熱効率、地熱源の放熱量等に影響される
ので、所望の取水温度となるように掘削深度を設計す
る。
[0016] The water intake temperature is determined by the temperature and amount of the injection water,
The excavation depth is designed so as to have a desired water intake temperature because it is affected by the volume and thermal conductivity of the outer casing 1, the heat insulation efficiency of the inner casing 11, the amount of heat released from the geothermal source, and the like.

【0017】上記実施の形態によれば、25℃以上の温
泉を採取するのではないから、温泉法及び都道府県に設
定されている温泉特別保護地域及び温泉保護地域による
温泉の採取制限の問題がない。したがって、温泉資源の
涸渇化等の心配をせずに、自由に天然温泉並みの熱水
(地熱温水泉)を得ることができる。
According to the above-described embodiment, since hot springs of 25 ° C. or higher are not collected, there is a problem of the hot spring law and the restrictions on hot spring collection by the hot spring special protection areas and hot spring protection areas set in prefectures. Absent. Therefore, hot water (geothermal hot spring) comparable to a natural hot spring can be freely obtained without worrying about depletion of hot spring resources.

【0018】また、地熱は掘進に伴なって確実に上昇す
るものであり、本願発明による地熱温水泉19aはこの
地熱を利用して加熱するものであるため、温泉の掘削に
当たって最も重要な湯脈の有無や含水量の測定誤り、あ
るいは使用過多等による温泉の涸渇化、あるいは排水の
水質の問題、あるいはこれらのことから生ずる種々の損
失を回避することができる。
The geothermal heat is surely increased with the excavation, and the geothermal hot spring 19a according to the present invention is heated by using this geothermal heat. It is possible to avoid depletion of hot springs due to presence or absence of water content, measurement error of water content, excessive use, etc., problems of water quality of waste water, and various losses resulting from these.

【0019】また、加熱源は天然の地熱であるからエネ
ルギー消費による種々の問題を惹起するおそれがない。
Further, since the heating source is natural geothermal, there is no possibility of causing various problems due to energy consumption.

【0020】本願発明による地熱温水泉の製造方法は上
記実施の形態に限定されない。例えば、アウターケーシ
ング1を構成するケーシング管は、熱伝導率の高い材質
からなるものであればその材質を問わない。また、イン
ナーケーシング11を構成するケーシング管は、断熱効
率の高い材質からなるものであればその材質を問わな
い。さらに、アウターケーシング1とインナーケーシン
グ11との間に間隔を存してインナーケーシング11を
挿入すればよく、アウターケーシング1に対しインナー
ケーシング11を必ずしも同軸に設けなくてもよい。
The method of manufacturing a geothermal hot spring according to the present invention is not limited to the above embodiment. For example, the casing tube constituting the outer casing 1 is not limited as long as it is made of a material having high thermal conductivity. Further, the casing tube constituting the inner casing 11 may be made of any material as long as it is made of a material having high heat insulation efficiency. Furthermore, the inner casing 11 may be inserted with a space between the outer casing 1 and the inner casing 11, and the inner casing 11 does not necessarily have to be provided coaxially with the outer casing 1.

【0021】また地熱温水泉の取り出しの態様は任意で
あり、例えば揚水ポンプを用いず、送水ポンプの送水圧
により取り出してもよい。
The mode of taking out the geothermal hot spring is optional. For example, the geothermal hot spring may be taken out by a water supply pressure of a water supply pump without using a water pump.

【0022】[0022]

【発明の効果】このように、本願発明による地熱温水泉
の製造方法によれば、温泉と同等の熱水の提供を安定的
にかつ確実にまた環境保全上も有効に行なうことができ
る。
As described above, according to the method of manufacturing a geothermal hot spring according to the present invention, it is possible to stably and reliably provide hot water equivalent to a hot spring and effectively protect the environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明による地熱温水泉の製造方法を説明す
る正面断面図である。
FIG. 1 is a front sectional view illustrating a method of manufacturing a geothermal hot spring according to the present invention.

【図2】図1の拡大平面図である。FIG. 2 is an enlarged plan view of FIG.

【図3】図1のIII部の拡大図である。FIG. 3 is an enlarged view of a part III in FIG. 1;

【図4】図1のIV部の拡大図である。FIG. 4 is an enlarged view of an IV section in FIG. 1;

【符号の説明】[Explanation of symbols]

1 アウターケーシング 3 坑底部 5 外口部 7 掘削孔 9 外側揚水通路部 11 インナーケーシング 12 内側揚水通路部 13 揚水導入部 15 連通孔 16 ストレーナ孔 17 取水口 19 地下水 19a 地熱温水泉 20 揚水ポンプ 21 揚湯管 22 取出口 DESCRIPTION OF SYMBOLS 1 Outer casing 3 Downhole 5 Outer opening 7 Drilling hole 9 Outer pumping passage 11 Inner casing 12 Inner pumping passage 13 Pumping introduction part 15 Communication hole 16 Strainer hole 17 Intake 19 Groundwater 19a Geothermal hot spring 20 Pumping pump 21 Lifting Hot water pipe 22 outlet

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地上から地熱源に至るまで挿設したアウ
ターケーシング内に、インナーケーシングを間隔を存し
た状態で挿設し、上記間隔にて外側揚水通路部を形成
し、インナーケーシングの内孔に形成する内側揚水通路
部を上記外側揚水通路部に連通し、上記外側揚水通路部
及び上記内側揚水通路部の上部を開放し、上記アウター
ケーシングの周壁に取水口を設け、該取水口より採取し
た地下水を上記外側揚水通路部の通過中に地熱により加
熱して上記内側揚水通路部より取り出すことを特徴とす
る地熱温水泉の製造方法。
(1) An inner casing is provided at intervals in an outer casing inserted from the ground to a geothermal source.
The outer pumping passage portion is formed at the above interval, and the inner pumping passage portion formed in the inner hole of the inner casing communicates with the outer pumping passage portion.
The upper part of the inner pumping passage is opened , an intake is provided on the peripheral wall of the outer casing, and groundwater collected from the inlet is heated by geothermal heat while passing through the outer pumping passage, and the inner pumping passage is heated. A method for manufacturing a geothermal hot spring characterized by extracting from a hot spring.
【請求項2】 請求項1記載の地熱温水泉の製造方法に
おいて、上記外側揚水通路部及び内側揚水通路部の連通
部がインナーケーシングの底部に設ける連通孔からなる
揚水導入部であることを特徴とする地熱温水泉の製造方
法。
2. The method for manufacturing a geothermal hot spring according to claim 1, wherein the communicating portion between the outer pumping passage portion and the inner pumping passage portion is a pumping introduction portion including a communication hole provided at a bottom portion of the inner casing. The method of manufacturing a geothermal hot spring.
JP10219903A 1998-07-21 1998-07-21 Manufacturing method of geothermal hot spring Expired - Fee Related JP3069549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10219903A JP3069549B2 (en) 1998-07-21 1998-07-21 Manufacturing method of geothermal hot spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10219903A JP3069549B2 (en) 1998-07-21 1998-07-21 Manufacturing method of geothermal hot spring

Publications (2)

Publication Number Publication Date
JP2000038891A JP2000038891A (en) 2000-02-08
JP3069549B2 true JP3069549B2 (en) 2000-07-24

Family

ID=16742847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10219903A Expired - Fee Related JP3069549B2 (en) 1998-07-21 1998-07-21 Manufacturing method of geothermal hot spring

Country Status (1)

Country Link
JP (1) JP3069549B2 (en)

Also Published As

Publication number Publication date
JP2000038891A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
Wheatcraft et al. Atoll island hydrology
US3863709A (en) Method of recovering geothermal energy
Sorey et al. New evidence on the hydrothermal system in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits
US20080236820A1 (en) Production of natural gas from hydrates
US3258069A (en) Method for producing a source of energy from an overpressured formation
CN104265242B (en) The ground thermal extraction method of geothermal well
Pujol et al. 20 years of exploitation of the Yarragadee aquifer in the Perth Basin of Western Australia for direct-use of geothermal heat
CN106194122A (en) The method that a kind of oil field abandoned well transform geothermal well or sub-salt well as
Williams et al. Preliminary delineation of contaminated water‐bearing fractures intersected by open‐hole bedrock wells
Layman et al. The Patuha vapor-dominated resource West Java, Indonesia
Cramer Reservoir characteristics and stimulation techniques in the Bakken Formation and adjacent beds, Billings Nose area, Williston Basin
Ledésert et al. The Soultz-sous-Forêts' enhanced geothermal system: A granitic basement used as a heat exchanger to produce electricity
JP3069549B2 (en) Manufacturing method of geothermal hot spring
Clemente et al. The Bulalo geothermal field, Philippines: reservoir characteristics and response to production
Levitt et al. Surface water–groundwater connection at the Los Alamos Canyon weir site: Part 1. Monitoring site installation and tracer tests
Huenges et al. The in-situ geothermal laboratory Groß Schönebeck: learning to use low permeability aquifers for geothermal power
JPH11248260A (en) Method for realizing artificial hot spring
Tóth et al. A prospect geothermal potential of an abandoned copper mine
Johnson et al. Use of discrete-zone monitoring systems for hydraulic characterization of a fractured-rock aquifer at the University of Connecticut landfill, Storrs, Connecticut, 1999 to 2002
Aksoy et al. Reinjection management in Balcova geothermal field
Gal et al. New investigations in former hydrocarbon exploration wells in the Aquitaine Basin, France: how to get reliable data? A case study.
Allman et al. Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system
Delouvrier et al. Multi-level Groundwater Pressure Monitoring at the Meuse/Haute-Marne Underground Research Laboratory, France
Spencer et al. Analysis of the response of the Raft River monitor wells to the 1979 injection tests
Layden Big Wells field, Dimmit and Zavala Counties, Texas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees